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SOLUTIONS TO BOUNDARY-VALUE PROBLEMS FOR
SECOND-ORDER IMPULSIVE DIFFERENTIAL EQUATIONS

AT RESONANCE

YU TIAN

Abstract. In this paper, we investigate the existence and uniqueness of solu-

tions to boundary-value problems for second-order impulsive differential equa-

tions at resonance. To obtain these results, we apply fixed point methods and
new differential inequalities.

1. Introduction

We consider the uniqueness for the nonlinear impulsive boundary value problem
(IBVP)

x′′ = f(t, x, x′), t ∈ [0, T ], t 6= t1,

∆x(t1) = I(x(t1)), ∆x′(t1) = J(x′(t1)), t1 ∈ (0, T ),
(1.1)

where t1 is a fixed value and
x ∈ β0, (1.2)

where I ∈ C(Rn, Rn), J ∈ C(Rn, Rn), ∆x(t1) = x(t+1 )− x(t−1 ), ∆x′(t1) = x′(t+1 )−
x′(t−1 ), where x(i)(t+1 ) (respectively x(i)(t−1 )) denote the right limit (respectively
left limit) of x(i)(t) at t = t1, i = 0, 1. The function f : [0, T ]×Rn ×Rn → Rn is a
L2-Carathédory nonlinear function, that is f satisfies

(i) the map (y0, y1) → f(t, y0, y1) is continuous for a.e. t ∈ [0, T ] \ {t1},
(ii) the map t → f(t, y0, y1) is measurable for all (y0, y1) ∈ Rn × Rn,
(iii) for each r > 0, there exists an αr ∈ L2[0, T ] such that |f(t, x, y)| ≤ αr(t)

for a.e. t ∈ [0, T ] and every (x, y) ∈ Rn × Rn.
Boundary condition (1.2) represents periodic boundary condition

x(0) = x(T ), x′(0) = x′(T ) (1.3)

or the Neumann boundary condition

x′(0) = x′(T ) = 0. (1.4)

In recent years, impulsive differential equations have been studied extensively
because of its wide application in many fields such as: chemotherapy; population
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dynamics; optimal control; ecology; biotechnology and physics. We refer the reader
to [1, 2, 3, 4, 6, 7, 8] and the references therein for nice examples and applications.
For a general theory on impulsive differential equations, see the monographs [2] and
[9].

There are many authors who have considered the solvability of boundary value
problems with impulses. Nieto [6] studied the existence of solutions to the first order
periodic problem with impulse. Chen, Tisdell and Yuan [1] studied the solvability
of the periodic problem with impulse. Lin and Jiang [3] studied the existence
of positive solutions for the second order Dirichlet boundary value problem with
impulse.

For the uniqueness of solutions, there are some papers related boundary value
problems for first order differential equations. In [8], the uniqueness of solutions
was obtained by nonlinear alternative of Leray-Schauder type in Fréchet spaces.
In [10], the existence and uniqueness of solutions was obtained by employing the
method of upper and lower solution coupled with the monotone iterative technique.
Nieto and Tisdell [7, Section 4.2], obtained existence and uniqueness of solutions
to first order IBVPs. Their methods included Schaefer’s fixed-point theorem and
differential inequalities.

As far as we know, there are few authors who study the uniqueness of solutions for
second-order IBVPs. The aim of this work is to study the uniqueness of solutions for
second-order impulsive differential equations with periodic condition and Neumann
condition.

This paper is organized as follows. In section 2, we present some novel differential
inequalities, which are useful to estimate a priori bounds on solutions. In section
3, we devote our attention to the uniqueness of solution to (1.1), (1.2). The proof
of main results are divided into two parts. First we apply the Schaefer’s fixed
point theorem to prove the existence of at least one solution. Second we prove the
uniqueness of solutions by contradiction.

We note that the main results of this paper are easy to extend to an arbitrary
impulse Ii, Ji, i = 1, 2, . . . , p. However, for clarity and brevity, we restrict our
attention to BVPs with one impulse.

For the remainder of the section, we introduce notations and definitions which
are used throughout the paper. Let J ′ = [0, T ] \ {t1}, t0 = 0, t2 = T . The space

PC1([0, T ]; Rn) ={x : [0, T ] → Rn : x|(tk,tk+1) ∈ C1(tk, tk+1), k = 0, 1,

x(t−1 ) = x(t1), x′(t−1 ) = x′(t1), x(t+1 ), x′(t+1 ) exist}

is a Banach space with the norm ‖x‖PC1 = max{‖x‖PC , ‖x′‖PC}, where ‖x‖PC =
supt∈[0,T ] |x(t)|. Let

Y = {x ∈ PC1([0, T ]; Rn) : x|(tk,tk+1) ∈ W 2,2(tk, tk+1), k = 0, 1}.

