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THREE SOLUTIONS FOR SINGULAR p-LAPLACIAN TYPE
EQUATIONS

ZHOU YANG, DI GENG, HUIWEN YAN

Abstract. In this paper, we consider the singular p-Laplacian type equation

− div(|x|−βa(x,∇u)) = λf(x, u), in Ω,

u = 0, on ∂Ω,

where 0 ≤ β < N − p, Ω is a smooth bounded domain in RN containing the

origin, f satisfies some growth and singularity conditions. Under some mild

assumptions on a, applying the three critical points theorem developed by
Bonanno, we establish the existence of at least three distinct weak solutions

to the above problem if f admits some hypotheses on the behavior at u = 0
or perturbation property.

1. Introduction

The three critical points theorem established by Ricceri [6] and extended by
Bonanno [2] has been used by several author in the study of nonlinear boundary-
value problems; see for example [1, 2, 4, 5, 7, 9]. In particular, Kristály, Lisei and
Vargaetc [5] employed Bonanno’s theorem to study the p-Laplacian type equation

−div(a(x,∇u)) = λf(u), in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN and a : Ω × RN → RN satis-
fies some structural conditions. The simplest case of this problem occurs when
a(x, ξ) = |ξ|p−2ξ, p > 1. In this case (1.1) reduces to an equation involving the p-
Laplacian operator. Under the assumptions that the nonlinear term f(u) : R → R
is continuous, (p − 1)-sublinear at infinity and (p − 1)-superlinear at the origin,
Kristály applied Bonanno’s variational principle to (1.1) and obtain the existence
of three weak solutions.
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In the present paper, we investigate the existence and multiplicity of solutions
to the singular p-Laplacian type equation

−div(|x|−βa(x,∇u)) = λf(x, u), in Ω,
u = 0, on ∂Ω,

(1.2)

where 0 ≤ β < N − p, 1 < p < N and Ω is a smooth bounded domain in RN

containing the origin.
In this paper, we use the following notation:

β∗1 :=
Nβ

N − p
, β∗2 := p+ β, β∗3 := N − N − p− β

p
, p∗(β, α) :=

(N − α)p
N − β − p

.

(1.3)
Suppose that the potential a : Ω× RN → RN satisfies the assumptions:

Let A = A(x, ξ) : Ω × RN → R be a Carathéodory function, i.e., measurable in
x and continuous in ξ, a.e. x ∈ Ω; A(x, ξ) is of continuous derivative with respect
to ξ with a = ∇ξA and satisfies the follows conditions:

(A1) A(x, 0) = 0 a.e. x ∈ Ω;
(A2) there are p > 1 and a positive constant a1 such that

|a(x, ξ)| ≤ a1(1 + |ξ|p−1) for a.e. x ∈ Ω and all ξ ∈ RN ;

(A3) A(x, ξ) is strictly convex in ξ, that is, for ξ, η ∈ RN with ξ 6= η

2A
(
x,
ξ + η

2

)
< A(x, ξ) +A(x, η) for a.e. x ∈ Ω;

(A4) A(x, ξ) satisfies the ellipticity condition: There exists a positive constant
a2 such that

A(x, ξ) ≥ a2|ξ|p, for a.e. x ∈ Ω and all ξ ∈ RN .

We suppose the singular nonlinear term f(x, u) fulfils the following hypothesis: Let
f = f(x, u) : RN × R → R be a Carathéodory function and

(B1) f(x, u) is subcritical and (p− 1)-sublinear at infinity, i.e.,

lim
u→∞

sup
x∈Ω

|f(x, u)||u|1−p|x|β
∗
2 = 0.

(B2) There exist some α with β∗1 ≤ α < β∗2 and a positive continuous function
F(u) with F(u)(1 + |u|p)−1 ∈ L∞(R) such that

|F (x, u)| ≤ F(u)|x|−α for a.e. (x, u) ∈ Ω× R.

