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A NONHOMOGENEOUS BACKWARD HEAT PROBLEM:
REGULARIZATION AND ERROR ESTIMATES

DANG DUC TRONG, NGUYEN HUY TUAN

Abstract. We consider the problem of finding the initial temperature, from

the final temperature, in the nonhomogeneous heat equation

ut − uxx = f(x, t), (x, t) ∈ (0, π)× (0, T ),

u(0, t) = u(π, t) = 0, (x, t) ∈ (0, π)× (0, T ).

This problem is known as the backward heat problem and is severely ill-posed.
Our goal is to present a simple and convenient regularization method, and

sharp error estimates for its approximate solutions. We illustrate our results

with a numerical example.

1. Introduction

For a positive number T , we consider the problem of finding the temperature
u(x, t), (x, t) ∈ (0, π)× [0, T ], such that

ut − uxx = f(x, t), (x, t) ∈ (0, π)× (0, T ), (1.1)

u(0, t) = u(π, t), (x, t) ∈ (0, π)× [0, T ], (1.2)

u(x, T ) = g(x), x ∈ (0, π). (1.3)

where g(x), f(x, z) are given. The problem is called the backward heat problem,
the backward Cauchy problem, or the final value problem. As is known, the non-
homogeneous problem is severely ill-posed; i.e., solutions do not always exist, and
in the case of existence, these do not depend continuously on the given data. In
fact, from small noise contaminated physical measurements, the corresponding so-
lutions have large errors. It makes difficult to do numerical calculations. Hence,
a regularization is in order. Lattes and Lions, in [17], regularized the problem by
adding a “corrector” to the main equation. They considered the problem

ut + Au− εA∗Au = 0, 0 < t < T,

u(T ) = ϕ.
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Gajewski and Zaccharias [10] considered a similar problem. Their error estimate
for the approximate solutions is

‖uε(t)− u(t)‖2 ≤ 2
t2

(T − t)‖u(0)‖.

Note that these estimate can not be used at time t = 0.
In 1983, Showalter, presented a different method called the quasiboundary value

(QBV) method to regularize that linear homogeneous problem which gave a stabil-
ity estimate better than the one of discussed method. The main ideas of the method
is of adding an appropriate “corrector” into the final data. Using the method, Clark
and Oppenheimer, in [4], and Denche-Bessila, very recently in [5], regularized the
backward problem by replacing the final condition by

u(T ) + εu(0) = g (1.4)

and

u(T )− εu′(0) = g (1.5)

respectively. Although there are many papers on the linear homogeneous case of
the backward problem, we only find a few papers on the nonhomogeneous case,
such in [28, 29].

In 2006, Trong and Tuan [28], approximated the problem (1.1)–(1.3) by the
quasi-reversibility method. However, the stability magnitude of the method is of
order e

T
ε . Moreover, the error between the approximate problem and the exact

solution is

ε(T − t)

√
8
t4
‖u(., 0)‖2 + t2‖∂4f(x, t)

∂x4
‖2

L2(0,T ;L2(0,π)),

(see [5, page 5]) which is very large when ε fixed and t is small (tend to zero).
Very recently, in [29], the authors used an improved version of QBV method

to regularize problem in one dimensional of (1.1)–(1.3) in the nonlinear case of
function f . However, in [29], the authors can only estimate the error in the case
which, the final value g satisfies the condition

∞∑
k=1

e2Tk2
g2

k < ∞ (1.6)

(see [29, page 242]). The functions satisfying this condition are quite scarce and
so this method is not useful to consider many nonhomogeneous backward problem
in the another case of final value g, which the condition (1.6) is not satisfied for
functions such as g(x) = a, where a is constant. We also note that the error between
the approximate problem and the exact solution is Cε

t
T , which is not near to zero,

if ε fixed and t tend to zero. Hence, the convergence of the approximate solution is
very slow when t is near to the original time.

