
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 38, pp. 1–8.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

POSITIVE PERIODIC SOLUTIONS OF NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH A PARAMETER AND

IMPULSE

XUANLONG FAN, YONGKUN LI

Abstract. In this paper, we consider first-order neutral differential equations

with a parameter and impulse in the form of

d

dt
[x(t)− cx(t− γ)] = −a(t)g(x(h1(t)))x(t) + λb(t)f

`
x(h2(t))

´
, t 6= tj ;

∆
ˆ
x(t)− cx(t− γ)

˜
= Ij

`
x(t)

´
, t = tj , j ∈ Z+.

Leggett-Williams fixed point theorem, we prove the existence of three positive
periodic solutions.

1. Introduction

The existence of periodic solutions of delay differential equations with or without
impulses has been a focus of theoretical and practical importance because time-
delay occurs areas such as mechanics, physics, biology, economy, population dy-
namic models, large-scale systems, automatic control systems, neural networks,
chaotic systems, and so on. The existence of periodic solutions of time-delay sys-
tems with or without impulses has been extensively studied by Many researchers
have studied this problem; se for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14,
17, 18, 19, 20, 21] and references therein. However, relatively few papers have been
published on the existence of periodic solutions for neutral functional differential
equations.

In this paper, we are concerned with the neutral differential equation

d

dt

[
x(t)− cx(t− γ)

]
= −a(t)g

(
x(h1(t))

)
x(t) + λb(t)f

(
x(h2(t))

)
, t 6= tj ,

∆
[
x(t)− cx(t− γ)

]
= Ij

(
x(t)

)
, t = tj , j ∈ Z+,

(1.1)

where λ > 0 is a positive parameter and there exists a positive constant q such that
tj+q = tj + ω, Ij+q(x(tj+q)) = Ij(x(tj)), j ∈ Z+. Without loss of generality, we
assume that [0, ω] ∩ {tj , j ∈ Z+} = {t1, t2, · · · , tq}.

In this paper, we will use the following assumptions:
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(H1) a ∈ C(R, [0,+∞)) is ω-periodic and there exists t∗1 ∈ (0, ω) such that
a(t∗1) > 0;

(H2) b ∈ C(R, [0,+∞)) is ω-periodic and there exists t∗2 ∈ (0, ω) such that b(t∗2) >
0;

(H3) h1(t), h2(t) ∈ C(R, R) are ω-periodic;
(H4) g ∈ C([0,∞), [0,∞)), Ij ∈ C([0,∞), [0,∞)) and f ∈ C([0,∞), [0,∞)) are

continuous, 0 < l ≤ g(u) < L < ∞ for all u > 0, l, L are two positive
constants.

Using Leggett-Williams fixed point theorem [5] to show the existence of at least
three positive periodic solutions of (1.1). To the best of the authors’ knowledge,
few authors discuss at least three positive periodic solutions for neutral functional
differential equations with impulses and parameters.

2. Preliminaries

To obtain the existence of periodic solutions of system (1.1), we first make the
following preparations.

Let β =
∫ ω

0
a(s) ds, where a is a continuous ω-periodic function. In what follows,

we set
X =

{
x ∈ C(R, R) : x(t + ω) = x(t)

}
and define ‖x‖ = max{|x(t)| : t ∈ [0, ω]}. Then (X, ‖ · ‖) is a Banach space. Let
A : X → X be defined by

(Ax)(t) = x(t)− cx(t− γ).

Lemma 2.1 ([13]). If |c| 6= 1, then A has continuous bounded inverse A−1 and for
all x ∈ X,

(A−1x)(t) =

{∑
j≥0 cjx(t− jγ), if |c| < 1,

−
∑

j≥1 c−jx(t + jγ), if |c| > 1 .
(2.1)

Then

‖A−1x‖ ≤ ‖x‖
|1− |c||

.

To establish the existence of periodic solutions of (1.1), we first consider the
system

d

dt
u(t) = −a(t)g

(
(A−1u)(h1(t))

)
(A−1u)(t) + λb(t)f

(
(A−1u)(h2(t))

)
, t 6= tj ,

∆u(t) = Ij

(
(A−1u)(t)

)
, t = tj , j ∈ Z+,

(2.2)
where A−1 is defined by (2.1). By Lemma 2.1, we conclude the following result.

Lemma 2.2. u(t) is an ω-periodic solution of (2.2) if and only if (A−1u)(t) is an
ω-periodic solution of (1.1).

