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SHARP ASYMPTOTIC ESTIMATES FOR VORTICITY
SOLUTIONS OF THE 2D NAVIER-STOKES EQUATION

YUNCHENG YOU

Abstract. The asymptotic dynamics of high-order temporal-spatial deriva-

tives of the two-dimensional vorticity and velocity of an incompressible, viscous
fluid flow in R2 are studied, which is equivalent to the 2D Navier-Stokes equa-

tion. It is known that for any integrable initial vorticity, the 2D vorticity

solution converges to the Oseen vortex. In this paper, sharp exterior decay
estimates of the temporal-spatial derivatives of the vorticity solution are es-

tablished. These estimates are then used and combined with similarity and

Lp compactness to show the asymptotical attraction rates of temporal-spatial
derivatives of generic 2D vorticity and velocity solutions by the Oseen vor-

tices and velocity solutions respectively. The asymptotic estimates and the

asymptotic attraction rates of all the derivatives obtained in this paper are
independent of low or high Reynolds numbers.

1. Introduction

Vorticity is a vector field defined by ω = ∇ × v for a flow with velocity v. For
any two-dimensional flow, if we orient the z-axis of a Cartesian coordinate system
normal to the velocity field, then the one-dimensional vorticity is expressed by

ω = ωz =
∂vy

∂x
− ∂vx

∂y
.

For an incompressible, viscous fluid motion in the domain of R2, the velocity field
of the fluid is governed by the 2D Navier-Stokes equation:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = 0,

∇ · u = 0,
(1.1)

for t > 0, x ∈ R2, where u = u(t, x) is a two-dimensional vector field of the fluid
velocity, p(t, x) is the pressure, and we assume that the external force on the fluid is
zero. The kinematic viscosity coefficient ν is a positive constant. The initial value
condition for u(t, x) is

u(0, x) = u0(x), for x ∈ R2.
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Taking the curl of the equation (1.1), we can consider the equation for the vorticity
ω(t, x) as well,

∂ω

∂t
= ν∆ω − (u · ∇)ω, t > 0, x ∈ R2. (1.2)

By the Biot-Savart law, cf. [15, 28, 29], the velocity u(t, x) can be reconstructed in
terms of the vorticity ω(t, x),

u(t, x) =
∫

R2
G(x− y)ω(t, y) dy, t > 0, x ∈ R2, (1.3)

where

G(x) = G(x1, x2) =
x⊥

2π|x|2
=

(−x2, x1)
2π|(x1, x2)|2

. (1.4)

The system of equations (1.2) and (1.3) is equivalent to the Navier-Stokes equation
(1.1). We shall call (1.2)–(1.3) the two-dimensional vorticity equation, which is the
vorticity formulation of the Navier-Stokes equation.

In [31], it was found that there is a special type of solutions to (1.2)–(1.3),

ω∗(t, x) =
κ

4πνt
exp

(
− |x|2

4νt
)
, (1.5)

where κ is a constant called the strength of the vortex. These special solutions are
called the Oseen vortices, whose initial data are ω∗(0, x) = κδ(x) in the distribu-
tional sense, where δ(x) is the Dirac function.

It has been proved in [18] that for any initial vorticity ω0 ∈ L1(R2) with small
Renolds numbers

∫
R2 |ω0(x)|dx/ν, the vorticity equation (1.2)–(1.3) has a unique

solution

ω ∈ C([0,∞), L1(R2)) ∩ C((0,∞), L∞(R2)),

u ∈ C([0,∞), L1(R2)× L1(R2)) ∩ C((0,∞), L∞(R2)× L∞(R2)),

with the asymptotic convergence properties at specific decaying rates:

lim
t→∞

t1−
1
p ‖ω(t, ·)− ω∗(t, ·)‖p = 0, for 1 ≤ p ≤ ∞, (1.6)

lim
t→∞

t
1
2−

1
q ‖u(t, ·)− u∗(t, ·)‖q = 0, for 2 < q ≤ ∞, (1.7)

where ω∗(t, x) is the Oseen vortex (1.5) with the coefficient of strength

κ = κ(ω0) =
∫

R2
ω0(x) dx, ω0 ∈ L1(R2), (1.8)

and the corresponding Oseen velocity u∗(t, x) is given by

u∗(t, x) =
∫

R2
G(x− y)ω∗(t, y) dy. (1.9)

This asymptotical convergence result (1.6) and (1.7) was then extended in [11, 16].
As indicated in [4, 5, 7, 11, 14, 18, 22, 23, 30], it is relatively easier to understand

the asymptotics of the velocity solutions of the Navier-Stokes equation (1.1) and
the associated Euler equation by studying the long-time dynamics of the vorticity
solutions of the vorticity equation, especially for two-dimensional flows due to the
scalar vorticity. Once the vorticity field on R2 is known or approximately known,
one can always reconstruct the velocity field precisely or approximately by the sin-
gular integral with the Riesz potential specified in the Biot-Savart law. Therefore,
the study of the regularity and asymptotical dynamics of the 2D and 3D vorticity
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equations is important in the mathematical theory of fluid mechanics. Some of the
established results, related topics, and numerical simulations in recent years can be
found in [2, 3, 4, 5, 7, 11, 13, 14, 16, 18, 22, 23, 24, 25, 27, 32, 33, 36].

In this work we shall prove certain sharp estimates on the temporal-spatial de-
caying dynamics of all the derivatives of the vorticity solution ω(t, x) and velocity
solution u(t, x) to the vorticity equation (1.2)–(1.3) and then indicate the applica-
tions to the global attraction regularity of the Oseen vortex and velocity solutions.
We emphasize that the asymptotic estimates and the asymptotic attraction rates
of all the temporal-spatial derivatives obtained in this paper are independent of low
or high Reynolds numbers.

This application of the estimates shows that the set of all the Oseen vortices,

Ψ = {ω∗(t, x) : κ ∈ R},
is a global attractor for the 2D vorticity semiflow in the full regularity sense with
respect to Lp topology. Moreover, it also shows that the attraction rates of Ψ for
the temporal-spatial derivatives are getting faster and faster in the specific and
uniform order of O(t−(α+|β|/2)), which depends on the time derivative order α and
the spatial derivative order β. Therefore, it reveals that regularity asymptotics of
the 2D vorticity solutions on R2 is determined by the unique Oseen vortex pattern
completely.

Below we shall use the notation ∂α
t = (∂/∂t)α for α ∈ Z+, ∂β

x = ∂|β|/(∂xβ1
1 ∂xβ2

2 )
for β = (β1, β2) ∈ Z+×Z+, where Z+ stands for the set of all nonnegative integers.
As notational remarks, we have

|β| = β1 + β2, β! = β1!β2!,
(
β

γ

)
=

β!
γ!(β − γ)!

≤ 2|β| for γ ≤ β.

By convention, if p = ∞, then 1/p = 0. We use | · | to denote either an absolute
value or a vector norm. The norm of Lp(R2) will be denoted by ‖ · ‖p, 1 ≤ p ≤ ∞.
For simplicity, we shall always use ‖ · ‖ for the norm of L1(R2) instead of using
‖ · ‖1.