In the present paper, we shall regularize this problem (1.1)–(1.3)by perturbing
the final value g with new way, which is different the ways in (1.4)and (1.5). We
approximate problem by the following problem
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uε
t − uε

xx =
∞∑

p=1

e−Tp2

εp2 + e−Tp2 fp(t) sin(px), (x, t) ∈ (0, π)× (0, T ), (1.7)

uε(0, t) = uε(π, t) = 0 (x, t) ∈ (0, π)× [0, T ] (1.8)

uε(x, T ) =
∞∑

p=1

e−Tp2

εp2 + e−Tp2 gp sin(px), x ∈ (0, π) (1.9)

where 0 < ε < 1,

fp(t) =
2
π

∫ π

0

f(x, t) sin(px)dx, gp =
2
π

∫ π

0

g(x) sin(px)dx (1.10)

and 〈·, ·〉 is the inner product in L2((0, π)).
We shall prove that, the (unique) solution uε of (1.7)–(1.9) satisfies the following

equality

uε(x, t) =
∞∑

p=1

( e−tp2

εp2 + e−Tp2 gp −
∫ T

t

e(s−t−T )p2

εp2 + e−Tp2 fp(s)ds
)

sin(px) (1.11)

where 0 ≤ t ≤ T .
Note that our method give a better approximation than the quasi-reversibility

method in [28], and the final value g(x) is not essential to satisfy the condition (*),
which only in L2(0, π). Especially,the convergence of the approximate solution at
t = 0 is also proved (In [29], the error ‖u(., 0) − uε(., 0)‖ is not given). This is an
improvement of many known results in [1, 4, 5, 9, 10, 28, 29, 30, 31].

The remainder of the paper is divided into three sections. In Section 1, we shall
show that (1.7)–(1.9) is well posed and that the solution uε(x, t) satisfies (1.11).
Then, in Section 2, we estimate the error between an exact solution u0 of Problem
(1.1)–(1.3) and the approximation solution uε. In fact, we shall prove that

‖uε(., t)− u0(., t)‖ ≤
C

1 + ln(T
ε )

(1.12)

where ‖ · ‖ is norm in L2(0, π) and C depends on u0 and f .
Finally, a numerical experiment will be given in Section 3.

2. Well-posedness of Problem (1.7)–(1.9)

In this section, we shall study the existence, the uniqueness and the stability of
a (weak) solution of Problem (1.7)–(1.9).

Theorem 2.1. Let f(x, t) ∈ L2(0, T );L2(0, π)) and g(x) ∈ L2(0, π). Let a given
ε ∈ (0, eT ). Then (1.7)–(1.9) has a unique weak solution uε ∈ C([0, T ];L2(0, π) ∩
L2(0, T ;H1

0 (0, π))∩C1(0, T ;H1
0 (0, π)) satisfying (1.11). The solution depends con-

tinuously on g in C([0, T ];L2(0, π)).

Proof. The proof is divided into two steps. In Step 1, we prove the existence and
the uniqueness of a solution of (1.7)–(1.9). In Step 2, the stability of the solution
is given.
Step 1. The existence and the uniqueness of a solution of (1.7)–(1.9) We divide
this step into two parts.
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Part A If uε ∈ C([0, T ];L2(0, π)) ∩L2(0, T ;H1
0 (0, π)) ∩C1(0, T ;H1

0 (0, π)) satisfies
(1.12) then uε is solution of (1.7)–(1.9). We have

uε(x, t) =
∞∑

p=1

( e−tp2

εp2 + e−Tp2)
gp −

∫ T

t

e(s−t−T )p2

εp2 + e−Tp2 fp(s)ds
)

sin(px) (2.1)

for 0 ≤ t ≤ T . We can verify directly that

uε ∈ C([0, T ];L2(0, π) ∩ C1((0, T );H1
0 (0, π)) ∩ L2(0, T ;H1

0 (0, π))).

