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LINEAR UNCERTAIN NON-AUTONOMOUS TIME-DELAY
SYSTEMS: STABILITY AND STABILIZABILITY VIA RICCATI

EQUATIONS

PIYAPONG NIAMSUP, KANIT MUKDASAI, VU N. PHAT

Abstract. This paper addresses the problem of exponential stability for a
class of uncertain linear non-autonomous time-delay systems. Here, the pa-

rameter uncertainties are time-varying and unknown but norm-bounded and

the delays are time-varying. Based on combination of the Riccati equation
approach and the use of suitable Lyapunov-Krasovskii functional, new suffi-

cient conditions for the robust stability are obtained in terms of the solution of

Riccati-type equations. The approach allows to compute simultaneously the
two bounds that characterize the exponential stability rate of the solution. As

an application, sufficient conditions for the robust stabilization are derived.
Numerical examples illustrated the results are given.

1. Introduction

Since time-delay systems are frequently encountered in various areas, including
physical and chemical processes, biology, economics, engineering etc., the stability
problem of linear time-delay systems has attracted a lot of attention in the past
decades, e.g. see [3, 7, 12, 15] and the references therein. The main technique
using in stability investigation relies on the use of the Lyapunov functional method
[18]. The results concerning Lyapunov’s direct method for time-invariant systems
provide stability sufficient conditions in terms of linear matrix inequalities (LMIs)
[2, 9]. More recently, simple and systematic procedure for finding exponential sta-
bility conditions using the Lyapunov-Krasovskii functionals has been proposed in
[8, 11] for autonomous systems and in [4, 16] for non-autonomous systems. Among
the usual approaches to studying stabilization problem of autonomous systems, the
effective approach is to design linear feedback control via solving algebraic Riccati
equations [1, 6]. However, for the non-autonomous systems, the solution of Riccati
differential equation (RDE) is in general not bounded from above and below such
that it can not served as the candidate of the Lyapunov function. Moreover, the
approach used in the mentioned above papers can not be readily applied to the
non-autonomous systems. Some sufficient conditions for global stabilizability for
non-autonomous periodical systems via controllability are given in [14]. Among
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the results on stability analysis of uncertain linear autonomous systems, it is worth
to mention the papers [13, 19], where the uncertainties must verify some match-
ing/bounded conditions or must have a particular structure and intensive computa-
tion is needed to test the robust stability. Applications to linear time-delay control
systems without uncertainties are given in [12, 16, 17, 20].

Motivated by the result on exponential stability of linear non-autonomous delay
systems in [16], we develop sufficient conditions for the exponential stability of
a class of uncertain linear non-autonomous time-delay systems. The parameter
uncertainties are time-varying and unknown but norm-bounded and the delays are
time-varying. Stability and stabilization conditions are formulated in terms of the
solution of Riccati-like equations, which allow to compute the decay rate as well
as the constant stability factor. These conditions generalize and improve the LMI
conditions obtained earlier for autonomous delay systems.

The paper is organized as follows. Section 2 presents notations, definitions and
some auxiliary propositions needed in the proof of main results. In Section 3, based
on the Lyapunov-Krasovskii functional method, sufficient conditions for the expo-
nential stability and stabilization are presented. Numerical examples illustrated
the obtained results are given in Section 4. The paper ends with conclusions and
cited references.

2. Preliminaries

The following notation will be used in this paper: R+ denotes the set of all
real non-negative numbers; Rn denotes the n-dimensional space with the scalar
product 〈., .〉 and the vector norm ‖ · ‖; Mn×r denotes the space of all matrices of
(n× r)-dimensions.