For any function g defined on R2, we shall use gr and gr to denote the functions

gr(x) = ϑr(x)g(x) and gr(x) = (1− ϑr(x))g(x),

respectively, where ϑr is the characteristic function of the set R2 ∩ {|x| > r}.
The following convolution property [8, Théorème IV.15] will be used: for any

f ∈ L1(Rn) and g ∈ Lp(Rn), 1 ≤ p ≤ ∞, one has f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖Lp(Rn) ≤ ‖f‖L1(Rn)‖g‖Lp(Rn). (1.10)

One of the basic Lp estimates for convolutions is the Hardy-Littlewood-Sobolev
inequality [21, Theorem 4.5.3]: Let integer n ≥ 1 and

Φ(x) = |x|−n/a, x ∈ Rn.

If 1 < a <∞, 1 < p < q <∞, and 1/p+1/a = 1 +1/q, then there exists a uniform
constant Sn,p,q > 0, such that

‖Φ ∗ g‖q ≤ Sn,p,q‖g‖p, for g ∈ Lp(Rn). (1.11)

In Section 2, we prove the exterior decay estimates of the Lp norms for vorticity
and velocity. In Section 3, based on the mild solution formula and semigroup
expressions of the derivatives of vorticity solutions, the exterior decay rates are
established for the linear terms and the nonlinear integrands by decomposition
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methods. Then in Section 4, these nested estimates are utilized to prove the global
decay rates of temporal-spatial derivatives of vorticity solutions in Theorem 4.1
and Theorem 4.2 via the bootstrap approach. Finally in Section 5, an application
result on the regularity of asymptotical attraction of the Oseen vortex and velocity
solutions is shown.

2. Exterior Decay Estimates of Vorticity and Velocity

By the optimal smoothing inequalities [9, Theorems 1 and 2] and the ultracon-
tractivity (or called L1 to L∞ regularity) of the parabolic semigroups shown in
[20, 12, 34] for unbounded domains, a solution (ω(t, x), u(t, x)) of the 2D vortic-
ity equations (1.2)–(1.3) with integrable initial data ω0(x) satisfies the following
estimates:

‖ω(t, ·)‖∞ ≤ 1
4πνt

‖ω0‖, ‖u(t, ·)‖∞ ≤ 1√
2π2νt

‖ω0‖, t > 0. (2.1)

Based on these estimates, it has been shown in [9, Theorem 3] that for the 2D
Navier-Stokes vorticity, the following pointwise decay holds,

|ω(t, x)| ≤
∫

R2
H(t, x, y)|ω0(y)| dy, t > 0, x ∈ R2, (2.2)

where, for any given 0 < b < 1,

H(t, x, y) ≤ Cb

t
exp

(
− b|x− y|2

4νt
)
, (2.3)

with the constant Cb given by

Cb =
1

4πν
exp

( b‖ω0‖2

2π2ν(1− b)

)
.

First we prove an estimate of the Lp norm of vorticity in the exterior of a bounded
ball.

Lemma 2.1. Let ω(t, x) be a vorticity solution of (1.2)–(1.3) with initial data
ω0 ∈ L1(R2). Then for any p ∈ [1,∞] and any given R > 1, the following estimate
is satisfied by ω,

‖ωR(t, ·)‖p ≤ L0(p, ‖ω0‖)
( 1
R
t−( 1

2−
1
p )‖ω0‖+ t−(1− 1

p )‖ωR/2
0 ‖

)
, (2.4)

where L0(p, ‖ω0‖) is a constant depending only on p and ‖ω0‖.

Proof. By (2.2)–(2.3) where b ∈ (0, 1) is arbitrarily fixed, for any given R > 1 and
for |x| > R, we have

|ω(t, x)| ≤
∫

R2∩{|y|≤R/2}

Cb

t
exp

(
− b|x− y|2

4νt

)
|ω0(y)| dy

+
∫

R2∩{|y|>R/2}

Cb

t
exp

(
− b|x− y|2

4νt

)
|ω0(y)| dy

(2.5)

and we shall denote the two integrals in (2.5) by J1(t, x) and J2(t, x), |x| > R,
respectively. Note that for the function

ϕ(t) =
1
t1/2

exp
(
− ζ2

t

)
,
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where ζ is a constant, one can check that

max
t>0

ϕ(t) = ϕ(2ζ2) =
1√
2ζ
e−1/2. (2.6)

By (2.6), the first integral in (2.5) satisfies the estimate

J1(t, x) ≤ Cb

∫
{|y|≤R/2}

1
t

exp
(
− b(|x| − |y|)2

4νt

)
|ω0(y)| dy

≤ Cb

∫
{|y|≤R/2}

1
t1/2

[ 1
t1/2

exp
(
− b(|x|/2)2

4νt

)]
|ω0(y)| dy

= Cb

∫
{|y|≤R/2}

1
t1/2

exp
(
− b|x|2

32νt

)[ 1
t1/2

exp
(
− b|x|2

32νt

)]
|ω0(y)| dy

≤ C1(b)
1

t1/2|x|
exp

(
− b|x|2

32νt

)
‖ω0‖,

due to that |x| > R > R/2 ≥ |y|, where

C1(b) =
4
√
νCbe

−1/2

√
b

.

Hence it follows that, for p ≥ 1,

‖J1(t, ·)‖p ≤
C1(b)
t1/2

(∫
{|x|>R}

1
|x|p

exp
(
− pb|x|2

32νt

)
dx
)1/p

‖ω0‖

≤ C1(b)
t1/2R

(∫
{|x|>R}

exp
(
− pb|x|2

32νt

)
dx
)1/p

‖ω0‖

≤ C2(b, p)
R

t−( 1
2−

1
p )‖ω0‖,

(2.7)

where

C2(b, p) = C1(b)
(∫

R2
exp

(
− pb|ξ|2

32ν
)
dξ
)1/p

.

According to the convolution property (1.10), the second integral J2(t, x), |x| > R,
in (2.5) is estimated as follows,

‖J2(t, ·)‖p ≤
Cb

t

(∫
{|y|>R/2}

exp
(
− pb|x− y|2

4νt
)
dy
)1/p

‖ωR/2
0 ‖

≤ Cb

t

(∫
R2

exp
(
− pb|y|2

4νt
)
dy
)1/p

‖ωR/2
0 ‖

≤ C3(b, p)t−(1− 1
p )‖ωR/2

0 ‖,

(2.8)

where

C3(b, p) = Cb

(∫
R2

exp
(
− pb|ξ|2

4ν
)
dξ
)1/p

.

Finally, let L0(p, ‖ω0‖) = max{C2(b, p), C3(b, p)}. Then the estimate (2.4) follows
from (2.7) and (2.8). The lemma is proved. �

Next we shall estimate the exterior decay of the velocity solution u(t, x) in (1.3).
The key to this estimation is the Riesz potential corresponding to the kernelG(x−y)
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in (1.4). For any given θ ∈ (0, n), define a Riesz potential Γθ to be

Γθ(f)(x) =
∫

Rn

1
|x− y|n−θ

f(y) dy, f ∈ L1(Rn) ∩ L∞(Rn). (2.9)

Lemma 2.2. Let 1 < p < q < ∞ and θ = n( 1
p −

1
q ). Then there exist positive

constants M1(n, θ, q) and M2(n, θ, q) such that for any given R > 1, it holds that

‖Γθ(f)R(·)‖q ≤
M1

Rn−θ−n
q
‖f‖+M2‖fR/2‖p, f ∈ L1(Rn) ∩ L∞(Rn). (2.10)

Proof. By the similar decomposition as in the proof of Lemma 2.1, we have

|Γθ(f)(x)| ≤
∫
{|y|≤R/2}

1
|x− y|n−θ

|f(y)| dy +
∫
{|y|>R/2}

1
|x− y|n−θ

|f(y)| dy,

where the two integrals are denoted by I1(x) and I2(x) respectively. First we can
get