Let X be a Banach space and K is a closed, nonempty subset of X. K is a cone
provided that

(i) α1u + β1y ∈ K for all u, v ∈ K and α1, β1 ≥ 0;
(ii) u,−u ∈ K imply u = 0.
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Define Kr = {x ∈ K : ‖x‖ ≤ r}. Let α(x) denote the positive continuous
concave functional on K, that is α : K → [0,∞) is continuous and satisfies

α(λx + (1− λ)y) ≥ λα(x) + (1− λ)α(y) for all x, y ∈ K, 0 ≤ λ ≤ 1,

and we denote the set K(α, a1, b1) = {x ∈ K : a1 ≤ α(x), ‖x‖ ≤ b1}.

Lemma 2.3 ([5]). Let K be a cone of the real Banach space X and Φ : Kc3 →
Kc3 be a completely continuous operator, and suppose that there exists a concave
positive functional α with that α(x) ≤ ‖x‖ for x ∈ K and numbers c1, c2, c3, c4 with
0 < c4 < c1 < c2 ≤ c3, satisfying the following conditions:

(1) {x ∈ K(α, c1, c2) : α(x) > c1} 6= ∅ and α(Φx) > c1 if x ∈ K(α, c1, c2);
(2) ‖Φx‖ < c4 if x ∈ Kc4 ;
(3) α(Φx) > c1 for all x ∈ K(α, c1, c2) with ‖Φx‖ > c2.

Then Φ has at least three fixed points in Kc3 .

Aiming to apply Lemma 2.2 to (2.2), we rewrite (2.2) as

d

dt
u(t) = −a(t)g

(
(A−1u)(h1(t))

)
u(t) +

[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
, t 6= tj ,

∆u(t) = Ij

(
(A−1u)(t)

)
, t = tj , j ∈ Z+,

(2.3)

where

Ĝ(u(t), u(h1(t))) = g
(
(A−1u)(h1(t))

)[
u(t)− (A−1u)(t)

]
= −cg

(
(A−1u)(h1(t))

)
(A−1u)(t− γ).

The following lemma is fundamental in our discussion. Since the method is
similar to that in the literature [15], we omit the proof.

Lemma 2.4. x(t) is an ω-periodic solution of (1.1) is equivalent to u(t) is an
ω-periodic solution of

u(t) =
∫ t+ω

t

G(t, s)
[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

G(t, tj)Ij

(
(A−1u)(tj)

)
,

(2.4)

where

G(t, s) =
e

R s
t

a(θ)g((A−1x)(h1(θ)) dθ

e
R ω
0 a(θ)g((A−1x)(h1(θ)) dθ − 1

, s ∈ [t, t + ω].

For u ∈ X and t ∈ R, let the map Φ be defined by

(Φu)(t) =
∫ t+ω

t

G(t, s)
[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

G(t, tj)Ij

(
(A−1u)(tj)

) (2.5)

It is easy to see that G(t + ω, s + ω) = G(t, s) and

1
σL − 1

≤ G(t, s) ≤ σl

σl − 1
, s ∈ [t, t + ω], (2.6)
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where σ = exp
(
−

∫ ω

0
a(θ) dθ

)
. Define the cone K in X by

K =
{

u ∈ X : u(t) ≥ δ‖u‖, t ∈ [0, ω]
}

,

where 0 < δ = (σl−1)
σl(σL−1)

< 1.
The following lemma is useful in the proofs of our main results. Since the method

is similar to that in the literature [9], we omit the proof.

Lemma 2.5. If c ∈ (−δ, 0] and u ∈ K. Then

l|c|δ − |c|
1− c2

‖u‖ ≤ Ĝ
(
u(t), u(h1(t))

)
≤ L

|c|
1− |c|

‖u‖.

Lemma 2.6. Assume that (H1)–(H4) and c ∈ (−δ, 0] hold, then Φ maps K into
K.

Proof. For any u ∈ K, it is clear that Φu ∈ C(R, R), we have

(Φu)(t + ω) =
∫ t+ω

t

G(t + ω, s + ω)
[
a(t + ω)Ĝ

(
u(t + ω), u(h1(t + ω))

)
+ λb(t + ω)f

(
(A−1u)(h2(t + ω))

)]
ds

+
∑

j:tj∈[0,ω]

G(t + ω, tj + ω)Ij

(
(A−1u)(tj + ω))

)
=

∫ t+ω

t

G(t, s)
[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

G(t, tj)Ij

(
(A−1u)(tj)

)
= (Φu)(t).