AT denotes the transpose of the vector/matrix A; A is symmetric if A = AT ; I
denotes the identity matrix; λ(A) denotes the set of all eigenvalues of A; λmax(A) =
max{Re λ : λ ∈ λ(A)}.

xt := {x(t + s) : s ∈ [−h, 0]}, ‖xt‖ = sups∈[−h,0] ‖x(t + s)‖. C([0, t], Rn) denotes
the set of all Rn-valued continuous functions on [0, t]; L2([0, t], Rm) denotes the set
of all the Rm-valued square integrable functions on [0, t];

Matrix A is called semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ Rn;A
is positive definite (A > 0) if 〈Ax, x〉 > 0 for all x 6= 0; A > B means A − B > 0.
BM+(0,∞) denotes the set of all symmetric semi-positive definite matrix functions
bounded on [0,∞);

In the sequel, sometimes for the sake of brevity, we will omit the arguments of
matrix-valued functions, if it does not cause any confusion.

Consider the uncertain linear non-autonomous system with time-varying delay
ẋ(t) = [A0(t) + ∆A0(t)]x(t) + [A1(t) + ∆A1(t)]x(t− h(t))

+ [B(t) + ∆B(t)]u(t),

x(t) = φ(t), t ∈ [−h, 0],
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, Ai(t), i = 0, 1, B(t) are given matrix functions
continuous on [0,∞), 0 ≤ h(t) ≤ h, h > 0. Consider the initial function φ(t) ∈
C([−h, 0], Rn) with the norm ‖φ‖ = supt∈[−h,0] ‖φ(t)‖, and the admissible control
u(·) ∈ L2([0, t], Rm), for all t ∈ R+. The delay h(t) is a continuously differentiable
function satisfying

0 ≤ h(t) ≤ h, ḣ(t) ≤ δ < 1.
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The uncertainties ∆A0,∆A1,∆B are time-varying and satisfy the condition:

∆Ai(t) = Gi(t)F (t)Hi(t), i = 0, 1,

∆B(t) = G2(t)F (t)H2(t),

‖F (t)‖ ≤ 1, ∀t ∈ R+,

where Gi(t),Hi(t), i = 0, 1, 2 are given matrix functions of appropriate dimensions.

Definition The system (2.1), where u(t) = 0, is robustly exponentially stable, if
there exist numbers α > 0, N > 0 such that every solution x(t, φ) of the system
satisfies the inequality

‖x(t, φ)‖ ≤ N‖φ‖e−α(t−t0), ∀t ≥ t0 ≥ 0,

for all uncertainties ∆A0,∆A1.
The system (2.1) is robustly stabilizable if there is a control u(t) = K(t)x(t)

such that the closed-loop system

ẋ(t) = [A0(t) + (B(t) + ∆B(t))K(t) + ∆A0(t)]x(t) + [A1(t) + ∆A1(t)]x(t− h(t))

is robustly exponentially stable. The function u(t) = K(t)x(t) is called a feedback
stabilizing control of the system.

Proposition 2.1 (Completing the square). Assume that S ∈ Mn×n is a symmetric
positive definite matrix. Then for every Q ∈ Mn×n:

2〈Qy, x〉 − 〈Sy, y〉 ≤ 〈QS−1QT x, x〉, ∀x, y ∈ Rn.

Proposition 2.2 ([20]). Let G, H,F be real matrices of appropriate dimensions
with ‖F‖ < 1. Then

(i) For any ε > 0 : GFH + HT FT GT ≤ 1
ε GGT + εHT H.

(ii) For any ε > 0 such that εI −HHT > 0,

(A + GFH)(A + GFH)T ≤ AAT + AHT (εI −HHT )−1HAT + εGGT .

Proposition 2.3 (Schur complement lemma [2]). Given constant symmetric ma-
trices X, Y, Z where Y > 0. Then X + ZT Y −1Z < 0 if and only if(

X ZT

Z −Y

)
< 0 or

(
−Y Z
ZT X

)
< 0.

Proposition 2.4 ([7]). Consider the time-delay system

ẋ(t) = f(t, xt), x(t) = φ(t), t ∈ [−h, 0].