I1(x) ≤
2n−θ

|x|n−θ
‖f‖, for |x| > R. (2.11)

Since θ = n( 1
p −

1
q ) implies n− θ − n

q = n(1− 1
p ) > 0, it follows that

‖IR
1 (·)‖q ≤ 2n−θ‖f‖

(∫
{|x|>R}

1
|x|q(n−θ)

dx
)1/q

=
M1(n, θ, q)
Rn−θ−n

q
‖f‖, (2.12)

where

M1(n, θ, q) = 2n−θ
( Ωn

q(n− θ)− n

)1/q

,

in which Ωn is the surface area of the unit sphere in Rn.
By the Hardy-Littlewood-Sobolev inequality (1.11), we readily have

‖IR
2 (·)‖q ≤M2(n, θ, q)‖fR/2‖p, (2.13)

with M2(n, θ, q) = Sn,p,q in (1.11). Combining (2.12) and (2.13), we obtain (2.10).
�

Lemma 2.3. For any given θ ∈ (0, n), there exist positive constants M1,∞(n, θ)
and M2,∞(n, θ) such that for any given R > 1, it holds that

‖Γθ(f)R(·)‖∞ ≤ M1,∞

Rn−θ
‖f‖+M2,∞‖fR/2‖ θ

n ‖fR/2‖1−
θ
n∞ , f ∈ L1(Rn) ∩ L∞(Rn).

(2.14)

Proof. Using the same notation as in the proof of Lemma 2.2, by (2.11) we can get

‖IR
1 (·)‖∞ ≤ M1,∞

Rn−θ
‖f‖,

with M1,∞ = 2n−θ. For I2(x), |x| > R, we get

I2(x) =
∫
{|y|>R/2}

1
|x− y|n−θ

|f(y)| dy

=
∫
{|y|>R/2}∩{|x−y|>W}

1
|x− y|n−θ

|f(y)| dy

+
∫
{|y|>R/2}∩{|x−y|≤W}

1
|x− y|n−θ

|f(y)| dy
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≤ 1
Wn−θ

‖fR/2‖+
∫
{|z|≤W}

1
|z|n−θ

dz‖fR/2‖∞

=
1

Wn−θ
‖fR/2‖+

Ωn

θ
W θ‖fR/2‖∞.

In the above inequality we choose constant

W =
( ‖fR/2‖
‖fR/2‖∞

)1/n

to obtain
‖IR

2 (·)‖∞ ≤M2,∞‖fR/2‖ θ
n ‖fR/2‖1−

θ
n∞ ,

where M2,∞ = 1 + Ωn/θ. Thus the estimate (2.14) is proved. �

By the Biot-Savart law (1.3), Lemma 2.2 and Lemma 2.3 directly lead to the ex-
terior decay estimates of the velocity field u(t, x), as stated in the following lemma.

Lemma 2.4. Let 1 < p < q <∞ satisfy 1
2 = 1

p −
1
q . Let ω(t, x) and u(t, x) be the

vorticity and velocity solution of the vorticity equation (1.2)–(1.3) with ω0 ∈ L1(R2).
Then there exist positive constants L1(p), L2(p), L1,∞, and L2,∞ such that for any
given R > 1, the following estimates hold,

‖uR(t, ·)‖q ≤
L1(p)

R2( 1
2−

1
q )
‖ω(t, ·)‖+ L2(p)‖ωR/2(t, ·)‖p, (2.15)

and

‖uR(t, ·)‖∞ ≤ L1,∞

R
‖ω(t, ·)‖+ L2,∞‖ωR/2(t, ·)‖1/2‖ωR/2(t, ·)‖1/2

∞ . (2.16)

Proof. Simply let n = 2, θ = 1 in Lemma 2.2 and Lemma 2.3 and add the coefficient
1/(2π) to the Riesz potential (2.9). Then the conclusion follows. �

3. Exterior Decay Estimates of Spatial Derivatives

The vorticity equation (1.2) is a semilinear evolutionary equation. By the semi-
group theory, the vorticity solution ω(t, x) satisfies the variation-of-constant for-
mula for all mild solutions [34, Chapter 3], which is the following nonlinear integral
equation

ω(t, ·) = eAtω0 −
∫ t

0

eA(t−s)(u(s, ·) · ∇)ω(s, ·)ds, t ≥ 0, (3.1)

where eAt, t ≥ 0, is the C0-semigroup on the Banach space Y = CB(R2), generated
by the closed linear operator A = ν∆ : D(A) = C2

B(R2) → CB(R2) and given by

(eAtg)(x) =
1

4πνt

∫
R2

exp
(
− |x− y|2

4νt

)
g(y)dy, t ≥ 0, g ∈ Y. (3.2)

Here Ck
B(R2) stands for the Banach space of functions whose derivatives up to the

k-th order are all continuous and bounded, with C0
B(R2) denoted by CB(R2).

In this section we shall study the spatial derivatives of the linear term and the
nonlinear integrand in (3.1). We have

∂β
x (eAtg)(x) =

1
4πνt

∫
R2
∂β

x exp
(
− |x− y|2

4νt

)
g(y)dy. (3.3)
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The following two regularity estimates for vorticity and velocity solutions ω(t, x)
and u(t, x) of (1.2)–(1.3) have been shown in [19, 24],

‖∂α
t ∂

β
xω(t, ·)‖p ≤ Nω(α, |β|, p)t−(α+

|β|
2 +1− 1

p )‖ω0‖, for p ∈ [1,∞], (3.4)

‖∂α
t ∂

β
xu(t, ·)‖q ≤ Nu(α.|β|, q)t−(α+

|β|
2 + 1

2−
1
q )‖ω0‖, for q ∈ (2,∞], (3.5)

where Nω(α, |β|, p) and Nu(α, |β|, p) are positive constants depending on α, |β|, p,
and ‖ω0‖. Now we prove a key lemma, which shows the exterior decay estimates
of these spatial derivatives in (3.3).

Lemma 3.1. For p ∈ [1,∞] and any index β = (β1, β2) with |β| = k ≥ 0, there
exist positive constants L3(k, p) and L4(k) such that for any given R > 1,

‖∂β
x (eAtg)R‖p ≤ L3(k, p)R−(3− 2

p )t−
1
2 (k−1)‖g‖+ L4(k)t−

k
2 ‖gR/2‖p, (3.6)

for any g ∈ L1(R2) ∩ L∞(R2).

Proof. Similar to (2.6), for any given ` > 0 and a constant ζ > 0, the function

ψ(t) =
1
t`

exp
(
− ζ2

t

)
has the maximum

max
t>0

ψ(t) = ψ(ζ2) =
e−1

ζ2`
. (3.7)

By (3.3) and direct differentiation, we have

|∂β
x (eAtg)R(x)| ≤ 1

4πνt

k∑
β1=0

∫
R2

∣∣∣∂β1
x1
∂k−β1

x2
exp

(
− |x− y|2

4νt

)∣∣∣|g(y)| dy
=

1
4πνt

k∑
j=[ k+1

2 ]

Cj(k)
∫

R2

|x− y|i

tj
exp

(
− |x− y|2

4νt

)
|g(y)| dy

=
1

4πνt

k∑
j=[ k+1

2 ]

Cj(k)
∫

R2

|x− y|2j−k

tj
exp

(
− |x− y|2

4νt

)
|g(y)| dy,

(3.8)

in which we have 0 ≤ i ≤ j and j + (j − i) = k so that 0 ≤ i = 2j − k, and
Cj(k) is a positive constant depending on j and k = |β|. For each term Ij(t, x), j =
[k+1

2 ], · · · , k, in (3.8), a decomposition yields

Ij(t, x) =
Cj(k)
4πνt

∫
R2

|x− y|2j−k

tj
exp

(
− |x− y|2

4νt
)
|g(y)|dy = Ij,1(t, x) + Ij,2(t, x).