In the sequel we consider the weighted space X = D1,p(Ω, |x|−βdx), which is the
completion of C∞0 (Ω) under the norm (

∫
Ω
|∇u|p|x|−βdx)1/p. On X, we define the

two functionals

Φ(u) =
∫

Ω

A(x,∇u)|x|−βdx, Ψ(u) =
∫

Ω

F (x, u)dx, (1.4)

where F (x, u) =
∫ u

0
f(x, t)dt.

It is not difficult to see that solutions of the problem (1.2) are the critical points
of the variational functional I(u) = Φ(u) − λΨ(u). Moreover, I(u) is continuous
differentiable on the space X, and Fréchet derivation of I(u) can be represented as

〈I ′(u), v〉 =
∫

Ω

|x|−βa(x,∇u) · ∇vdx− λ

∫
Ω

f(x, u)v, ∀ v ∈ X. (1.5)
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According to the structural conditions of a(x, ξ) and f(x, u), it is clear that the
problem (1.2) is more general than (1.1) since there exists singularity not only in
nonlinear term f(x, u), but also in diverge term div(|x|−βa(x,∇u)), which issues
some difficulty. We need some generalized Hardy-Sobolev imbedding result (see
Lemma 2.1 below) in proving the P.-S. condition. Since we drop the assumption
(Ha) in [5] and replace the usual p-uniform convexity of A(x, ξ) by strict convexity,
to show that I(u) is weakly lower semicontinuous on X (Lemma 2.6), we have to
give some subtle estimates about the variational functional I(u).

In this paper, when f(x, u) is (p − 1)-superlinear at the origin, the first main
result we establish is:

Theorem 1.1. Assume (A1)–(A4), (B1)–(B2) are satisfied. Let E = B(x0, r) be
a ball contained in Ω, such that for some K 6= 0,

inf
x∈E

F (x,K) > 0. (1.6)

If F (x, u) admits the asymptotic property at the origin:

F(u)|u|−p → 0 as u→ 0, (1.7)

then, there exists an open interval Λ ⊂ [0,+∞) and a number R > 0 such that
for every λ ∈ Λ, equation (1.2) has at least three distinct solutions in X, whose
X-norms are less than R.

Note that when β = α = 0 and f(x, u) = f(u), Theorem 1.1 implies the conclu-
sion in [5, Theorem 2.1].

The conclusion in Theorem 1.1 still holds if the asymptotic property of f(x, u)
at the origin is replaced by some other properties. To state the next result, we
introduce the following notation:

c2(s) = inf
x∈B(x0,r/2)

F (x, s)
1 + |s|p

, c3(s) = sup
|u|≥s

F(u)|u|−p, c4(s) = sup
|u|≤s

F(u), (1.8)

where B(x0, r) ⊂ Ω and s ≥ 0.

Theorem 1.2. Assume (A1)–(A4), (B1)–(B2) are satisfied. Let E = B(x0, r) be
a ball contained in Ω, such that

F (x, u) ≥ 0, for a.e. x ∈ E and all u ∈ I, (1.9)

where I is either R+ or R−. If there exist L > 0 and K ∈ I such that

c2(K)|K|p ≥ Cc4(L), c2(K) > C(c3(L))
p
q (c4(L))

q−p
q L

p(p−q)
q , (1.10)

where q = p∗(β, α) and C is a certain positive constant only dependent on p, β, α,
N , E, a1 and a2. Then the conclusion in Theorem 1.1 remains valid.

Remark 1.3. The above result is new even in the case of β = α = 0. Moreover,
by the method similar to [9], we can show a more general result.

Remark 1.4. If we fix some L and keep c2(K)/c3(L) less than a fixed constant,
then assumption (1.10) holds when K > L and c2(K) is large enough.
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2. Preliminaries

Firstly, we recall the generalized Hardy-Sobolev imbedding theorem, which can
be deduced from Caffarelli-Kohn-Nirenberg inequality (see [3, 8]).