In fact, uε ∈ C∞((0, T ];H1
0 (0, π))). Moreover, one has

uε
t(x, t)

=
∞∑

p=1

( −p2e−tp2

εp2 + e−Tp2 gp −
∫ T

t

p2e(s−t−T )p2

εp2 + e−Tp2 fp(s)ds +
e−Tp2

εp2 + e−Tp2 fp(t)
)

sin(px)

= − 2
π

∞∑
p=1

p2〈uε(x, t), sin px〉 sin(px) +
∞∑

p=1

e−Tp2

εp2 + e−Tp2 fp(t) sin(px)

= uε
xx(x, t) +

∞∑
p=1

e−Tp2

εp2 + e−Tp2 fp(t) sin(px)

and

uε(x, T ) =
∞∑

p=1

e−Tp2

εp2 + e−Tp2 gp sin(px)

So uε is the solution of (1.7)–(1.9).
Part B The Problem (1.7)–(1.9) has at most one solution C([0, T ];H1

0 (0, π)) ∩
C1((0, T );L2(0, π)). A proof of this statement can be found in [3, Theorem 11].
Since Part A and Part B are proved, we complete the proof of Step 1.
Step 2. The solution of the problem (1.7)–(1.9) depends continuously on g in
L2(0, π). Let u and v be two solutions of (1.7)–(1.9) corresponding to the final
values g and h. From we have

u(x, t) =
∞∑

p=1

( e−tp2

εp2 + e−Tp2 gp −
∫ T

t

e(s−t−T )p2

εp2 + e−Tp2 fp(s)ds
)

sin(px) 0 ≤ t ≤ T,

(2.2)

v(x, t) =
∞∑

p=1

( e−tp2

εp2 + e−Tp2 hp −
∫ T

t

e(s−t−T )p2

εp2 + e−Tp2 fp(s)ds
)

sin(px) 0 ≤ t ≤ T,

(2.3)

where

gp =
2
π

∫ π

0

g(x) sin(px)dx, hp =
2
π

∫ π

0

h(x) sin(px)dx.

For λ > 0, we define the function

h(λ) =
1

ελ + e−λT
.

Then

h(λ) ≤ h
( ln(T/ε)

T

)
=

T

ε
(
1 + ln(T/ε)

) ε ∈ (0, eT ).
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This follows that

‖u(., t)− v(., t)‖2 =
π

2

∞∑
p=1

∣∣ e−tp2

εp2 + e−Tp2 (gp − hp)
∣∣2

≤ π

2

( T

ε (1 + ln(T/ε))

)2 ∞∑
p=1

|gp − hp|2

=
( T

ε (1 + ln(T/ε))

)2

‖g − h‖2.

(2.4)

Hence
‖u(., t)− v(., t)‖ ≤ T

ε (1 + ln(T/ε))
‖g − h‖.

This completes the proof of Step 2 and the proof of our theorem. �

Remark 2.2. In [9, 10, 28], the stability magnitude is e
T
ε (see [5, Theorem 2.1],

it is ε−1. One advantage of this method of regularization is that the order of the
error, introduced by small changes in the final value g, is less than the order given
in [28].

Theorem 2.3. For any g(x) ∈ L2(0, π), the approximation uε(x, T ) converges to
g(x) in L2(0, π) as ε tends to zero.

Proof. We have g(x) =
∑∞

p=1 gp sin(px), where gp is defined in (1.10). Let α > 0,
choose some N for which π

2

∑∞
p=N+1 g2

p < α/2. We have

‖uε(x, T )− g(x)‖2 =
π

2

∞∑
p=1

ε2p4g2
p

(εp2 + e−Tp2)2
. (2.5)