(3.9)
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The first integral in (3.9) satisfies the estimate

Ij,1(t, x) =
Cj(k)
4πνt

∫
{|y|≤R/2}

|x− y|2j−k

tj
exp

(
− |x− y|2

4νt
)
|g(y)|dy

=
Cj(k)

4πνt(k−1)/2

∫
{|y|≤R/2}

|x− y|2j−k

t
3
2+j− k

2
exp

(
− |x− y|2

4νt
)
|g(y)|dy

≤ Cj(k)e−1

4πνt(k−1)/2

∫
{|y|≤R/2}

|x− y|2j−k(4ν)
3
2+j− k

2

|x− y|2( 3
2+j− k

2 )
|g(y)|dy

≤ C̃(j, k)
|x|3t(k−1)/2

∫
{|y|≤R/2}

|g(y)|dy

≤ C̃(j, k)
|x|3t(k−1)/2

‖g‖, for |x| > R,

where we used (3.7) and the fact that |x| > R > R/2 ≥ |y|, and the constant C̃(j, k)
is given by

C̃(j, k) = 8Cj(k)(πe)−1(4ν)
1
2 (1−k)+j .

Then it follows that

‖IR
j,1(t, ·)‖p ≤

C̃(j, k)
t(k−1)/2

(∫
{|x|>R}

1
|x|3p

dx
)1/p

‖g‖

= C̃(j, k)
( 2π
3p− 2

)1/p
R−(3− 2

p )t−
1
2 (k−1)‖g‖

= M3(j, k, p)R−(3− 2
p )t−

1
2 (k−1)‖g‖,

(3.10)

where M3(j, k, p) = C̃(j, k)(2π/(3p − 2))1/p. The second integral in (3.9) is given
by

IR
j,2(t, x) =

Cj(k)
4πνt

∫
{|y|>R/2}

|x− y|2j−k

tj
exp

(
− |x− y|2

4νt

)
|g(y)| dy, |x| > R.

By the convolution property (1.10) we can assert that

‖IR
j,2(t, ·)‖p ≤

Cj(k)(4ν)
1
2 (2j−k)

πtj−
1
2 (2j−k)

(∫
R2
|z|2j−ke−|z|

2
dz
)
‖gR/2‖p =

M4(j, k)
tk/2

‖gR/2‖p,

(3.11)
where, as we remarked after (3.8), the exponents 2j − k ≥ 0 for j = [k+1

2 ], · · · , k,
and the constant M4(j, k) is given by

M4(j, k) = Cj(k)π−1(4ν)j− k
2

(∫
R2
|z|2j−ke−|z|

2
dz
)
.

Substituting (3.10) and (3.11) into (3.9) and (3.8), we obtain

‖∂β
x (eAtg)R‖p ≤

k∑
j=[ k+1

2 ]

(
‖IR

j,1(t, ·)‖p + ‖IR
j,2(t, ·)‖p

)

≤
k∑

j=[ k+1
2 ]

(
M3(j, k, p)R−(3− 2

p )t−
1
2 (k−1)‖g‖+M4(j, k)t−

k
2 ‖gR/2‖p

)
= L3(k, p)R−(3− 2

p )t−
1
2 (k−1)‖g‖+ L4(k)t−

k
2 ‖gR/2‖p,
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with L3(k, p) =
∑k

j=[ k+1
2 ]M3(j, k, p) and L4(k) =

∑k
j=[ k+1

2 ]M4(j, k). Thus (3.6) is
proved for p ∈ [1,∞). The proof of (3.6) for p = ∞ is similar and even easier. �

Next is another key lemma showing the regularity estimates of the spatial deriva-
tives of the nonlinear integrand function in (3.1), which involves the nonlinear term
v(t, x) in the vorticity equation (1.2). Here

v(t, x) = (u(t, x) · ∇)ω(t, x). (3.12)

Lemma 3.2. Let ω(t, x) and u(t, x) be a solution of the vorticity equations (1.2)–
(1.3) with initial data ω0 ∈ L1(R2). Let p ∈ [1,∞]. Then for any index β ∈ Z+×Z+

and any given R > 1, the following estimate is satisfied,

‖∂β
x (eA(t−s)v(s, ·))R‖p

≤ L5

( 1

R3− 2
p (t− s)

1
2 (|β|−1)s2−

1
p

+
1

R(t− s)
|β|
2 s

3
2−

1
p

+
‖ωR/8

0 ‖
(t− s)

|β|
2 s2−

1
p

)
,

(3.13)

where 0 < s < t, and L5 = L5(|β|, p, ‖ω0‖) is a positive constant.

Proof. Let |β| = k ≥ 0. By Lemma 3.1, for t > 0, we have

‖∂β
x (eA(t−s)v(s, ·))R‖p

= ‖∂β
x (eA(t−s)(u(s, ·) · ∇)ω(s, ·))R‖p

≤ L3(k, p)R−(3− 2
p )(t− s)−

1
2 (k−1)‖v(s, ·)‖+ L4(k)(t− s)−

k
2 ‖vR/2(s, ·)‖p,

(3.14)

where by (3.4) and (3.5) we have

‖v(s, ·)‖ =
∫

R2
|(u(s, x) · ∇)ω(s, x)| dx

≤ ‖u1(s, ·)‖∞‖∂x1ω(s, ·)‖+ ‖u2(s, ·)‖∞‖∂x2ω(s, ·)‖

≤
(
Nu(0, 0,∞)s−

1
2 ‖ω0‖

)(
2Nω(0, 1, 1)s−( 3

2−
1
p )‖ω0‖

)
= Nv,1s

−(2− 1
p ),

(3.15)

in which Nv,1 = 2Nu(0, 0,∞)Nω(0, 1, 1)‖ω0‖2, and

‖vR/2(s, ·)‖p

=
(∫

{|x|>R/2}
|(u(s, x) · ∇)ω(s, x)|p dx

)1/p

≤ ‖uR/2(s, ·)‖∞
(
‖∂x1ω

R/2(s, ·)‖p + ‖∂x2ω
R/2(s, ·)‖p

)
≤ 2Nω(0, 1, p)s−( 3

2−
1
p )‖ω0‖‖uR/2(s, ·)‖∞ = N∗s−( 3

2−
1
p )‖uR/2(s, ·)‖∞,

(3.16)

in which N∗ = 2Nω(0, 1, p)‖ω0‖. Note that by Lemma 2.4 and (2.16), one has

‖uR(s, ·)‖∞ ≤ L1,∞

R
‖ω(s, ·)‖+ L2,∞‖ωR/2(s, ·)‖1/2‖ωR/2(s, ·)‖1/2

∞ . (3.17)
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Substituting (3.17) with R replaced by R/2 into (3.16), by Lemma 2.1 and (3.4),
we obtain

‖vR/2(s, ·)‖p

≤ N∗s−( 3
2−

1
p )
{2L1,∞

R
‖ω(s, ·)‖+ L2,∞‖ωR/4(s, ·)‖1/2‖ωR/4(s, ·)‖1/2

∞

}
≤ N∗s−( 3

2−
1
p )
{2L1,∞

R
Nω(0, 0, 1)‖ω0‖+ L2,∞

[4L0(1)
R

s1/2‖ω0‖+ ‖ωR/8
0 ‖

]1/2

×
[4L0(∞)