If there exist a Lyapunov function V (t, xt) and λ1, λ2 > 0 such that for every
solution x(t) of the system, the following conditions hold

(i) λ1‖x(t)‖2 ≤ V (t, xt) ≤ λ2‖xt‖2,
(ii) V̇ (t, xt) ≤ 0,

then the solution of the system is bounded; i.e., there exists N > 0 such that
‖x(t, φ)‖ ≤ N‖φ‖,∀t ≥ 0.
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3. Main results

Given numbers ε > 0, ε0 > 0, ε1 > 0, α > 0, h > 0, we set

Pε(t) = P (t) + εI, A0,α(t) = A0(t) + αI,

Q(t) = ε0H
T
0 (t)H0(t) + I, S(t) = ε1I −H1(t)HT

1 (t),

R(t) =
e2αh

1− δ
[A1(t)AT

1 (t) + ε1G1(t)GT
1 (t)

+ A1(t)HT
1 (t)S−1(t)H1(t)AT

1 (t)] + ε−1
0 G0(t)GT

0 (t).

Consider the Riccati differential equation

Ṗε(t) + Pε(t)A0,α(t) + AT
0,α(t)Pε(t) + Pε(t)R(t)Pε(t) + Q(t) = 0. (3.1)

Theorem 3.1. The uncertain linear non-autonomous system (2.1), where u(t) =
0, is robustly exponentially stable if there exist positive numbers α, ε, ε0, ε1, and a
matrix function P (t) ∈ BM+(0,∞) such that ε1I −H1(t)HT

1 (t) > 0 and the RDE
(3.1) holds. Moreover, the solution x(t, φ) satisfies the inequality

‖x(t, φ)‖ ≤ N‖φ‖e−αt, t ∈ R+,

where

N =

√
λmax(P (0))

ε
+

1
2αε

(1− e−2αh) + 1.

Proof. Let Pε(t) ∈ BM+(0,∞), t ∈ R+, be a solution of the RDE (3.1). We take
the change of the state variable

y(t) = eαtx(t), t ∈ R+, (3.2)

then the linear delay system (2.1), where u(t) = 0, is transformed to the delay
system

ẏ(t) = [A0,α(t) + ∆A0(t)]y(t) + eαh(t)[A1(t) + ∆A1(t)]y(t− h(t)),

y(t) = eαtφ(t), t ∈ [−h, 0],
(3.3)

Consider the following time-varying Lyapunov function for the system (3.3),

V (t, yt) = 〈P (t)y(t), y(t)〉+ ε‖y(t)‖2 +
∫ t

t−h(t)

‖y(s)‖2ds.

It is easy to see that

ε‖y(t)‖2 ≤ V (t, yt) ≤ (p + ε + h)‖yt‖2, (3.4)

where p = maxt≥0 |P (t)| which is a finite number because P (t) ∈ BM+(0,∞) and
hence P (t) is a bounded function. Taking the derivative of V (·) in t along the
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solution of y(t) of system (3.3), we have

V̇ (t, yt) = 〈Ṗ (t)y(t), y(t)〉+ 2〈Pε(t)ẏ(t), y(t)〉+ ‖y(t)‖2 − (1− ḣ(t))‖y(t− h(t))‖2

= 〈Ṗ (t)y(t), y(t)〉+ 2〈Pε(t)A0,α(t)y(t), y(t)〉+ 2〈Pε(t)G0F (t)H0y(t), y(t)〉

+ ‖y(t)‖2 − (1− ḣ(t))‖y(t− h(t))‖2

+ 2eαh(t)〈Pε(t)[A1(t) + G1F (t)H1]y(t− h), y(t)〉

≤ 〈Ṗ (t)y(t), y(t)〉+ 2〈Pε(t)A0,α(t)y(t), y(t)〉
+ 2〈Pε(t)G0F (t)H0y(t), y(t)〉+ ‖y(t)‖2 − (1− δ)‖y(t− h(t))‖2

+ 2〈eαh(t)Pε(t)[A1(t) + G1F (t)H1]y(t− h(t)), y(t)〉.