Then

‖uε(x, T )− g(x)‖2 ≤ ε2
π

2

N∑
p=1

p4g2
pe2Tp2

+
α

2

By taking ε such that ε <
√

α
(
π

∑N
p=1 p4g2

pe2Tp2)−1/2, we get

‖uε(x, T )− g(x)‖2 < α

which completes the proof.
In the case d2g

dx2 ∈ L2(0, π), we have the error estimate

‖uε(x, T )− g(x)‖2 =
π

2

∞∑
p=1

(
e−Tp2

εp2 + e−Tp2 − 1)2g2
p

=
π

2

∞∑
p=1

ε2p4g2
p

(εp2 + e−Tp2)2

≤ π

2
T(

1 + ln(T 2

ε )
)2

∞∑
p=1

p4g2
p =

T 2

(1 + ln(T/ε))2
‖gxx‖2

Then, we get

‖u(x, T )− g(x)‖ ≤ T

1 + ln(T/ε)
‖gxx‖.

This completes the proof. �
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Theorem 2.4. Let g(x), ε ∈ L2(0, π) be as in Theorem 2.3, and let fxx be in
L2(0, T ;L2(0, π)). If the sequence uε(x, 0) converges in L2(0, π), then the prob-
lem (1.1)–(1.3) has a unique solution u. Furthermore,we then have that uε(x, t)
converges to u(t) as ε tends to zero uniformly in t.

Proof. Assume that limε→0 uε(x, 0) = u0(x) exists. Let

u(x, t) =
∞∑

p=1

(
e−tp2

u0p −
∫ t

0

e(s−t)p2
fp(s)ds

)
sin(px)

where u0p = 2
π

∫ π

0
u0(x) sin(px)dx. It is clear to see that u(x, t) satisfies (1.1)–(1.2).

We have the formula of uε(x, t)

uε(x, t) =
∞∑

p=1

(
e−tp2

uε
0p −

∫ t

0

e(s−t−T )p2

εp2 + e−Tp2 fp(s)ds
)

sin(px)

where uε
0p = 2

π

∫ π

0
uε(x, 0) sin(px)dx. In view of the inequality (a+b)2 ≤ 2(a2 +b2),

we have

‖uε(x, t)− u(x, t)‖2

≤ π

2

∞∑
p=1

(uε
0p − u0p)2 +

π

2
t2

∞∑
p=1

( ∫ t

0

e(2s−2t)p2 ε2p4

(εp2 + e−Tp2)2
f2

p ds
)

≤ ‖uε(x, 0)− u0(x)‖2 + T 2 T 2

(1 + ln(T/ε))2

∫ t

0

∞∑
p=1

p4f2
p ds

= ‖uε(x, 0)− u0(x)‖2 +
T 4

(1 + ln(T/ε))2

∫ t

0

‖fxx‖2ds

≤ ‖uε(x, 0)− u0(x)‖2 +
T 4

(1 + ln(T/ε))2
‖fxx‖2

L2(0,T ;L2(0,π))

Hence, limε→0 uε(x, t) = u(x, t). Thus limε→0 uε(x, T ) = u(x, T ). Using theorem
2.3, we have u(x, T ) = g(x). Hence, u(x, t) is the unique solution of the problem
(1.1)–(1.3). We also see that uε(x, t) converges to u(x, t) uniformly in t. �

Theorem 2.5. Let f(x, t), g(x), ε be as Theorem 2.4. If the sequence uε
t(x, 0) con-

verges in L2(0, π), then the problem (1.1)–(1.3) has a unique solution u. Further-
more,we have that uε(x, t) converges to u(x, t)as ε tends to zero in C1(0, T ;L2(0, π)).

Proof. Assume that limε→0 uε
t(x, 0) = v(x) in L2(0, π). Let v(x) =

∑∞
p=1 vp sin(px)

where vp = 2
π

∫ π

0
v(x) sin(px)dx. Denote by wp = −vp

p2 and w(x) =
∑∞

p=1 wp sin(px).
It is easy to show that the function u(x, t) defined by

u(x, t) =
∞∑

p=1

(
e−tp2

wp −
∫ t

0

e(s−t)p2
fpds

)
sin(px)

is a solution of the problem

ut(x, t)− uxx = f(x, t),

u(x, 0) = w(x)
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Since uε(x, t) is the solution of (1.7)–(1.9), we have