R
s−1/2‖ω0‖+ s−1‖ωR/8

0 ‖
]1/2}

≤ N∗

s
3
2−

1
p

{
2L1,∞Nω(0, 0, 1)

‖ω0‖
R

+ L2,∞(4L0(1)‖ω0‖+ 1)1/2

× (4L0(∞)‖ω0‖+ 1)1/2
(
R−1s1/2 + ‖ωR/8

0 ‖
)1/2 (

R−1s−1/2 + s−1‖ωR/8
0 ‖

)1/2 }
≤ Nv,2

s
3
2−

1
p

( 1
R

+
‖ωR/8

0 ‖
s

1
2

)
(3.18)

where Nv,2 is a constant given by

Nv,2 = N∗[2L1,∞Nω(0, 0, 1)‖ω0‖

+ L2,∞(4L0(1)‖ω0‖+ 1)1/2(4L0(∞)‖ω0‖+ 1)1/2
]
.

Finally we substitute (3.15) and (3.18) into (3.14) to obtain

‖[∂β
x (eA(t−s)(u(s, ·) · ∇)ω(s, ·))]R‖p

≤ L3(k, p)Nv,1

R3− 2
p (t− s)

1
2 (k−1)s2−

1
p

+
L4(k)Nv,2

(t− s)
k
2 s

3
2−

1
p

( 1
R

+
‖ωR/8

0 ‖
s

1
2

)
≤ L5

( 1

R3− 2
p (t− s)

1
2 (k−1)s2−

1
p

+
1

R(t− s)
k
2 s

3
2−

1
p

+
‖ωR/8

0 ‖
(t− s)

k
2 s2−

1
p

)
,

where the constant L5 = L5(k, p, ‖ω0‖) = max{L3(k, p)Nv,1, L4(k)Nv,2} and k =
|β|. Therefore, (3.13) is proved. �

4. Exterior Decay Estimates of Temporal-Spatial Derivatives

In this section we establish the exterior decay estimates of the temporal-spatial
derivatives of the vorticity solution ω(t, x) of (1.2)–(1.3). These estimates of Lp-
norms of the derivatives are dominated by the combination of the spatial decay
rates 1/R and ‖ωR/16

0 ‖ and by the temporal decay rate t−(α+ 1
2 (|β|−1)), as described

in the following two theorems. First we deal with the spatial derivatives.

Theorem 4.1. Let p ∈ [1,∞]. For any given R > 1 and any β ∈ Z+ × Z+, the
spatial derivative of the vorticity solution ω(t, x) of (1.2)–(1.3) with any initial data
ω0 ∈ L1(R2) has the following decay property,

‖∂β
xω

R(t, ·)‖p ≤
B(|β|, p, ‖ω0‖)

t
1
2 (|β|−1)

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
, (4.1)

where B(|β|, p, ‖ω0‖) is a positive constant depending on |β|, p, and ‖ω0‖.
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Proof. We have shown in Lemma 2.1 that (4.1) holds for |β| = 0. Now we prove
that (4.1) is valid for spatial derivatives of ω(t, x) of any order β by induction.

The variation-of-constant formula (3.1) implies that

∂β
xω(t, ·) = ∂β

x

(
eAt/2ω(t/2, ·)

)
−
∫ t

t/2

∂β
x

(
eA(t−s)(u(s, ·) · ∇)ω(s, ·)

)
ds, t > 0.

(4.2)
Step 1. Let |β| = k ≥ 1. By Lemma 3.1 and (3.6), the linear part in (4.2)

satisfies

‖∂β
x (eAt/2ω(t/2, ·))R‖p

≤ L3(k, p)R−(3− 2
p )t−

1
2 (k−1)‖ω(t/2, ·)‖+ L4(k)t−

k
2 ‖ω(t/2, ·)R/2‖p, for p ∈ [1,∞].

(4.3)

Then using Lemma 2.1 and the estimates (3.4) and (3.5), we get from (4.3) that

‖∂β
x (eAt/2ω(t/2, ·))R‖p

≤ 2L3(k, p)Nω(0, 0, 1)R−(3− 2
p )t−[ 12 (k−1)+(1− 1

p )]‖ω0‖

+ 21− 1
pL4(k)t−

k
2L0(p, ‖ω0‖)

( 1
R
t−( 1

2−
1
p )‖ω0‖+ t−(1− 1

p )‖ωR/2
0 ‖

)
≤ L6(k, p, ‖ω0‖)

t
1
2 (k−1)

( ‖ω0‖
Rt1−

1
p

+
‖ωR/2

0 ‖
t

3
2−

1
p

)
,

(4.4)

where we used R−2(1−1/p) ≤ 1 due to R > 1, and the constant L6 is given by

L6(k, p, ‖ω0‖) = 2(L3(k, p)Nω(0, 0, 1) + 21− 1
pL4(k)L0(p, ‖ω0‖)).

Note that the estimate (4.4) for the linear part is valid for all β ∈ Z+ × Z+.
The next two steps are devoted to the nonlinear integral term in (4.2).
Step 2. Since the nonlinear term in (1.2), which is denoted by v(t, x) in (3.12),

involves ∇ω(t, x), first we have to show that (4.1) is valid for the gradient ∇ω(t, x)
with |β| = 1 in this step. Indeed we show that

‖∇ωR(t, ·)‖p ≤ B0(p, ‖ω0‖)
( 1

Rt1−
1
p

+
‖ωR/8

0 ‖
t

3
2−

1
p

)
, (4.5)

where B0(p, ‖ω0‖) is a constant. According to (4.2), ∇ω(t, x) consists of the linear
term and the nonlinear integral term.

For the linear term, we apply the estimate (4.4) established in Step 1 with k = 1
to get

‖∇(eAt/2ω(t/2, ·))R‖p ≤ L6(1, p, ‖ω0‖)
( ‖ω0‖
Rt1−

1
p

+
‖ωR/2

0 ‖
t

3
2−

1
p

)
. (4.6)

For the nonlinear term in (4.2) for the gradient ∇ω(t, x), by the Jensen inequality
and the convexity of the Lp norm, we can apply Lemma 3.2 to assert that for k = 1,
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‖
∫ t

t/2

∇(eA(t−s)(u(s, ·) · ∇)ω(s, ·))R ds‖p

≤ L5(1, p, ‖ω0‖)
∫ t

t/2

( 1

R3− 2
p s2−

1
p

+
1

R(t− s)
1
2 s

3
2−

1
p

+
‖ωR/8

0 ‖
(t− s)

1
2 s2−

1
p

)
ds

≤ L7(p, ‖ω0‖)
( 1

Rt1−
1
p

+
‖ωR/8

0 ‖
t

3
2−

1
p

)
,

(4.7)

where

L7(p, ‖ω0‖) = 23− 1
pL5(1, p, ‖ω0‖).

Collecting (4.6) and (4.7), due to that ‖ωR/2
0 ‖ ≤ ‖ωR/8

0 ‖, we obtain (4.5) with the
constant B0 given by

B0(p, ‖ω0‖) = L6(1, p, ‖ω0‖)‖ω0‖+ L7(p, ‖ω0‖).