Thus, (Φu)(t + ω) = (Φu)(t), t ∈ R. So that Φu ∈ X. Since c ∈ (−δ, 0], it follows
that G(u(t), u(h1(t))) ≥ 0 for t ∈ R. In view of (2.5), (2.6), for u ∈ K, t ∈ [0, ω],
we have

‖(Φu)‖ ≤ σl

σl − 1

( ∫ t+ω

t

[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

Ij

(
(A−1u)(tj)

))
and

|(Φu)(t)| ≥ 1
σL − 1

( ∫ t+ω

t

[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

Ij

(
(A−1u)(tj)

))
≥ δ‖Φu‖.

Hence, Φx ∈ K. The proof is complete. �

It is easy to see that Φ is continuous and bounded. From Lemma 2.5, we know
that Φ maps bounded sets into relatively compact sets. Furthermore, by the the-
orem of Ascoli-Arzela [16], it is easy to prove that the function Φ is completely
continuous.
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For convenience in the following discussion, we introduce the following notation:

f0 = lim sup
v→0

f(v)
v

, I0 = lim sup
v→0

q∑
j=1

Ij(v)
v

,

f∞ = lim sup
v→∞

f(v)
v

, I∞ = lim sup
v→∞

q∑
j=1

Ij(v)
v

and for c2 > 0,

I(c2) = min
δc2≤v≤c2

q∑
j=1

Ij(v).

3. Main Result

Our main result of this paper is stated as follows.

Theorem 3.1. Assume that (H1)-(H4) and c ∈ (−η, 0], where

η := min
{
δ, 1− lσlβ

(σl − 1) + Lσlβ

}
.

Then there exists a number c2 > 0 such that

(i) For δc2 ≤ u ≤ c2, t ∈ R,

f
(
(A−1u)(h2(s))

)
>

σl(σL − 1)
σl − 1

u− σl

σl − 1
I(c2) −

σl

σl − 1
l|c|δ − |c|

1− c2
βu ;

(ii)

f0 + I0 <
(1− |c|)(σl − 1)

Lσl|c|
− β, f∞ + I∞ <

(1− |c|)(σl − 1)
Lσl|c|

− β .

Then system (1.1) has at least three positive ω-periodic solutions for

σl − 1

σl
∫ t+ω

t
b(s) ds

< λ <
1∫ t+ω

t
b(s) ds

.

Proof. By the condition f∞ + I∞ < (1−|c|)(σl−1)
Lσl|c| − β of (ii), one can find that for

(1−|c|)(σl−1)
Lσl|c| − β − (f∞ + I∞)

2
> ε > 0,

there exists a C0 > c2 such that

lim sup
v→∞

f(v) ≤ (f∞ + ε)v, lim sup
v→∞

q∑
j=1

Ij(v) ≤ (I∞ + ε)v,
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where u > C0. Let C1 = C0/δ, if u ∈ K, ‖u‖ > C1, thus u > C0 and we have

(Φu)(t) =
∫ t+ω

t

G(t, s)
[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

G(t, tj)Ij

(
(A−1u)(tj)

)
≤ σl

σl − 1

{
L

|c|
1− |c|

‖u‖
∫ t+ω

t

a(t)ds

+ (f∞ + ε)L
|c|

1− |c|
‖u‖

∫ t+ω

t

λb(s) ds + (I∞ + ε)L
|c|

1− |c|
‖u‖

}
=

Lσl|c|
(1− |c|)(σl − 1)

{
β + (f∞ + ε)

∫ t+ω

t

λb(s) ds + (I∞ + ε)
}
‖u‖

< ‖u‖.

(3.1)

Take KC1 = {u ∈ K : ‖u‖ ≤ C1}, then the set KC1 is a bounded set. Since Φ is
completely continuous, Φ maps bounded sets into bounded sets and there exists a
number C2 such that

‖Φu‖ ≤ C2 for all u ∈ KC1 .

If C2 ≤ C1, we obtain that Φ : KC1 → KC1 is completely continuous. If C1 < C2,
then from (3.1), we know that for any u ∈ KC2\KC1 , ‖u‖ > C1 and ‖Φu‖ < ‖u‖ <
C2 hold. Then we obtain Φ : KC2 → KC2 is completely continuous. Now, take
c3 = max{C1, C2}, obviously c3 > c2 and Φ : Kc3 → Kc3 is completely continuous.