uε
tp(t) = p2uε

p(t) +
e−Tp2

εp2 + e−Tp2 fp(t),

utp(t) = p2up(t) + fp(t)

where

uε
p(t) =

2
π

∫ π

0

uε(x, t) sin(px)dx, up(t) =
2
π

∫ π

0

u(x, t) sin(px)dx

uε
tp(t) =

2
π

∫ π

0

uε
t(x, t) sin(px)dx, utp(t) =

2
π

∫ π

0

ut(x, t) sin(px)dx

So that
uε

p(t)− up(t) =
1
p2

(uε
tp(t)− utp(t)) +

ε

εp2 + e−Tp2 fp(t) (2.6)

By a direct computation,

‖uε(., t)− u(., t)‖2 =
π

2

∞∑
p=1

|uε
p(t)− up(t)|2

≤
∞∑

p=1

π|uε
tp(t)− utp(t)|2 + π

∞∑
p=1

ε2

(εp2 + e−Tp2)2
f2

p (t)

≤ 2‖uε
t(x, t)− ut(x, t)‖2 + 2

T 2

(1 + ln(T/ε)2
‖f(., t)‖2

Hence

‖uε(., 0)− u(., 0)‖2 ≤ 2‖uε
t(x, 0)− ut(x, 0)‖2 +

2T 2

(1 + ln(T/ε))2
‖f(., t)‖2

Using limε→0 uε
t(x, 0) = v(x) = ut(x, 0), we get limε→0 ‖uε(x, 0)− u(x, 0)‖ = 0. On

the other hand, we have

uε(x, T ) =
∞∑

p=1

(
e−Tp2

uε
p(0) +

∫ T

0

e(s−2T )p2

εp2 + e−Tp2 fp(s)ds
)

sin(px)

u(x, T ) =
∞∑

p=1

(
e−Tp2

up(0) +
∫ T

0

e(s−T )p2
fp(s)ds

)
sin(px)

It follows that

‖uε(., T )− u(., T )‖2

≤ 2
∞∑

p=1

e−2Tp2
|uε

p(0)− up(0)|2 + 2T 2
∞∑

p=1

∫ T

0

ε2p4

(εp2 + e−Tp2)2
f2

p (s)ds

≤ ‖uε(., 0)− u(., 0)‖2 + 2
T 2

(1 + ln(T/ε))2
‖fxx(., t)‖2

Hence, limε→0 ‖uε(x, T )−u(x, T )‖ = 0. Using the Theorem 2.3, we obtain u(x, T ) =
g(x). This implies that u(x, t) is the unique solution of (1.1)–(1.3). �

Theorem 2.6. If there exists m ∈ (0, 2) so that
∑∞

p=1 p2memTp2
g2

p converges, then

‖uε(x, T )− g(x)‖ ≤
√

C1εm

m
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where C1 = 4
∑∞

p=1 p2memTp2
g2

p.

Proof. Let m be in (0, 2) such that
∑∞

p=1 p2memTp2
g2

p converges, and let n be in
(0, 2). Fix a natural integer p, and define

gp(ε) =
εn

(εp2 + e−Tp2)2
.

It can be shown that gp(ε) ≤ gp(ε0), for all ε > 0 where ε0 = ne−T p2

(2−n)p2 . Furthermore,
from (2.5), we have

‖uε(x, T )− g(x)‖2 =
∞∑

p=1

ε2p4g2
p

(εp2 + e−Tp2)2
= ε2−n

∞∑
p=1

p4g2
pgp(ε) (2.7)

It follows that

‖uε(x, T )− g(x)‖2 ≤ ε2−n(
n

2− n
)n

∞∑
p=1

p4−2ng2
pe(2−n)Tp2

(2.8)