Lemma 2.1. Suppose that β∗1 ≤ α̃ ≤ β∗2 and β∗1 ≤ α̂ < β∗3 . Let U be an arbitrary
smooth bounded domain in RN containing the origin. We have

(i) There exists a constant Seα > 0, such that for any u ∈ D1,p(RN , |x|−βdx),
there holds

Seα‖u‖p

Lp∗(β, eα)(RN ,|x|−eαdx)
≤ ‖u‖p

D1,p(RN ,|x|−βdx)
,

where Lp(U, |x|−αdx) is Lp space with |x|−α as weight.
(ii) For 1 ≤ q̃ ≤ p∗(β, α̃), there exists a constant Seq,eα > 0 such that for any

u ∈ D1,p(U, |x|−βdx), there holds

Seq,eα‖u‖p
Leq(U,|x|−eαdx)

≤ ‖u‖p
D1,p(U,|x|−βdx)

,

Moreover, Seα = Seq,eα is independent of the domain U provided q̃ = p∗(β, α̃).
(iii) D1,p(U, |x|−βdx) compactly imbeds into Lbq(U, |x|−bα) provided 1 ≤ q̂ <

p∗(β, α̂).

Remark 2.2. (i) The first assertion in the lemma is a special case of Caffarelli-
Kohn-Nirenberg inequality. Particularly, let β = 0, α̃ = β∗2 = p, one get
Hardy inequality; furthermore, let β = α̃ = α̂ = 0, the lemma leads to
Sobolev theorem.

(ii) There are various forms of description about the imbedding, such as [8] and
references therein. We use the form because it looks like a generalization
of Hardy-Sobolev imbedding theorem.

For the reader’s convenience, we give the proof of the above lemma, which is
similar to [8].

Proof of lemma 2.1. Assertion (i) can be directly deduced from main results in [3,
Theorem]. In fact, choose the parameters n, p, γ = β, r = q, α, a and σ in [3] as
N , p, −α̃/p∗(β, α̃), p∗(β, α̃), −β/p, 1 and −α̃/p∗(β, α̃), respectively. Then it is not
difficult to verify the assumptions in [3] and thus (i) follows.

(ii) Recalling that β∗1 ≤ α̃ ≤ β∗2 and 1 ≤ q̃ ≤ p∗(β, α̃), we have∫
U

|u|eq|x|−eαdx ≤ ( ∫
U

|u|p
∗(β,eα)|x|−eαdx)eq/p∗(β,eα)( ∫

U

|x|−eαdx)(p∗(β,eα)−eq)/p∗(β,eα)

.

Since U is bounded and α̃ ≤ β∗2 < β∗3 < N , the above inequality and conclusion
(i) imply the required result. Employing the scaling method, one can discover that
the constant Seα = Sq̃,eα is independent of the domain U if q̃ = p∗(β, α̃).

(iii) First we prove that D1,p(U, |x|−βdx) imbeds into Lbq(U, |x|−bαdx). According
to assertion (ii), it is sufficient to demonstrate the imbedding when β∗2 < α̂ < β∗3 .
Indeed, noting that 1 = p∗(β, β∗3) < q̂ < p∗(β, β∗2) = p, we calculate∫

U

|u|bq|x|−bαdx ≤ ( ∫
U

|u|p|x|−β∗2 dx
)bq/p( ∫

U

|x|−τdx
)(p−bq)/p

,

where τ = (α̂− β∗2 q̂/p)p/(p− q̂). Since q̂ < p∗(β, α̂), we obtain

α̂ < N − N − β − p

p
q̂, τ <

(
N − N − β − p

p
q̂ − β + p

p
q̂
) p

p− q̂
= N,
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which means that D1,p(U, |x|−βdx) imbeds into Lbq(U, |x|−bαdx).
It remains to prove the imbedding is compact. Assume that the sequence

{un}∞n=1 is bounded in D1,p(U, |x|−βdx), it is sufficient to show that there ex-
ists a subsequence, still denoted by itself, such that un strongly converges to u in
Lbq(U, |x|−bα) as n→∞.

In fact, since U is bounded, we observe

‖u‖p
D1,p(U) =

∫
U

|∇u|p dx

≤ (diamU)β

∫
U

|∇u|p|x|−βdx

≤ (diamU)β‖u‖p
D1,p(U,|x|−βdx)

.