Clearly, Y is a Banach space.
A function x is said to be a solution of (1.1), (1.2), if x ∈ Y satisfies (1.1), (1.2).
For x, y ∈ Rn, we denote by 〈x, y〉 the usual inner product and by |x| the norm

(
∑n

i=1 x2
i )

1/2. In addition we denote ‖x‖L2 =
( ∫ T

0
|x(t)|2dt

)1/2.

2. Related Lemmas

Lemma 2.1. If x ∈ Y , then ‖x(i)‖L2 ≤ 2T
π ‖x(i+1)‖L2 , i = 0, 1.
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Proof. Let

y(t) =


x(t), t ∈ [0, T ],
x(2T − t), t ∈ [T, 2T ],
−x(−t), t ∈ [−T, 0],
−x(t + 2T ), t ∈ [−2T,−T ].

Then

(i) y, y′′ are odd functions on [−2T, 2T ], y′ is an even function on [−2T, 2T ];
(ii)

∫ 2T

−2T
y(i)(s)ds = 0, i = 0, 1, 2;

(iii)
∫ 2T

−2T
|y(i)(t)|2dt = 4

∫ T

0
|x(i)(t)|2dt, i = 0, 1, 2.

So y has the Fourier expansion

y(t) =
∞∑

n=1

bn sin
nπt

2T
.

The right hand series converges to y(t+)+y(t−)
2 at the points t = 0, t1, 2T − t1, −t1,

−2T + t1, respectively. The Parseval equality implies∫ 2T

−2T

|y′(t)|2dt =
∞∑

n=1

n2π2

2T
b2
n ≥

π2

4T 2

∞∑
n=1

2Tb2
n =

π2

4T 2

∫ 2T

−2T

|y(t)|2dt.

So
∫ 2T

−2T
|y(t)|2dt ≤ 4T 2

π2

∫ 2T

−2T
|y′(t)|2dt. By (iii), we have ‖x‖L2 ≤ 2T

π ‖x′‖L2 .
On the other hand, since (ii) holds, the function y′ has the Fourier expansion

y′(t) =
∞∑

n=1

an cos
nπt

2T
,

and the right hand series converges to y′(t+)+y′(t−)
2 at the points t = 0, t1, T, 2T −

t1,−t1,−T,−2T + t1. The Parseval equality implies∫ 2T

−2T

|y′′(t)|2dt =
∞∑

n=1

n2π2

2T
a2

n ≥
π2

4T 2

∞∑
n=1

2Ta2
n =

π2

4T 2

∫ 2T

−2T

|y′(t)|2dt.

So
∫ 2T

−2T
|y′(t)|2dt ≤ 4T 2

π2

∫ 2T

−2T
|y′′(t)|2dt. By (iii), we have ‖x′‖L2 ≤ 2T

π ‖x′′‖L2 . �

Lemma 2.2. If x ∈ Y , then

(1) ‖x‖PC ≤ T 1/2Γ‖x′‖L2 ,
(2) ‖x(i)‖PC ≤ ( 2T

π )1−iT 1/2Γ‖x′′‖L2 , i = 0, 1,

where Γ = 2T
π min{t1,T−t1} + 1.

Proof. For t ∈ [0, t1]. It follows from the mean value theorem that

x(τ1) =
1
t1

∫ t1

0

x(s)ds
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for some τ1 ∈ [0, t1]. Hence for t ∈ [0, t1], using Hölder’s inequality, we have

|x(t)| =
∣∣x(τ1) +

∫ t

τ1

x′(s)ds
∣∣

≤ 1
t1

∫ t1

0

|x(s)|ds +
∫ T

0

|x′(s)|ds

≤ 1
t1

∫ t1

0

|x(s)|ds + ‖x′‖L2T 1/2.

For t ∈ (t1, T ], it follows from the mean value theorem that

x(τ2) =
1

T − t1

∫ T

t1

x(s)ds

for some τ2 ∈ (t1, T ]. Hence for t ∈ (t1, T ], using Hölder inequality,

|x(t)| =
∣∣x(τ2) +

∫ t

τ2

x′(s)ds
∣∣

≤ 1
T − t1

∫ T

t1

|x(s)|ds +
∫ T

0

|x′(s)|ds

≤ 1
T − t1

∫ T

t1

|x(s)|ds + ‖x′‖L2T 1/2.