Define the positive continuous concave functional α(u) = mint∈[0,ω]

{
|u(t)|}.

First, we let c1 = δc2 and take u ≡ c1+c2
2 , u ∈ K(α, c1, c2), α(u) > c1, then

the set {u ∈ K(α, c1, c2)} 6= ∅. And by (i), if u ∈ K(α, c1, c2), then α(u) ≥ c1, and
we have

α(Φu)

= min
t∈[0,ω]

{∫ t+ω

t

G(t, s)
[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

G(t, tj)Ij

(
(A−1u)(tj)

)}
≥ 1

σL − 1

{
l|c|δ − |c|

1− c2
uβ + min

t∈[0,ω]

{∫ t+ω

t

λb(s)f
(
(A−1u)(h2(s))

)
ds

}
+ I(c2)

}
>

1
σL − 1

{
l|c|δ − |c|

1− c2
uβ +

[σl(σL − 1)
σl − 1

a(u)− σl

σl − 1
I(c2)

− σl

σl − 1
l|c|δ − |c|

1− c2
βu

]
λ

∫ t+ω

t

b(s)ds + I(c2)

}
= α(x) ≥ c1.

Thus condition (1) of Lemma 2.3 holds.
Secondly, by the inequality f0 + I0 < (1−|c|)(σl−1)

Lσl|c| − β in condition of (ii), one
can find that for

(1−|c|)(σl−1)
Lσl|c| − β − (f0 + I0)

2
> ε > 0,
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there exists c4, with 0 < c4 < c1 such that

lim sup
v→0

f(v) ≤ (f0 + ε)v, lim sup
v→0

q∑
j=1

Ij(v) ≤ (I0 + ε)v,

where 0 ≤ v ≤ c4. If u ∈ Kc4 =
{

u
∣∣∣‖u‖ ≤ c4

}
, then we have

(Φu)(t) =
∫ t+ω

t

G(t, s)
[
a(t)Ĝ

(
u(t), u(h1(t))

)
+ λb(t)f

(
(A−1u)(h2(t))

)]
ds

+
∑

j:tj∈[0,ω]

G(t, tj)Ij

(
(A−1u)(tj)

)
≤ σl

σl − 1

{
L

|c|
1− |c|

‖u‖
∫ t+ω

t

a(t)ds

+ (f0 + ε)L
|c|

1− |c|
‖u‖

∫ t+ω

t

λb(s) ds + (I0 + ε)L
|c|

1− |c|
‖u‖

}
=

Lσl|c|
(1− |c|)(σl − 1)

{
β + (f0 + ε)

∫ t+ω

t

λb(s) ds + (I0 + ε)
}
‖u‖

< ‖u‖ ≤ c4.

That is, condition (2) of Lemma 2.3 holds.
Finally, if x ∈ K(α, c1, c3) with ‖Φu‖ > c2, by the definition of the cone K, we

have

Φu ≥ δ‖Φu‖ > δc2 = c1.

Thus condition (3) of Lemma 2.3 holds. Therefore, by Lemma 2.3, we obtain that
the operator Φ has at least three fixed points in Kc3 . From Lemma 2.2, we know
that (1.1) has at least three fixed points in Kc3 . The proof of Theorem 3.1 is
complete. �

Corollary 3.2. The conclusion in Theorem 3.1, sis still true when (ii) is replaced
by

(ii∗) f0 = 0, f̂0 = 0, f∞ = 0, f̂∞ = 0.

4. An example

Consider the problem

d

dt

[
x(t)− 1

3
x(t− π

2
)
]

= − 1
2π

(
1
3

+ e−x(t))x(t) + λ(1− sin t)x2(t)e−x(t), t 6= tj ,

∆
[
x(t)− 1

3
x(t− π

2
)
]

= 0.1x3(tj)e−3x(tj), t = tj , j ∈ Z+,

(4.1)
where λ is nonnegative parameter. Take γ = π

2 , c = 1
3 , a(t) = 1

2π , b(t) = 1− sin t,
j = 2k, k = 1, 2, . . ., g(x(h1(t))) = 1

3 + e−x(t), and f(x(h2(t))) = x2(t)e−x(t).
Clearly, L = 4

3 , l = 1
3 and β = 1. According to Corollary 3.2, Equation (4.1) has

at least three positive periodic solutions.
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