So, {un}∞n=1 is also bounded in D1,p(U) and there exists a subsequence, still denoted
by itself, weakly converging to some u in D1,p(U). Remembering that 1 < q̂ <
p∗(β, α̂) ≤ p∗(β, β∗1) = Np/(N − p), we conclude that un strongly converges to u
in Lbq(U) from the Sobolev theorem.

Choose a sequence of positive numbers {ρm} such that ρm → 0 as m→∞ and
Bρm

(0) ⊂ U for all m ∈ Z+. Then we deduce∫
U\Bρm (0)

|un − u|bq|x|−bαdx ≤ ρ−α̂
m ‖un − u‖bq

Lbq(U\Bρm (0))
≤ Cm‖un − u‖bq

Lbq(U)
.

On the other hand, recalling α̂ < N , we compute∫
Bρm (0)

|un − u|bq|x|−bαdx ≤ ‖un − u‖bq
Lτ (U,|x|−bαdx)

( ∫
Bρm (0)

|x|−bαdx)(τ−bq)/τ

,

here τ = (q̂ + p∗(β, α̂))/2 > q̂. Combining the above two inequalities, we obtain

0 ≤
∫

U

|un − u|bq|x|−bαdx ≤ Cm‖un − u‖bq
Lbq(U)

+ C
( ∫

Bρm (0)

|x|−bαdx)(τ−bq )/τ

.

First let n → ∞, then m → ∞, and we derive that un strongly converges to u in
Lbq(U, |x|−bα). �

Secondly, we review Bonanno’s three critical points theorem (see [2]), which is
the main variational tool in this paper.

Lemma 2.3. Let X be a separable and reflexive real Banach space, and let φ, ψ :
X → R be two continuously Gâteaux differentiable functionals. Assume that

(D1) There exists a function u0 ∈ X such that φ(u0) = ψ(u0) = 0 and φ(u) ≥ 0
for every u ∈ X .

(D2) There exists a function u1 ∈ X and a positive number ρ such that

ρ < φ(u1), sup
φ(u)<ρ

ψ(u) < ρ
ψ(u1)
φ(u1)

. (2.1)

(D3) Further, put

γ = ξρ
[
ρ
ψ(u1)
φ(u1)

− sup
φ(u)<ρ

ψ(u)
]−1

,
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with ξ > 1, and suppose that for every λ ∈ [0, γ], the functional φ(u)−λψ(u)
is sequentially weakly lower semicontinuous, satisfies the P.-S. condition
and

lim
‖u‖→+∞

[
φ(u)− λψ(u)

]
= +∞. (2.2)

Then, there exists an open interval Λ ⊂ [0, γ] and a number R > 0 such that, for
any λ ∈ Λ, the equation φ′(u) − λψ′(u) = 0 admits at least three solutions in X
whose norms are less than R.

In the sequel, by setting X = X = D1,p(Ω, |x|−βdx), φ(u) = Φ(u), ψ(u) = Ψ(u)
and ξ = +∞ we show that the variational functional I(u) satisfies all assumptions
in Lemma 2.3.

Lemma 2.4. Suppose that the assumptions (B1), (B2) are satisfied. Then Ψ(u) is
weakly continuous on X, i.e., if un weakly converges to u in X, Ψ(un) converges
to Ψ(u).

Proof. According to assumptions (B1), (B2), it is not difficult to deduce that, for
each ε > 0, there exists some positive number Mε such that

|f(x, u)u|+ |F (x, u)| ≤ ε|u|p|x|−β∗2 , a.e. x ∈ Ω and all |u| ∈ [Mε,+∞); (2.3)

|f(x, u)u|+ |F (x, u)| ≤ ε|u|p|x|−β∗2 + Cε|u||x|−α, a.e. x ∈ Ω and all u ∈ R,
(2.4)

here Cε is a positive number dependent only on ε.
Assume that un converges weakly to u in X, then for any ε ≥ 0, we conclude

|F (x, un)− F (x, u)| ≤ |f(x, θu+ (1− θ)un)||un − u|

≤ (ε|u|p−1|x|−β∗2 + ε|un|p−1|x|−β∗2 + Cε|x|−α)|un − u|,

where 0 < θ < 1. The definition of Ψ(u) thus implies that

|Ψ(un)−Ψ(u)| ≤
∫

Ω

|F (x, un)− F (x, u)|dx

≤
∫

Ω

(
ε
|u|p−1 + |un|p−1

|x|β∗2
+

Cε

|x|α
)
|un − u| dx

≤ Cε(‖un‖p
X + ‖u‖p

X) + Cε‖un − u‖L1(Ω;|x|−αdx).