From Proposition 2.1 it follows that

2〈eαh(t)Pε(t)[A1(t) + G1(t)F (t)H1(t)]y(t− h(t)), y(t)〉 − (1− δ)‖y(t− h(t))‖2

≤ e2αh(t)

1− δ
〈Pε(t)[A1(t) + G1(t)F (t)H1(t)][A1(t) + G1(t)F (t)H1(t)]T Pε(t)y(t), y(t)〉.

Using Proposition 2.2, for numbers ε0, ε1 such that

2〈PεG0FH0y, y〉 ≤ 1
ε0
〈PεG0G

T
0 Pεy, y〉+ ε0〈HT

0 H0y, y〉,

[A1 + G1FH1][A1 + G1FH1]T ≤ A1A
T
1 + A1H

T
1 (ε1I −H1H

T
1 )−1H1A

T
1 + ε1G1G

T
1 ,

provided ε1I − H1H
T
1 > 0. Furthermore, note that e2αh(t) ≤ e2αh,∀t ∈ R+, we

obtain

V̇ (t, y(t))

≤ 〈Ṗ (t)y(t), y(t)〉+ 2〈Pε(t)A0,α(t)y(t), y(t)〉

+
1
ε0
〈PεG0G

T
0 Pεy, y〉+ ε0〈HT

0 H0y(t), y(t)〉+ ‖y(t)‖2

+
e2αh

1− δ
〈{Pε[A1A

T
1 + A1H

T
1 (ε1I −H1H

T
1 )−1H1A

T
1 + ε1G

T
1 G1]Pε}y(t), y(t)〉.

Therefore,

V̇ (t, y(t)) ≤ 〈{Ṗε + PεA0,α + AT
0,αPε + ε−1

0 PεG0G
T
0 Pε + ε1H

T
0 H0 + I

+
e2αh

1− δ
[PεA1A

T
1 Pε + PεA1H

T
1 (ε1I −H1H

T
1 )−1H1A

T
1 Pε

+ ε1PεG
T
1 G1Pε]}y(t), y(t)〉.

Since P (t) is the solution of (3.1), we obtain

V̇ (t, y(t)) ≤ 0, ∀t ∈ R+. (3.5)

Thus, from (3.4), (3.5) and Proposition 2.4 it follows the boundedness of the solution
y(t, φ) for the system (3.3); i.e., there exists N > 0 such that

‖y(t, φ)‖ ≤ N‖φ‖, ∀t ≥ 0.

Returning to the solution x(t, φ) of the system (2.1) by the transformation (3.2),
we obtain

‖x(t, φ)‖ ≤ N‖φ‖e−αt, ∀t ≥ 0,
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which gives the exponential stability of (2.1). To determine the stability factor N ,
we integrate both sides of (3.5) from 0 to t we find

V (t, y(t))− V (0, y(0)) ≤ 0, ∀t ∈ R+,

and hence

〈P (t)y(t), y(t)〉+ ε‖y(t)‖2 +
∫ t

t−h(t)

‖y(s)‖2ds

≤ 〈P0y(0), y(0)〉+ ε‖y(0)‖2 +
∫ 0

−h(0)

‖y(s)‖2ds.

Since

〈P (t)y, y〉 ≥ 0,

∫ t

t−h(t)

‖y(s)‖2ds ≥ 0,

and∫ 0

−h(0)

‖y(s)‖2ds ≤ ‖φ‖2

∫ 0

−h(0)

e2αsds =
1
α

(1−e−2αh(0))‖φ‖2 ≤ 1
2α

(1−e−2αh)‖φ‖2,

we have

ε‖y(t)‖2 ≤ λmax(P (0))‖y(0)‖2 + ε‖y(0)‖2 +
1
2α

(1− e−2αh)‖φ‖2.

Returning to the solution x(t, φ) of system (2.1) and noting that

‖y(0)‖ = ‖x(0)‖ = φ(0) ≤ ‖φ‖,

we have

‖x(t, φ)‖ ≤ N‖φ‖e−αt, ∀t ∈ R+,

where

N =

√
λmax(P (0))

ε
+

1
2αε

(1− e−2αh) + 1.