Therefore, (4.1) is valid for |β| = 1, i.e. for the gradient ∇ω(t, x).
Step 3. Now we prove that (4.1) is valid for spatial derivatives of ω(t, x) of

any order by induction. Assuming that (4.1) holds for all the spatial derivatives of
ω(t, x) up to the order k, and let β ∈ Z+ ×Z+ has |β| = k. We want to show that
(4.1) remains valid for ∇∂β

xω(t, x).
By (4.2) and variable changes in the integral part, we can write

∇(∂β
xω

R(t, ·)) = ∇[∂β
x (eAt/2ω(t/2, ·))R]−

∫ t

t/2

∇[eA(t−s)∂β
x (u(s, ·) · ∇)ω(s, ·))]R ds,

(4.8)
where t > 0. By (4.4) shown in Step 1, for the linear term in (4.8) we have readily

‖∇[∂β
x (eAt/2ω(t/2, ·))R]‖p ≤

L6(k, p, ‖ω0‖)(‖ω0‖+ 1)
tk/2

( 1

Rt1−
1
p

+
‖ωR/2

0 ‖
t

3
2−

1
p

)
, t > 0.

(4.9)
Below we focus on estimating the nonlinear integral term in (4.8).

Using the notation (3.12) and applying Lemma 3.1, the Lp norm of the integrand
function in (4.8) admits the estimate,

‖∇[eA(t−s)∂β
x (u(s, ·) · ∇)ω(s, ·))]R‖p

= ‖∇(eA(t−s)∂β
xv(s, ·))R‖p

≤ L3(k, p)

R3− 2
p

‖∂β
xv(s, ·)‖+

L4(k)
(t− s)1/2

‖∂β
xv

R/2(s, ·)‖p.

(4.10)
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By Leibniz formula in product differentiation and using (3.4) with p = 1 and (3.5)
with q = ∞, we have

‖∂β
xv(s, ·)‖ = ‖

∑
γ≤β

(
β

γ

)
∂γ

xu(s, ·) · ∂β−γ
x (∇ω(s, ·))‖

≤ 2|β|
∑
γ≤β

‖∂γ
xu(s, ·)‖∞‖∂β−γ

x ∇ω(s, ·)‖

≤ 2|β|
∑
γ≤β

Nu(0, |γ|,∞)‖ω0‖
s
|γ|
2 + 1

2

· Nω(0, |β − γ|, 1)‖ω0‖
s
|β−γ|

2 + 1
2

=
L8(|β|, ‖ω0‖)

s
|β|
2 +1

,

(4.11)

where
L8(|β|, ‖ω0‖) = 2|β|‖ω0‖2

∑
γ≤β

Nu(0, |γ|,∞)Nω(0, |β − γ|, 1).

Next we have

‖∂β
xv

R/2(s, ·)‖p

= ‖
∑
γ≤β

(
β

γ

)
∂γ

xu
R/2(s, ·) · ∂β−γ

x (∇ωR/2(s, ·))‖p

≤
∑
γ≤β

(
β

γ

)
‖∂γ

xu
R/2(s, ·)‖∞‖∂β−γ

x ∇ωR/2(s, ·)‖p

= ‖uR/2(s, ·)‖∞‖∂β
x∇ωR/2(s, ·)‖p + ‖∂β

xu
R/2(s, ·)‖∞‖∇ωR/2(s, ·)‖p

+
∑

0<|γ|<|β|

(
β

γ

)
‖∂γ

xu(s, ·)‖∞‖∂β−γ
x ∇ω(s, ·)‖p = P1(s) + P2(s) + P3(s),

(4.12)

where we use Pi(s), i = 1, 2, 3, to denote the three parts in the entire sum of (4.12).
By using (2.16), (3.4) and (3.5), we have

P1(s) = ‖uR/2(s, ·)‖∞‖∂β
x∇ωR/2(s, ·)‖p

≤ Nω(0, |β|+ 1, p)‖ω0‖

s
|β|
2 + 3

2−
1
p

×
(L1,∞

R
‖ω(s, ·)‖+ L2,∞‖ωR/4(s, ·)‖1/2‖ωR/4(s, ·)‖1/2

∞

) (4.13)

where by Lemma 2.1,

‖ωR/4(s, ·)‖1/2‖ωR/4(s, ·)‖1/2
∞

≤
(
L0(1, ‖ω0‖)

(2s1/2

R
‖ω0‖+ ‖ωR/8

0 ‖
)
L0(∞, ‖ω0‖)

×
(2s−1/2

R
‖ω0‖+ s−1‖ωR/8

0 ‖
))1/2

≤ L9(‖ω0‖)
( 1
R

+ s−1/2‖ωR/8
0 ‖

)
,

in which

L9(‖ω0‖) = (2L0(1, ‖ω0‖)‖ω0‖+ 1)1/2(2L0(∞, ‖ω0‖)‖ω0‖+ 1)1/2.
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From (4.13) it follows that

P1(s) ≤
B1(|β|, p, ‖ω0‖)

s
|β|
2 + 3

2−
1
p

( 1
R

+ s−1/2‖ωR/8
0 ‖

)
, (4.14)

where

B1(|β|, p, ‖ω0‖) = Nω(0, |β|+ 1, p)‖ω0‖ {L1,∞Nω(0, 0, 1)‖ω0‖+ L2,∞L9(‖ω0‖)} .

Next by (3.5) and (4.5) for ∇ω(t, x) proved in Step 2, we have

P2(s) = ‖∂β
xu

R/2(s, ·)‖∞‖∇ωR/2(s, ·)‖p

≤ Nu(0, |β|,∞)‖ω0‖
s

1
2 (|β|+1)

B0(p, ‖ω0‖)
( 1

Rs1−
1
p

+
‖ωR/16

0 ‖
s

3
2−

1
p

)
≤ B2(|β|, p, ‖ω0‖)

s
|β|
2 + 3

2−
1
p

( 1
R

+ s−1/2‖ωR/16
0 ‖

)
,

(4.15)

where the constant B2(|β|, p, ‖ω0‖) is given by

B2(|β|, p, ‖ω0‖) = Nu(0, |β|,∞)‖ω0‖B0(p, ‖ω0‖).

Moreover, by the assumption of induction in this step that (4.1) holds for all the
spatial derivatives of ω(t, x) up to the order k, and here |β| = k, we have

P3(s) =
∑

0<|γ|<|β|

(
β

γ

)
‖∂γ

xu(s, ·)‖∞‖∂β−γ
x ∇β(s, ·)‖p

≤
∑

0<|γ|<|β|

(
β

γ

)
Nu(0, |γ|,∞)‖ω0‖

s
1
2 (|γ|+1)

B(|β − γ|, p, ‖ω0‖)
s

1
2 (|β−γ|+1−1)

×
( 1
R

+
1

Rs1−
1
p

+
‖ωR/16

0 ‖
s

3
2−

1
p

)
≤ B3(|β|, p, ‖ω0‖)

s
1
2 (|β|+1)

( 1
R

+
1

Rs1−
1
p

+
‖ωR/16

0 ‖
s

3
2−

1
p

)
,

(4.16)

where the constant B3(|β|, p, ‖ω0‖) is given by

B3(|β|, p, ‖ω0‖) =
∑

0<|γ|<|β|

(
β

γ

)
Nu(0, |γ|,∞)‖ω0‖B(|β − γ|, p, ‖ω0‖).