Since X compactly imbeds into L1(Ω; |x|−αdx), taking n→∞, we obtain

lim sup
n→∞

|Ψ(un)−Ψ(u)| ≤ Cε‖u‖p
X .

Let ε→ 0+ in the above inequality, and the conclusion in the lemma follows. �

Lemma 2.5. Suppose that the assumptions (A1)–(A4), (B1)–(B2) are satisfied.
Then I(u) is weakly lower semicontinuous on X.

Proof. Owing to previous lemma, it suffice to show weakly lower semicontinuity
of Φ(u) on X. We argue by contradiction, assume that {un} is a function se-
quence weakly converging to u in X, but there is a subsequence unk

such that
limk→∞ Φ(unk

) > Φ(u). Without loss of generalization, one can assume that

Φ(unk
) > Φ(u) + δ, for k = 1, 2, . . . ,

where δ is a positive number.



EJDE-2008/61 THREE SOLUTIONS 7

In view of Mazur theorem, there exists a sequence {vm} strongly converging to u
in X, where vm is a convex combination of finitely many unk

; i.e., for any m ∈ Z+,

vm =
m∑

i=1

αmiunki
, with αmi > 0,

m∑
i=1

αmi = 1.

Since A(x, ξ) is convex with respect to ξ, we then derive

Φ(vm) ≥
m∑

i=1

αmi

∫
Ω

A(x,∇unki
)|x|−βdx

=
m∑

i=1

αmiΦ(unki
) > Φ(u) + δ, for m = 1, 2, . . . ,

which contradicts that {vm} strongly converges to u in X. �

Lemma 2.6. Suppose that the assumptions (A1)–(A4), (B1)–(B2) are satisfied.
Then I(u) satisfies the P.-S. condition.

Proof. Suppose that {un} ⊂ X is a P.-S. sequence for I(u), that is, {I(un)} is
bounded, and ‖I ′(un)‖X∗ → 0 as n→ 0, where X∗ is the dual space of X.

We claim that {un} admits a strongly convergent subsequence. Firstly, we show
that {un} is bounded in X. In fact, combining assumption (A4), (2.4) and Lemma
2.1, we calculate

C ≥ I(un) =
∫

Ω

A(x,∇un)|x|−βdx− λ

∫
Ω

F (x, un)dx

≥ a2

∫
Ω

|∇un|p|x|−βdx− λ

∫
Ω

(ε|u|p|x|−β∗2 + Cε|x|−α)dx

≥ (a2 − λS−1
β∗2
ε)‖un‖p

X − Cε.

Fix ε > 0 small enough that a2 − λS−1
β∗2
ε ≥ a2/2, then we discover that {un} is

bounded in X. There thus exists a subsequence of {un}, still denoted by itself, such
that {un} weakly converges to u in X. Moreover, without loss of generalization,
one can assume that f(x, un) weakly converges to f(x, u) in X∗.

We next demonstrate that there exists a subsequence of {un}, still denoted by
itself, such that

lim
n→∞

∇un = ∇u a.e. in Ω. (2.5)

Indeed, the facts that {un} is bounded in X and ‖I ′(un)‖X∗ → 0 as n→∞ implies
that

〈I ′(un)−I ′(u), un−u〉 = 〈I ′(un), un−u〉−〈I ′(u), un−u〉 = o(1), as n→∞. (2.6)

Furthermore, repeat the argument in the proof of Lemma 2.4, and it is easy to
deduce

J(u, un) :=
∫

Ω

[f(x, un)− f(x, u)][un − u]dx

=
∫

Ω

f(x, un)(un − u) dx−
∫

Ω

f(x, u)(un − u) dx = o(1),
(2.7)

as n→∞. On the other hand,

〈I ′(un)− I ′(u), un − u〉 =
∫

Ω

H(x, u, un)|x|−βdx− λJ(u, un), (2.8)
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where
H(x, u, un) := [a(x,∇un)− a(x,∇u)] · [∇un −∇u].