The proof of the theorem is complete. �

Remark 3.2. When the system is time-invariant, using the Schur complement
lemma (Proposition 2.3), the RDE (3.1) can be rewritten in terms of the LMI:

X(P ) PεA1,α PεG1 PεG0 PεA1,αHT
1

AT
1,αPε −ηe−2αhI 0 0 0

GT
1 Pε 0 −ηε−1

1 e−2αhI 0 0
GT

0 Pε 0 −ε0I 0
H1A

T
1,αPε 0 0 0 −ηe−2αhS

 < 0,

where η = 1− δ and

X(P ) := PεA0,α + AT
0,αPε + ε0H

T
0 H0.

We now apply the stability result to global stabilization of the uncertain linear
time-delay control system (2.1). For this, given numbers ε > 0, ε0 > 0, ε1 > 0,
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α > 0, h > 0, we set

Pε(t) = P (t) + εI, A0,α(t) = A0(t) + αI,

Q(t) = ε0H
T
0 (t)H0(t) + I, S(t) = ε1I −H1(t)HT

1 (t),

R1(t) =
e2αh

1− δ
[A1(t)AT

1 (t) + ε1G1(t)GT
1 (t) + A1(t)HT

1 (t)S−1(t)H1(t)AT
1 (t)]

−B(t)BT (t) +
1
4
ε0B(t)HT

2 (t)H2(t)BT (t)

+ ε−1
0 [G0(t)GT

0 (t) + G2(t)GT
2 (t)].

Consider the Riccati differential equation

Ṗε(t) + Pε(t)A0,α(t) + AT
0,αPε(t) + Pε(t)R1(t)Pε(t) + Q(t) = 0. (3.6)

Theorem 3.3. Uncertain linear non-autonomous control delay system (2.1) is ro-
bustly stabilizable if there exist positive numbers α, ε, ε0, ε1, and a matrix function
P (t) ∈ BM+(0,∞) such that ε1I − H1(t)HT

1 (t) > 0 and the RDE (3.6) holds.
Moreover, the feedback stabilizing control is given by

u(t) = −1
2
BT (t)P (t)x(t). (3.7)

Proof. Let us define

Ā0(t) = A(t) + B(t)K(t), Ḡ0(t) = [G0(t) G2(t)], H̄0(t) =
[

H0(t)
H2(t)K(t)

]
,

F̄ (t) =
(

F (t) 0
0 F (t)

)
, ∆Ā0(t) = Ḡ0(t)F̄ (t)H̄0(t),

where K(t) := − 1
2BT (t)P (t). With the feedback control (3.7), the closed-loop

system of the system (2.1) is

ẋ(t) = [Ā0(t) + ∆Ā0(t)]x(t) + [A1(t) + ∆A1(t)]x(t− h(t)). (3.8)

Therefore, the proof of the theorem is completed by using Theorem 3.1 for the
uncertain unforced system (3.8) with the following transformations

Ḡ0(t)ḠT
0 (t) = G0(t)GT

0 (t) + G2(t)GT
2 (t),

H̄T
0 (t)H̄0(t) = HT

0 (t)H0(t) +
1
4
P (t)B(t)HT

2 (t)H2(t)BT (t)P (t),

Ā0,α(t) = A0,α(t)− 1
2
B(t)BT (t)P (t),

Pε(t)Ā0,α(t) + ĀT
0,α(t)Pε(t) = Pε(t)A0,α(t) + AT

0,α(t)Pε(t)− P (t)B(t)BT (t)P (t).