If we choose n = 2−m, we obtain ‖uε(x, T )− g(x)‖2 ≤ C1ε
mm−2. �

Theorem 2.7. Let f ∈ L2(0, T ;L2(0, π)) and g ∈ L2(0, π) and ε ∈ (0, eT ). Sup-
pose that Problem (1.1)–(1.3) has a unique solution u(x, t) in C([0, T ];H1

0 (0, π)) ∩
C1((0, T );L2(0, π)) which satisfies ‖uxx(., t)‖ < ∞. Then

‖u(., t)− uε(., t)‖ ≤ C

1 + ln(T/ε)

for every t ∈ [0, T ], where C = T supt∈[0,T ] ‖uxx(., t)‖ and uε is the unique solution
of (1.7)–(1.9).

Proof. Suppose (1.1)–(1.3) has an exact solution u in the space C([0, T ];H1
0 (I)) ∩

C1((0, T );L2(I)), we get the formula

u(x, t) =
∞∑

p=1

(e−(t−T )p2
gp −

∫ T

t

e−(t−s)p2
fp(s)ds) sin(px) (2.9)

From (1.11) and (2.9), we obtain

|up(t)− uε
p(t)| =

∣∣∣(e−(t−T )p2
− e−tp2

εp2 + e−Tp2

)(
gp −

∫ T

t

e−(T−s)p2
fp(s)ds)

)∣∣∣
= εp2 e−(t−T )p2

εp2 + e−Tp2

∣∣∣(gp −
∫ T

t

e−(T−s)p2
fp(s)ds)

)∣∣∣
≤ T

1 + ln(T/ε)

∣∣∣(p2e−(t−T )p2
gp −

∫ T

t

p2e−(t−s)p2
fp(s)ds)

)∣∣∣
(2.10)
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It follows that

‖u(., ., t)− uε(., ., t)‖2

=
π

2

∞∑
p=1

|up(t)− uε
p(t)|2

≤ π

2

( T

1 + ln(T/ε)

)2 ∞∑
p=1

(
p2e−(t−T )p2

gp −
∫ T

t

p2e−(t−s)p2
fp(s)ds)

)2

=
( T

1 + ln(T/ε)

)2

‖uxx(., t)‖2 ≤
( C

1 + ln(T/ε)

)2

Hence

‖u(., t)− uε(., t)‖ ≤ C

1 + ln(T/ε)

where C = T supt∈[0,T ] ‖uxx(., t)‖. This completes the proof �

Remark 2.8. Note that in [28, Theorem 3.3], the exact solution u satisfies the
condition ∆2u(x, t) ∈ L2(0, π), while the condition of its in this theorem is ∆u ∈
L2(0, π). So, this also implies that the final value g in our theorem is only in L2(0, π),
not satisfying the condition (*) given in [29] (see Introduction). Further more, we
also have the error estimate ‖ut(., t)− uε

t(., t)‖ which is not given in [28, 29]. Hence,
this result is an improvement of known result in [28, 29].

Theorem 2.9. Let f ∈ L2(0, T ;L2(0, π)) and g ∈ L2(0, π) and ε ∈ (0, eT ). Sup-
pose that Problem (1.1)–(1.3) has a unique solution u(x, t) in C([0, T ];H1

0 (0, π)) ∩
C1((0, T );L2(0, π)) which satisfies ‖uxxxx(., t)‖ < ∞. Then

‖ut(., t)− uε
t(., t)‖ ≤

D

1 + ln(T/ε)

for every t ∈ [0, T ], where

D = T
(
2 sup

t∈[0,T ]

(‖uxxxx(., t)‖2 + ‖fxx(., t)‖2)
)1/2

and uε is the unique solution of (1.7)–(1.9).