Therefore,

‖x‖PC ≤ 1
min{t1, T − t1}

∫ T

0

|x(s)|ds + ‖x′‖L2T 1/2

≤ T 1/2

min{t1, T − t1}
‖x‖L2 + ‖x′‖L2T 1/2.

By Lemma 2.1, we have
‖x‖PC ≤ T 1/2Γ‖x′‖L2 .

So 1) holds. Applying Lemma 2.1 again, we have ‖x‖PC ≤ 2T
3
2

π Γ‖x′′‖L2 . Similar
to the above process, we have

‖x′‖PC ≤ T 1/2

min{t1, T − t1}
‖x′‖L2 + ‖x′′‖L2T 1/2 ≤ T 1/2Γ‖x′′‖L2 .

Therefore, 2) holds. �

3. Main results

Theorem 3.1. Suppose that there exist ai ∈ C([0, T ], R+), p, q > 0 such that

|f(t, x0, x1)− f(t, y0, y1)| ≤
1∑

i=0

ai(t)|xi − yi| (3.1)

for (t, xi, yi) ∈ [0, T ]× Rn × Rn, i = 0, 1;

|I(x)− I(y)| ≤ p|x− y|, |J(x)− J(y)| ≤ q|x− y|, x, y ∈ Rn; (3.2)

and
1∑

i=0

‖ai‖0

(2T

π

)2−i +
[(2T

π

)2 + (p + q)
2T 2

π
Γ2

]
< 1, (3.3)
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where Γ is defined in Lemma 2.2. Then (1.1), (1.2) has a unique solution in Y .

Proof. Consider the following impulsive BVP, which is equivalent to (1.1)–(1.2),

x′′ − x = f(t, x, x′)− x, t ∈ [0, T ] \ {t1}
∆x(t1) = I(x(t1)), ∆x′(t1) = J(x′(t1)),

x ∈ β.

(3.4)

Since the linear boundary value problem

x′′ − x = 0, x ∈ β (3.5)

has only the zero solution, there exists a unique, continuous once-differentiable
Green’s function G : [0, T ]× [0, T ] → R such that (3.4) may be equivalently refor-
mulated as the integral equation

x(t) =
∫ T

0

G(t, s)[f(s, x(s), x′(s))− x(s)]ds

+ G(t, t1)J(x′(t1))− (∂G/∂s)(t, t1)I(x(t1)), t ∈ [0, T ].

Define the operator H : PC1([0, T ], Rn) → PC1([0, T ], Rn) by

(Hx)(t) =
∫ T

0

G(t, s)[f(s, x(s), x′(s))− x(s)]ds

+ G(t, t1)J(x′(t1))− (∂G/∂s)(t, t1)I(x(t1)), t ∈ [0, T ] .
(3.6)

Then consider the family of equations

x = λHx, (3.7)

λ ∈ (0, 1). Since Hx actually belongs to Y for each x ∈ PC1([0, T ], Rn), H is
a compact map. We will apply Schaefer’s fixed point theorem [5] to prove that
H has at least one fixed point in PC1([0, T ], Rn). Since H : PC1([0, T ], Rn) →
PC1([0, T ], Rn) is compact, it remains to verify that all solutions to (3.6) are
bounded independently of λ.

Since x is a solution of x = λHx, then x ∈ Y satisfies

x′′ − x = λ[f(t, x, x′)− x], t ∈ [0, T ] \ {t1},
∆x(t1) = λI(x(t1)), ∆x′(t1) = λJ(x′(t1)),

x ∈ β.

(3.8)

Multiplying by x′′ and integrating from 0 to T , we have

‖x′′‖2
L2 ≤ λ

∣∣ ∫ T

0

f(t, x(t), x′(t))x′′(t)dt
∣∣ + (1− λ)

∣∣ ∫ T

0

x(t)x′′(t)dt
∣∣. (3.9)
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By (3.1), we have

∣∣ ∫ T

0

f(t, x(t), x′(t))x′′(t)dt
∣∣

≤
∫ T

0

|f(t, x(t), x′(t))− f(t, 0, 0)| × |x′′(t)| dt +
∫ T

0

|f(t, 0, 0)x′′(t)| dt

≤
1∑

i=0

∫ T

0

|ai(t)x(i)(t)x′′(t)|dt + ‖f(t, 0, 0)‖L2‖x′′‖L2

≤
1∑

i=0

‖ai‖0‖x(i)‖L2‖x′′‖L2 + ‖f(t, 0, 0)‖L2‖x′′‖L2 .