Now substituting (4.14). (4.15) and (4.16) into (4.12), we get

‖∂β
xv

R/2(s, ·)‖p ≤ P1(s) + P2(s) + P3(s)

≤ B1 +B2 +B3

s
|β|
2 + 3

2−
1
p

(
1
R

+
‖ωR/16

0 ‖
s

1
2

)
+

B3

Rs
1
2 (|β|+1)

,
(4.17)
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Finally we substitute (4.11) and (4.17) into (4.10) and then we can estimate the
nonlinear integral term in (4.8) as follows, noting that |β| = k ≥ 0 and R > 1,

‖
∫ t

t/2

∇[eA(t−s)∂β
x (u(s, ·) · ∇)ω(s, ·))]R ds‖p

≤
∫ t

t/2

‖∇[eA(t−s)∂β
x (u(s, ·) · ∇)ω(s, ·))]R‖p ds

≤
∫ t

t/2

(
L3(|β|, p)
R3− 2

p

‖∂β
xv(s, ·)‖+

L4(|β|)
(t− s)1/2

‖∂β
xv

R/2(s, ·)‖p

)
ds

≤
∫ t

t/2

L3(|β|, p)
R3− 2

p

· L8(|β|, ‖ω‖0)
s
|β|
2 +1

ds

+
∫ t

t/2

L4(|β|)
(t− s)1/2

[B1 +B2 +B3

s
|β|
2 + 3

2−
1
p

( 1
R

+
‖ωR/16

0 ‖
s

1
2

)
+

B3

Rs
1
2 (|β|+1)

]
ds

≤ L3(|β|, p)
L8(|β|, ‖ω‖0)
R(t/2)

|β|
2

+ L4(|β|)
2B3(t/2)1/2

R(t/2)
1
2 (|β|+1)

+ L4(|β|)
2(B1 +B2 +B3)(t/2)1/2

(t/2)
|β|
2 + 3

2−
1
p

( 1
R

+
‖ωR/16

0 ‖
(t/2)

1
2

)
≤ B4(|β|+ 1, p, ‖ω0‖)

t
1
2 [(|β|+1)−1]

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
,

(4.18)

where

B4(|β|+ 1, p, ‖ω0‖) = max
{
2
|β|
2 L3(|β|, p)L8(|β|, ‖ω‖0) + 2

|β|
2 +1L4(|β|)B3,

2
|β|
2 +2− 1

pL4(|β|)(B1 +B2 +B3)
}
.

We assemble (4.8), (4.9) (noting that |β| = k and ‖ωR/2
0 ‖ ≤ ‖ωR/16

0 ‖) and (4.18) to
obtain

‖∇∂β
xω

R(t, x)‖p ≤
B(|β|+ 1, p, ‖ω0‖)

t
|β|
2

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
, (4.19)

where

B(|β|+ 1, p, ‖ω0‖) = max{L6(|β|, p, ‖ω0‖)(‖ω0‖+ 1), B4(|β|+ 1, p, ‖ω0‖)}.

The inequality (4.19) shows that (4.1) is valid for |β| = k + 1. Thus by induction
we have proved that (4.1) is valid for all order β ∈ Z+ × Z+. �

Based on Theorem 4.1, we now prove the following result on the exterior decay
estimates of all the temporal-spatial derivatives of the vorticity.

Theorem 4.2. For any given R > 1, α ∈ Z+ and β ∈ Z+ × Z+, the temporal-
spatial derivative of the vorticity solution ω(t, x) of (1.2)–(1.3) with initial data
ω0 ∈ L1(R2) has the following decay property,

‖∂α
t ∂

β
xω

R(t, ·)‖p ≤
K(α, |β|, p, ‖ω0‖)

tα+ 1
2 (|β|−1)

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
, (4.20)

where K(α, |β|, p, ‖ω0‖) is a positive constant depending on α, |β|, p, and ‖ω0‖.
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Proof. We shall prove (4.20) by induction with respect to the order α of temporal
derivatives of ∂β

xω(t, x). In Theorem 4.1, we have shown that (4.20) is valid for
α = 0 and any β ∈ Z+ × Z+. Now assuming that (4.20) is valid for an α ≥ 0 and
any β ∈ Z+ × Z+, we prove that (4.20) holds for α+ 1 and any β.

By the C∞ regularity of the vorticity and velocity in (1.2)–(1.3), one has

∂α+1
t ∂β

xω = ∂α
t ∂

β
x∆ω − ∂α

t ∂
β
x ((u · ∇)ω) (4.21)

and, for any given R > 1,

‖∂α+1
t ∂β

xω
R(t, ·)‖p ≤ ‖∂α

t ∂
β
x∆ωR(t, ·)‖p + ‖∂α

t ∂
β
x ((uR · ∇)ωR(t, ·))‖p. (4.22)

By the assumption of induction, for the first term on the right-hand side of (4.22)
we have

‖∂α
t ∂

β
x∆ωR(t, ·)‖p ≤

K(α, |β|+ 2, p, ‖ω0‖)
tα+ 1

2 (|β|+1)

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
. (4.23)

For the second term on the righr-hand side of (4.22), from (3.5) and the assumption
of induction we get

‖∂α
t ∂

β
x ((uR(t, ·) · ∇)ωR(t, ·))‖p

≤
∑
η≤α

∑
γ≤β

(
α

η

)(
β

γ

)
‖∂η

t ∂
γ
xu

R(t, ·)‖∞‖∂α−η
t ∂β−γ

x ∇ωR(t, ·)‖p

≤
∑
η≤α

∑
γ≤β

(
α

η

)(
β

γ

)
Nu(η, |γ|,∞)‖ω0‖

tη+
|γ|
2 + 1

2

· K(α− η, |β − γ|+ 1, p, ‖ω0‖)
tα−η+ 1

2 |β−γ|

×
( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
≤ L10(α, |β|, p, ‖ω0‖)

tα+ 1
2 (|β|+1)

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
,

(4.24)

where

L10(α, |β|, p, ‖ω0‖)

=
∑
η≤α

∑
γ≤β

(
α

η

)(
β

γ

)
Nu(η, |γ|,∞)‖ω0‖K(α− η, |β − γ|+ 1, p, ‖ω0‖).

Substituting (4.23) and (4.24) into (4.22), we get the following estimate,

‖∂α+1
t ∂β

xω
R(t, ·)‖p ≤

K(α+ 1, |β|, p, ‖ω0‖)
tα+1+ 1

2 (|β|−1)

( 1
R

+
1

Rt1−
1
p

+
‖ωR/16

0 ‖
t

3
2−

1
p

)
, (4.25)

with

K(α+ 1, |β|, p, ‖ω0‖) = K(α, |β|+ 2, p, ‖ω0‖) + L10(α, |β|, p, ‖ω0‖). (4.26)

It follows from (4.25) and (4.26) that the estimate (4.20) is valid for α+ 1 and any
β ∈ Z+ × Z+. Thus by induction this theorem is proved. �
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5. Attraction of Oseen Vortex and Velocity Solutions

As an application of the obtained derivative estimates of the 2D vorticity and
velocity solutions, we shall sketch the proof of the following theorem, which shows
that the temporal-spatial derivatives of the 2D vorticity and velocity solutions on
R2 behave as the derivatives of the same order of the corresponding Oseen solutions
asymptotically in the sense of Lp(p ≥ 1) and Lq(q ≥ 2) convergence, respectively.