Proof. In view of (2.6), we have

uε
tp(t)− utp(t) = p2(uε

p(t)− up(t))−
εp2

εp2 + e−Tp2 fp(t)

=
εp4e−(t−T )p2

εp2 + e−Tp2

(
gp −

∫ T

t

e−(T−s)p2
fp(s)ds)

)
− εp2

εp2 + e−Tp2 fp(t)

=
εp4

εp2 + e−Tp2 up(t)−
εp2

εp2 + e−Tp2 fp(t)

=
εp2

εp2 + e−Tp2 (p2up(t)− fp(t))
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Hence, we get

‖ut(., t)− uε
t(., t)‖2 =

π

2

∞∑
p=1

|uε
tp(t)− utp(t)|2

≤ π
ε2

(εp2 + e−Tp2)2

∞∑
p=1

(p8u2
p(t) + p4f2

p (t))

=
2T 2

(1 + ln(T/ε))2
(‖uxxxx(x, t)‖2 + ‖fxx(x, t)‖2)

This completes the proof. �

In the case of nonexact data, one has the following result.

Theorem 2.10. Let f, g, ε be as in Theorem 2.7. Assume that the exact solution
u of (1.1)–(1.3) corresponding to g satisfies

u ∈ C([0, T ];L2(0, π)) ∩ L2(0, T ;H1
0 (0, π)) ∩ C1((0, T );L2(0, π)),

and ‖uxx(., t)‖ < ∞. Let gε ∈ L2(0, π) be a measured data such that

‖gε − g‖ ≤ ε.

Then there exists a function uεsatisfying

‖u(., t)− uε(., t)‖ ≤ C + T

1 + ln(T/ε)

for every t ∈ [0, T ] and C is defined in Theorem 2.7.

Proof. Let vε be the solution of problem (1.7)–(1.9) corresponding to g and let
again uε be the solution of problem (1.7)–(1.9) corresponding to gε where g, gε are
in right hand side of (1.7). Using Theorem 2.7 and Step 2 in Theorem 2.1, we get

‖uε(., t)− u(., t)‖ ≤ ‖uε(., t)− vε(., t)‖+ ‖vε(., t)− u(., t)‖

≤ T

ε(1 + ln(T/ε)
‖gε − g‖+

T

(1 + ln(T/ε)
‖uxx(., t)‖

≤ C + T

1 + ln(T/ε)

for every t ∈ (0, T ) and where C is defined in Theorem 2.7. This completed the
proof. �

3. A numerical example

We consider
ut − uxx = f(x, t) ≡ 2et sinx,

u(x, 1) = g(x) ≡ e sinx.
(3.1)

The exact solution to this problem is

u(x, t) = et sinx

Note that u(x, 1/2) =
√

e sin(x) ≈ 1.648721271 sin(x). Let gn be the measured final
data

gn(x) = e sin(x) +
1
n

sin(nx).
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So that the data error, at the final time, is

F (n) = ‖gn − g‖L2(0,π) =

√∫ π

0

1
n2

sin2(nx)dx =
π

2n
.

The solution of (3.4), corresponding the final value gn, is

un(x, t) = et sin(x) +
1
n

en2(1−t) sin(nx),

The error at the original time is

O(n) := ‖un(., 0)− u(., 0)‖L2(0,π) =

√∫ π

0

e2n2

n2
sin2(nx) dx =

en2

n

π

2
.

Then, we notice that

lim
n→∞

F (n) = lim
n→∞

||gn − g||L2(0,π) = lim
n→∞

1
n

π

2
= 0, (3.2)

lim
n→∞

O(n) = lim
n→∞

‖un(., 0)− u(., 0)‖L2(0,π) = lim
n→∞

en2

n

π

2
= ∞. (3.3)

From the two equalities above, we see that (3.1) is an ill-posed problem. Approxi-
mating the problem as in (1.1)–(1.3), the regularized solution is

uε(x, t) =
∞∑

p=1

( e−tp2

εp2 + e−p2 gp −
∫ 1

t

e(s−t−1)p2

εp2 + e−p2 fp(s)ds
)

sin(px) (3.4)

for 0 ≤ t ≤ 1. Hence, we have

uε(x, t) =
e1−t

ε + e−1
sinx− 2

( ∫ 1

t

e2s−t−1

ε + e−1
ds

)
sinx +

1
n

e−tn2

εn2 + e−n2 sin(nx) . (3.5)