Combining (2.6), (2.7) and (2.8), we obtain

lim
n→∞

∫
Ω

H(x, u, un)|x|−βdx = 0. (2.9)

Notice that H(x, u, un) ≥ 0 since A(x, ξ) is convex in ξ. So, (2.9) implies that there
exists a subsequence of {un}, still denoted by itself, such that H(x, u, un) → 0 a.e.
in Ω as n→∞. Hence, (2.5) follows from the strict convexity of A(x, ξ).

Then, we prove that there exists a subsequence of {un}, still denoted by itself,
such that

lim
n→∞

∫
Ω

|x|−βa(x,∇un) · ∇un dx =
∫

Ω

|x|−βa(x,∇u) · ∇u dx. (2.10)

According to the growth condition (A2) and (2.5), we can assume that a(x,∇un)
weakly converges to a(x,∇u) in X∗, maybe a subsequence of {un}. Recalling that
f(x, un) weakly converges to f(x, u) in X∗, we infer that I ′(un) weakly converges
to I ′(u) in X∗. Hence, as n→∞, we deduce

o(1) = 〈I ′(un), un − u〉 − 〈I ′(un)− I ′(u), u〉
= 〈I ′(un), un〉 − 〈I ′(u), u〉

=
∫

Ω

|x|−β [a(x,∇un) · ∇un − a(x,∇u) · ∇u]dx

− λ

∫
Ω

[f(x, un)un − f(x, u)u] dx.

Repeating the procedure as in the proof of (2.7), we can achieve (2.10).
On the other hand, since A(x, ξ) is convex with A(x, 0) = 0 and satisfies elliptic

condition, we observe

a(x, ξ) · ξ ≥ A(x, ξ) ≥ a2|ξ|p, for all ξ ∈ RN ,

which implies a2|∇un|p and a2|∇u|p being dominated by a(x,∇un)·∇un, a(x,∇u)·
∇u, respectively. Combining (2.5), (2.10) and the dominated convergence theorem,
we conclude that ∇un converges to ∇u in Lp(Ω, |x|−βdx), that is un strongly con-
verges to u in X. �

3. Proof of the main results

To prove Theorems 1.1 and 1.2, we set notation as follows:

Π(F ;M) = Mp−q
( ρ

a2Sα

)q/p

sup
|u|≥M

F(u)|u|−p + µ(Ω) sup
|u|≤M

F(u), (3.1)

where µ(Ω) :=
∫
Ω
|x|−α dx and q = p∗(β, α) as defined in (1.3). One can establish

the next result.

Lemma 3.1. Suppose that the hypothesis (B2) and (A4) are satisfied. For every
u ∈ X with Φ(u) ≤ ρ, we have

Ψ(u) ≤ Π(F ;M).
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Proof. According to assumption (A4) and Lemma 2.1, for every u ∈ Φ−1(−∞, ρ],
we have

‖u‖p
X ≤ Φ(u)

a2
≤ ρ

a2
, ‖u‖q

α ≤
‖u‖q

X

S
q/p
α

≤
( ρ

a2Sα

)q/p

, (3.2)

where ‖u‖q
α :=

∫
Ω
|u|q|x|−αdx. By setting ΩM := {x ∈ Ω : |u(x)| ≥ M}, we can

deduce

µ(ΩM ) ≤M−q

∫
ΩM

|u|q|x|−α dx ≤M−q‖u‖q
α . (3.3)

By assumption (B2), for every u ∈ Φ−1(−∞, ρ], we have the following estimate:

Ψ(u) =
∫

Ω

F (x, u) dx ≤ sup
|u|≥M

F(u)|u|−p

∫
ΩM

|u|p|x|−α +
∫

Ω\ΩM

F (x, u) dx

≤ sup
|u|≥M

F(u)|u|−p‖u‖p
αµ(ΩM )1−p/q + sup

|u|≤M

F(u)µ(Ω).