(3.10)

By the impulsive condition

∣∣ ∫ T

0

x(t)x′′(t)dt
∣∣ =

∣∣ 1∑
i=0

x(t)x′(t)|t
−
i+1

t+i

∣∣ +
∫ T

0

|x′(t)|2dt

≤ |x(T )x′(T )− x(0)x′(0)−∆(x(t1)x′(t1))|+
∫ T

0

|x′(t)|2dt.

(3.11)
The boundary condition (1.2), the impulsive condition, and condition (3.2) imply

∣∣x(T )x′(T )− x(0)x′(0)−∆(x(t1)x′(t1))
∣∣ +

∫ T

0

|x′(t)|2dt

=
∣∣x′(t+1 )∆x(t1) + x(t1)∆x′(t1)

∣∣ + ‖x′‖2
L2

=
∣∣x′(t+1 )(I(x(t1))− I(0)) + x(t1)(J(x′(t1))− J(0))

∣∣
+

∣∣x′(t+1 )I(0)
∣∣ + |x(t1)J(0)|+ ‖x′‖2

L2

≤ (p + q)‖x‖PC‖x′‖PC + ‖x′‖2
L2 + ‖x‖PC |J(0)|+ ‖x′‖PC |I(0)|.

(3.12)

Substituting (3.10) (3.11) (3.12) into (3.9), we have

‖x′′‖2
L2 ≤

1∑
i=0

‖ai‖0‖x(i)‖L2‖x′′‖L2 + ‖f(t, 0, 0)‖L2‖x′′‖L2

+ (p + q)‖x‖PC‖x′‖PC + ‖x′‖2
L2 + ‖x‖PC |J(0)|+ ‖x′‖PC |I(0)|.

By Lemma 2.1 and Lemma 2.2 we have

‖x′′‖2
L2 ≤

1∑
i=0

‖ai‖0

(2T

π

)2−i‖x′′‖2
L2 + ‖f(t, 0, 0)‖L2‖x′′‖L2

+
[(2T

π

)2 + (p + q)
2T 2

π
Γ2

]
‖x′′‖2

L2 + M‖x′′‖L2

for some sufficiently large constant M > 0. Condition (3.3) implies that x′′ is
bounded in L2([0, T ], Rn). Lemma 2.2 means that x is bounded in PC1([0, T ], Rn).
Applying Schaefer’s fixed point theorem, (1.1), (1.2) has at least one solution.
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Now we will show that (1.1), (1.2) has a unique solution. If x, y are both solutions
of (1.1), (1.2). Then u = x− y satisfies

u′′(t) = f(t, x(t), x′(t))− f(t, y(t), y′(t)), t ∈ [0, T ] \ {t1},
∆u(t1) = I(x(t1))− I(y(t1)), ∆u′(t1) = J(x′(t1))− J(y′(t1))

u ∈ β0.

(3.13)

Similar to the above process we have

‖u′′‖2
L2 ≤

1∑
i=0

‖ai‖0

(2T

π

)2−i‖u′′‖2
L2 .

Condition (3.3) implies that ‖u′′‖L2 = 0. Lemma 2.2 means that u(t) ≡ 0 for
t ∈ [0, T ]. The proof is complete. �

Theorem 3.2. Suppose that the conditions (3.1) (3.2) in Theorem 3.1 hold. Fur-
thermore, we assume that

‖a1‖0 <
1
T

,
1∑

i=0

‖ai‖0

(2T

π

)2−i +
(p + q)T 2Γ2(‖a0‖0 + 1)

1− T‖a1‖0
< 1 (3.14)

Then problem (1.1), (1.4) has a unique solution in Y .

Proof. According to the proof of Theorem 3.1, we have that the function x ∈ Y
satisfies

x′′ − x = λ[f(t, x, x′)− x], t ∈ [0, T ] \ {t1},
∆x(t1) = λI(x(t1)), ∆x′(t1) = λJ(x′(t1)),

x′(0) = x′(T ) = 0.

(3.15)

Multiplying by x and integrating from 0 to T , we have

∫ T

0

x′′(s)x(s)ds =
∫ T

0

λf(s, x(s), x′(s))x(s)ds + (1− λ)
∫ T

0

x2(s)ds. (3.16)

By boundary condition (1.4) and impulsive condition we have

∫ T

0

x′′(s)x(s)ds = −∆(x′(t1)x(t1)) + x′(T )x(T )− x′(0)x(0)−
∫ T

0

[x′(s)]2ds

= −∆(x′(t1)x(t1))− ‖x′‖2
L2 .