�
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Remark 3.4. As in Remark 3.2, for the time-invariant systems the Riccati equation
(3.6) can be replaced by the LMI:

X(P ) PεA1,α PεG1 PεG0 PεA1,αHT
1 PεB PεG2 PεBHT

2

AT
1,αPε −ηe−2αhI 0 0 0 0 0 0

GT
1 Pε 0 −ηε−1

1 e−2αhI 0 0 0 0 0
GT

0 Pε 0 −ε0I 0 0 0 0
H1A

T
1,αPε 0 0 0 −ηe−2αhS 0 0 0

BT Pε 0 0 0 I 0
GT

2 Pε 0 0 0 0 0 −ε0I 0
H2B

T Pε 0 0 0 0 0 0 −4ε−1
0


< 0,

where η = 1− δ, and

X(P ) := PεA0,α + AT
0,αPε + ε0H

T
0 H0.

The stability conditions are given in terms of the solution of some RDEs. Al-
though the problem of solving RDEs is in general still not easy, various effective
approaches for finding the solutions of RDEs can be found in [5, 10, 21].

4. Examples

Example 4.1. Consider the uncertain linear non-autonomous unforced system
with time-varying delay (2.1), where u(t) = 0, with any initial function φ(t) and
time-delay function h(t) = 3 sin2(2/3)t and

A0(t) =
[
− 1

2 −1
0 e−2t − 3

4

]
, A1(t) =

[
−

√
2−e−2t

e3(e−2t+1) 0

0 −
√

2−e−2t

2e3

]
,

G0(t) =

[
et

e−2t+1 0
0 e−t

√
2

]
, H0(t) =

[
e−t e−t

et e−t

]
,

G1(t) =

[
et

e3(e−2t+1) 0

0 e−t

e3

]
, H1(t) =

[
e−t 0
0 e−t

]
.

We see that h = 3, and ḣ(t) = 2 sin(4/3t) and then δ = 2. Taking α = ε = ε0 = 1
and ε1 = 2, we have

ε1I −H1(t)HT
1 (t) =

[
2− e−2t 0

0 2− e−2t

]
> 0.

We can verify that the matrix P (t) =
[
e−2t 0

0 1

]
is a solution of (3.1). Therefore, by

Theorem 3.1 the system is robustly exponentially stable and the solution satisfies

‖x(t, φ)‖ ≤ (3− e−3)‖φ‖e−t, t ∈ R+.

Example 4.2. Consider the uncertain linear non-autonomous control system with
time-varying delay (2.1) with any initial function φ(t) and time-delay function
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h(t) = 2 sin2 t and

A0(t) =
[
−e−2t + 1 0

−1 −e−2t + 1

]
, A1(t) =

[
−

√
2−e−2t

e2(e−2t+1) 0

0 −
√

2−e−2t

e2(e−2t+1)

]
,

B(t) =
[
− 1

e−2t+1 0
0 − 1

e−2t+1

]
, G0(t) =

[
et

e−2t+1 0
0 e−t

√
2

]
, H0(t) =

[
e−t et

e−t e−t

]
,

G1(t) =

[
e−2t

e2(e−2t+1) 0
0 et

√
2e2(e−2t+1)

]
, H1(t) =

[
e−t 0
0 e−t

]
,

G2(t) =

[
0 0
0 e−2t

(e−2t+1)

]
, H2(t) =

[
4e−2t 0

0 2e−t

]
.

We see that h = 2, δ = 2. Taking α = ε = ε0 = 1 and ε1 = 2, we have

ε1I −H1(t)HT
1 (t) =

[
2− e−2t 0

0 2− e−2t

]
> 0.

We can verify that the matrix P (t) =
[
e−2t 0

0 e−2t

]
is a solution of the RDE (3.6).

Therefore, by Theorem 3.3 the system is robustly stabilizable and the feedback
stabilizing control is given by

u(t) =

[
e−2t

2(e−2t+1) 0

0 e−2t

2(e−2t+1)

]
x(t), t ≥ 0.

Conclusions. Based on combination of the Riccati equation approach and the use
of suitable Lyapunov-Krasovskii functional, sufficient conditions for the exponen-
tial stability and stabilizability of linear non-autonomous delay systems with time-
varying and norm-bounded uncertainties have been established. The conditions are
formulated in terms of the solution of curtain Riccati differential equations, which
allow to compute the decay rate as well as the constant stability factor.
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