Combining (3.2) and (3.3), we obtain Ψ(u) ≤ Π(F ;M) for every u ∈ Φ−1(−∞, ρ].
�

Proof of Theorem 1.1. To apply Bonanno’s three critical points theorem, we have
to verify all conditions in Lemma 2.3.

Recalling the definition of Φ(u),Ψ(u), we conclude that Φ(0) = Ψ(0) = 0 and
Φ(u) ≥ 0 for all u ∈ X, which is the condition (D1) in Lemma 2.3.

Put γ = +∞, then Lemma 2.5 and Lemma 2.6 imply that the functional I(u) =
Φ(u) − λΨ(u) is sequentially weakly lower semicontinuous and satisfies the P.-S.
condition. Moreover, using (A4), (2.4) and Lemma 2.1, we compute

Φ(u)− λΨ(u) ≥ a2‖u‖p
X − λ

∫
Ω

(ε|u|p|x|−β∗2 + Cε|u||x|−α) dx

≥ a2‖u‖p
X − ελS−1

β∗2
‖u‖p

X − CελS
−1/p
1,α ‖u‖X ,

fix a positive ε less than a2λ
−1Sβ∗2

/2, then (2.2) is obvious and we manifest as-
sumption (D3).

In the following, we verify the condition (D2), or equivalently, (2.1). In fact, we
can define a function the same as in [5]:

uσ(x) =


0, x ∈ RN \ E;
K, x ∈ B(x0, σr);

K
r(1−σ) (r − |x− x0|), x ∈ E \B(x0, σr),

(3.4)

where 0 < σ < 1 to be determined later. Owing to assumption (1.6) and (B2), we
observe that

Ψ(uσ) =
∫

E

F (x, uσ)dx

≥
∫

E∩{uσ(x)=K}
F (x, uσ)dx− max

|u|≤|K|
F(u)

∫
E∩{|uσ(x)|<|K|}

|x|−α dx

≥ inf
x∈E

F (x,K)
∫

B(x0,σr)

dx− max
|u|≤|K|

F(u)
∫

E\B(x0,σr)

|x|−α dx.

As σ → 1−, the first term on the right hand side of the above inequality tends to
the positive constant ωrN infE F (x,K), here ω is the volume of the unit ball, and
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the second term goes to zero. We thus pick up some σ and uσ such that Ψ(uσ) > 0.
Furthermore, from assumption (A4), we see that Φ(uσ) ≥ a2‖uσ‖p

X > 0.
According to the Lemma 3.1, to verify (2.1), it suffice to turn up two positive

numbers M and ρ, such that

0 < ρ < Φ(uσ) and
Π(F ;M)

ρ
<

Ψ(uσ)
Φ(uσ)

. (3.5)

Indeed, in view of assumption (1.7) and (B2), we see that, for any ε > 0, there
exist some positive constant M such that F(u) ≤ ε|u|p, for all u ∈ [−M,M ] and
F(u)|u|−p ≤ C for all u ∈ R, where C is independent of M . Put ρ = δpMp with δ
is a positive number to be determined later, then we deduce

Π(F ;M)
ρ

≤ Cδq−p
( 1
a2Sα

)q/p

+ εδ−pµ(Ω)

One can first fix δ > 0 small enough, then choose ε > 0 so small that the right
hand side of the above inequality is less than Ψ(uσ)/Φ(uσ), finally choose M and
ρ satisfy (3.5), which yields condition (2.1). Hence, we testify all the conditions in
Lemma 2.3 and the desired conclusion follows. �

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, denote uσ as (3.4) and
fix σ = 1/2. Owing to assumptions (1.9) and (1.10), it is clear that

Ψ(uσ) ≥
∫

E∩{uσ(x)=K}
F (x, uσ)dx ≥ c2(K)(1 + |K|p)

∫
B(x0,r/2)

dx.