It follows that

uε(x,
1
2
) =

( e1/2

ε + e−1
− 2

∫ 1

1
2

e2s− 3
2

ε + e−1
ds

)
sinx +

1
n

e−
1
2 n2

εn2 + e−n2 sin(nx) (3.6)

Let aε = ‖uε(., 1
2 ) − u(., 1

2 )‖ be the error between the regularized solution uε and
the exact solution u in the time t = 1

2 . Let n = 300 and

ε = ε1 = 10−2

√
π

2
, ε = ε2 = 10−4

√
π

2
,

ε = ε3 = 10−10

√
π

2
, ε = ε4 = 10−15

√
π

2
.

We note that the new method in this article give a better approximation than
the previous method in [28]. To prove this, we have in view of the error table in
[28, p. 9].

Furthermore, we continue to approximate this problem by the method given in
[28], which gives regularized solution

vε(x, t) =
∞∑

p=1

( e−tp2

ε + e−p2 gp −
∫ 1

t

e−tp2

εs + e−sp2 fp(s)ds
)

sin(px).
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Table 1.

ε uε aε

ε1 = 10−2
√

π
2 1.59440220314355 sin(x) 0.06807885585

+4.636337144× 10−39093 sin(300x)
ε2 = 10−4

√
π
2 1.64815976557002 sin(x) 0.0007037421545

+4.636337144× 10−39091 sin(300x)
ε3 = 10−10

√
π
2 1.64872127013843 sinx 1.253314137× 10−9

+4.636337144× 10−39084 sin(300x)
ε4 = 10−16

√
π
2 1.64872127070011 sin(x) 5.810786885× 10−39079

+4.636337144× 10−39079 sin(300x)

Table 2.

ε uε ‖u− uε‖
10−2

√
π
2 1.643563444 sin(x) + 0.8243606355 sin 200x 0.1462051256

10−4
√

π
2 1.648617955 sin(x) + 0.1648721271 sin 10000x 0.02066391506

10−10
√

π
2 1.648721271

(
sin(x) + 10−10 sin(1010x)

)
0.00002066365678

10−16
√

π
2 1.648721271

(
sin(x) + 10−16 sin(1016x)

)
2.066365678× 10−8

10−30
√

π
2 1.648721271

(
sin(x) + 10−30 sin(1030x)

)
2.066365678× 10−15

Table 3.

ε vε aε

ε1 = 10−2
√

π
2 1.701714206 sin(x) 0.06641679460

+4.172703428× 10−39088 sin(300x)
ε2 = 10−4

√
π
2 1.656775314 sin(x) 0.01009424595

+4.172703428× 10−39086 sin(300x)
ε3 = 10−10

√
π
2 1.648724344 sinx 0.000003851434344

+4.172703428× 10−39080 sin(300x)
ε4 = 10−16

√
π
2 1.648721273 sin(x) 2.506628275× 10−9

+4.172703428× 10−39074 sin(300x)

Hence, we have

vε(x, t) =
e1−t

ε + e−1
sinx− 2

( ∫ 1

t

es−t

εs + e−s
ds

)
sinx +

1
n

e−tn2

ε + e−n2 sin(nx) (3.7)

for 0 ≤ t ≤ 1. It follows that

vε(x,
1
2
) =

e1/2

ε + e−1
sinx− 2

( ∫ 1

1
2

es− 1
2

εs + e−s
ds

)
sinx +

1
n

e−
1
2 n2

ε + e−n2 sin(nx). (3.8)

Looking at Tables 1,2,3, a comparison between the three methods, we can see the
error results of in Table 1 are smaller than the errors in Tables 2 and 3. This shows
that our approach has a nice regularizing effect and give a better approximation
with comparison to the previous method in, for example [28, 29].

Acknowledgments. The authors would like to thank the referees for their valu-
able criticisms leading to the improved version of our paper.
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