(3.17)
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By (1.4) (3.16) we have

‖x′‖2
L2 ≤ |∆(x′(t1)x(t1))|+

∫ T

0

|f(s, x(s), x′(s))x(s)|ds

≤ |x′(t+1 )∆x(t1) + x(t1)∆x′(t1)|

+
∫ T

0

|f(s, x(s), x′(s))− f(s, 0, 0)||x(s)|ds + ‖f(t, 0, 0)‖L2‖x‖L2

≤
∣∣x′(t+1 )(I(x(t1))− I(0)) + x(t1)(J(x′(t1))− J(0))

∣∣ + |x′(t+1 )I(0)|

+ |x(t1)J(0)|+
1∑

i=0

∫ T

0

|ai(s)x(i)(s)x(s)|ds + ‖f(t, 0, 0)‖L2‖x‖L2

≤ (p + q)‖x′‖PC‖x‖PC +
1∑

i=0

‖ai‖0‖x(i)‖L2‖x‖L2 + ‖f(t, 0, 0)‖L2‖x‖L2

+ ‖x′‖PC |I(0)|+ ‖x‖PC |J(0)|.
(3.18)

We assume that ‖x′‖PC = |x′(ξ)| for ξ ∈ [0, T ]. If ξ ∈ [0, t1], integrating from 0
to ξ on the both sides of (3.15), we have

x′(ξ) = λ

∫ ξ

0

f(s, x(s), x′(s))ds + (1− λ)
∫ ξ

0

x(s)ds. (3.19)

If ξ ∈ (t1, T ], integrating from ξ to T on the both sides of (3.15) we have

−x′(ξ) = λ

∫ T

ξ

f(s, x(s), x′(s))ds + (1− λ)
∫ T

ξ

x(s)ds. (3.20)

By (3.19) (3.20) and condition (3.1), one has

‖x′‖PC ≤
∫ T

0

|f(s, x(s), x′(s))|ds +
∫ T

0

|x(s)|ds

≤
∫ T

0

|f(s, x(s), x′(s))− f(s, 0, 0)|ds + ‖f(t, 0, 0)‖L2T 1/2 + T‖x‖PC

≤ T
1∑

i=0

‖ai‖0‖x(i)‖PC + ‖f(t, 0, 0)‖L2T 1/2 + T‖x‖PC .

So

‖x′‖PC ≤ T (‖a0‖+ 1)
1− T‖a1‖0

‖x‖PC +
‖f(t, 0, 0)‖L2T 1/2

1− T‖a1‖0
. (3.21)

Substituting (3.21) into (3.18), and noticing Lemma 2.1, Lemma 2.2, we obtain
that

‖x′‖2
L2 ≤

{ (p + q)T 2Γ2(‖a0‖0 + 1)
1− T‖a1‖0

+
1∑

i=0

‖ai‖0

(2T

π

)2−i
}
‖x′‖2

L2 + N‖x′‖L2

holds for sufficiently large constant N > 0. The condition (3.14) means that x′

is bounded in L2[0, T ]. Lemma 2.2 means that there exists L1 > 0 such that
‖x‖PC ≤ L1. (3.21) means that there exists L2 > 0 such that ‖x′‖PC ≤ L2. So x
is bounded in PC1([0, T ], Rn). Applying Schaefer’s fixed point theorem, problem
(1.1), (1.4) has at least one solution.
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Now we show that (1.1)–(1.4) has a unique solution. If x, y are both solutions,
then u = x− y satisfies

u′′(t) = f(t, x(t), x′(t))− f(t, y(t), y′(t)), t ∈ [0, T ] \ {t1},
∆u(t1) = I(x(t1))− I(y(t1)), ∆u′(t1) = J(x′(t1))− J(y′(t1)),

u′(0) = u′(T ) = 0.

(3.22)

Similar to the above process, we have

‖u′‖2
L2 ≤

[
(p + q)

T 2‖a0‖0Γ2

1− T‖a1‖0
+

1∑
i=0

‖ai‖0

(2T

π

)2−i
]
‖u′‖2

L2 .

The condition (3.14) implies that ‖u′‖L2 = 0. Lemma 2.2 gives that u ≡ 0 for
t ∈ [0, T ]. So problem (1.1), (1.4) has a unique solution in Y . �
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