Moreover, recalling assumptions (A4) and (A2), we have

Φ(uσ) ≥ a2

∫
E

|∇uσ|p|x|−β dx ≥ a2

(2|K|
r

)p
∫

E\B(x0,r/2)

|x|−β dx,

Φ(uσ) ≤ a1

∫
E

(|∇uσ|+ |∇uσ|p)|x|−β dx ≤ a1

(2|K|
r

+
(2|K|

r

)p) ∫
E

|x|−β dx.

(3.6)
We thus get

ρ
Ψ(uσ)
Φ(uσ)

≥ δc2(K)ρ, (3.7)

where δ is a positive constant dependent only on p, β,N,E and a1.
On the other hand, let M = L in (3.1), according to the definition in (1.8), we

obtain

Π(F ;L) ≤ c3(L)Lp−q
( ρ

a2Sα

)q/p

+ c4(L)µ(Ω). (3.8)

Denote by

ρ1 =
(δc2(K)Lq−p(a2Sα)q/p

2c3(L)

) p
q−p

, ρ2 =
Φ(uσ)

2
.
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Let ρ = min{ρ1, ρ2}. When ρ = ρ1, in view of (3.7), (3.8) and assumption (1.10),
we compute

ρ
Ψ(uσ)
Φ(uσ)

−Π(F ;L) ≥ δc2(K)ρ1 −Π(F ;L)

≥ δ

2
c2(K)ρ1 − c4(L)µ(Ω)

= δ∗(c2(K))
q

q−pLp(c3(L))
p

p−q − c4(L)µ(Ω)

≥ δ∗C
q

q−p c4(L)− c4(L)µ(Ω) > 0,

where δ∗ and C are constants dependent only on p, β, α,N,E,Ω, a1 and a2.
In the other case of ρ = ρ2, owing to (3.6), (3.7), (3.8) and assumption (1.10),

we deduce

ρ
Ψ(uσ)
Φ(uσ)

−Π(F ;L) ≥ δ

2
c2(K)ρ2 − c4(L)µ(Ω)

≥ δ∗∗c2(K)|K|p − c4(L)µ(Ω)

≥ δ∗∗Cc4(L)− c4(L)µ(Ω) > 0,

where δ∗∗, C are constants dependent only on p, β, α,N,E,Ω, a1 and a2. So, we
achieve assumption (2.1) in any cases and the conclusion in the theorem is derived
from Lemma 2.3. �

In the following, we give two simple examples:

Example 3.2. Consider the mean curvature equation

−div(|x|−β(1 + |∇u|2)
p−2
2 ∇u) = λ|u|m+ p−m

|u|+1 |x|−α, x ∈ Ω,
u = 0, x ∈ ∂Ω .

(3.9)

Employing Theorem 1.1, we can get the following result: If 2 ≤ p < N , m <
p− 1, 0 ≤ β < N − p, β∗1 ≤ α < β∗2 , then (3.9) admits at least three distinct weak
solutions.

Example 3.3. Consider the p-Laplacian equation involving singular weight:

−div(|x|−β |∇u|p−2∇u) = λ|x|−αg(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3.10)

where

g(u) =


eu, u ∈ [−t, t],
et, u ∈ [t,∞),
e−t, u ∈ (−∞,−t].

Applying Theorem 1.2, we conclude that: If 1 < p < N , 0 ≤ β < N − p and
β∗1 ≤ α < β∗2 , then (3.10) admits at least three distinct weak solutions provided t
is sufficiently large.

References

[1] G. Bonanno, R. Livrea; Multiplicity theorems for the Dirichlet problem involving the p-

Laplacian, Nonlinear Analysis TMA 54 (2003), 1-7.
[2] G. Bonanno; Some remaks on a three critical points theorem, Nonlinear Analysis, 54 (2003)

651-665.



12 Z. YANG, D. GENG, H. YAN EJDE-2008/61

[3] L. Caffarelli, R. Kohn, L. Nirenberg; First order interpolation inequalities with weights, Com-

positio Math. 53 (1984) 259-275.

[4] G. Cordaro, G. Rao; Three solutions for a perturbed Dirichlet problem, Nonlinear Analysis
TMA, preprinted.
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