Theorem 5.1. Let ω(t, x) be the vorticity solution of (1.2)–(1.3) with initial vor-
ticity ω0 ∈ L1(R2). Let ω∗(t, x) be the Oseen vortex (1.5) with κ = κ(ω0) given in
(1.8). Then for any α ∈ Z+ and any β ∈ Z+ × Z+, it hold that

lim
t→∞

tα+
|β|
2 +1− 1

p ‖∂α
t ∂

β
xω(t, ·)− ∂α

t ∂
β
xω

∗(t, ·)‖p = 0, p ∈ [1,∞], (5.1)

and
lim

t→∞
tα+

|β|
2 + 1

2−
1
q ‖∂α

t ∂
β
xu(t, ·)− ∂α

t ∂
β
xu

∗(t, ·)‖q = 0, q ∈ (2,∞], (5.2)

where u(t, x) and u∗(t, x) are the velocity solutions given by (1.3) corresponding to
ω(t, x) and the Oseen vortex ω∗(t, x), respectively.

The proof of theorem 5.1 uses the shown estimates and takes the approach of
the parabolic similarity [10, 16, 9, 38] and the compactness processing in Lp spaces.

Let (ω, u) be a vorticity-velocity solution of (1.2)–(1.3) with any initial vorticity
ω0 ∈ L1(R2). For any scalar constant λ > 0, we define

ωλ(t, x) = λ2ω(λ2t, λx),

uλ(t, x) = λu(λ2t, λx),

ω0,λ(x) = λ2ω0(λx) (= ωλ(0, x) ).

(5.3)

For any λ > 0, t > 0, x ∈ R2, it is easy to check that (ωλ, uλ) satisfies the vorticity
equation (1.2)–(1.3) and that

‖ω0,λ‖ = ‖ω0‖, κ(ω0,λ) = κ(ω0),

ω∗λ(t, x) = ω∗(t, x), u∗λ(t, x) = u∗(t, x).
(5.4)

Since

∂α
t ∂

β
xωλ(t, x)− ∂α

t ∂
β
xω

∗(t, x) = λ2+2α+|β|[∂α
t ∂

β
xω(λ2t, λx)− ∂α

t ∂
β
xω

∗(λ2t, λx)],

we find that

‖∂α
t ∂

β
xωλ(1, ·)− ∂α

t ∂
β
xω

∗(1, ·)‖p = λ2+2α+|β|− 2
p ‖∂α

t ∂
β
xωλ(λ2, ·)− ∂α

t ∂
β
xω

∗(λ2, ·)‖p.
(5.5)

Taking t = λ2, we have the equivalence that (5.1) holds for p ∈ [1,∞] if and only if

lim
λ→∞

‖∂α
t ∂

β
xωλ(1, ·)− ∂α

t ∂
β
xω

∗(1, ·)‖p = 0, for p ∈ [1,∞]. (5.6)

Without confusion ∂α
t ∂

β
xw(1, x) means (∂α

t ∂
β
xw(t, x))|t=1, for w = ωλ, ω

∗, uλ, or u∗.
Below we prove (5.6), which is equivalent to (5.1). The proof involves the follow-

ing lemma, which crucially relies on the exterior decay estimates of temporal-spatial
derivatives of the vorticity solutions shown in Theorem 4.2 and the Riesz criterion
[1, Theorem 2.21] of compactness of subsets in Lp(Rn).

Lemma 5.2. The set of functions {ωλ(1, x)}λ≥1 defined in (5.3) is a precompact
set in the Sobolev space W |β|,p(R2), for any p ∈ [1,∞] and any integer |β| ≥ 0.
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Proof. First let p ∈ [1,∞). Let ω0 ∈ L1(R2) be arbitrarily given. In order to prove
this lemma, it suffices to show that for any given integer |β| = k,{

∂γ
xωλ(1, x)

}
λ≥1

is precompact in Lp(R2), for all 0 ≤ γ ≤ β. (5.7)

By the Riesz criterion of compactness, we just check the following three conditions.
Let γ ≤ β.

(a) {∂γ
xωλ(1, x)}λ≥1 is a bounded subset in Lp(R2). In fact, (3.4) and (5.4) yield

‖∂γ
xωλ(1, ·)‖p ≤ Nω(0, |γ|, p)‖ω0,λ‖ = Nω(0, |γ|, p)‖ω0‖ ≤ max

γ≤β
{Nω(0, |γ|, p)}‖ω0‖,

for all λ ≥ 1, which confirms this assertion.
(b) The uniform convergence to zero at infinity for {∂γ

xωλ(1, x)}λ≥1 is attested
by applying Theorem 4.1 and (4.1) to ωλ(t, ·) with t = 1 and choosing R > 1 to be
sufficiently large such that

B(|γ|, p, ‖ω0‖)
( 2
R

+ ‖ωR/16
0 ‖

)
< ε. (5.8)

(c) The equicontinuity of {∂γ
xωλ(1, x)}λ≥1 in Lp(R2) is shown below. By the

formula (4.2) on the time interval [ 12 , 1] for the vorticity solutions ωλ(t, x) and
ωλ(t, x− y), where y is a parameter, we need to estimate

‖∂γ
xωλ(1, · − y)− ∂γ

xωλ(1, ·)‖p ≤ ‖∂γ
xe

A(1/2)(ωλ(1/2, · − y)− ωλ(1/2, ·))‖p

+
∫ 1

1/2

‖∂γ
xe

A(1−s)(vλ(s, · − y)− vλ(s, ·))‖p ds,

(5.9)

where, as in (3.12), vλ(t, x) = (uλ(t, x) · ∇)ωλ(t, x) and vλ(t, x− y) = (uλ(t, x− y) ·
∇)ωλ(t, x− y). We shall estimate the two terms in (5.9) respectively.

(i) First we estimate the linear term on the right-hand side of (5.9). Let

E(x) = E(x1.x2) =
1

2πν
exp(−|x|

2

2ν
), x ∈ R2.

According to (3.3) and by variable changes, we have

‖∂γ
xe

A(1/2)(ωλ(1/2, · − y)− ωλ(1/2, ·))‖p

=
∥∥ 1

2πν

∫
R2
∂γ

x exp
(
− |x− ξ|2

2ν
)
(ωλ(1/2, ξ − y)− ωλ(1/2, ξ)) dξ

∥∥
p

(by the variable change ζ = ξ − x)

=
∥∥ 1

2πν

∫
R2

exp
(
− |ζ|2

2ν
)
∂γ

ζ (ωλ(1/2, ζ + x− y)− ωλ(1/2, ζ + x)) dζ
∥∥

p

(by the variable changes η = ζ + x− y and η = ζ + x, respectively)

=
∥∥ 1

2πν

∫
R2

[
exp

(
− |x− y − η|2

2ν
)
− exp

(
− |x− η|2

2ν
)]
∂γ

ηωλ(1/2, η) dη
∥∥

p

= ‖(E(x− y)− E(x)) ∗ (∂γ
xωλ(1/2, x))‖p.

(5.10)

By the convolution property (1.10), (3.4), and (5.4), it follows that

‖(E(x− y)− E(x)) ∗ (∂γ
xωλ(1/2, x))‖p

≤ ‖E(x− y)− E(x)‖Nω(0, |γ|, p)2|γ|/2‖ω0‖.
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Let ε be arbitrarily given. By the continuity of integrable functions with respect to
the L1-norm [37, Chapter VIII, Proposition 1.4], here for the function E(x) there
exists a uniform δ1(ε) > 0 independent of λ ≥ 1, such that if |y| < δ1, then

‖∂γ
xe

A(1/2)(ωλ(1/2, · − y)− ωλ(1/2, ·))‖p

≤ ‖E(x− y)− E(x)‖Nω(0, |γ|, p)2|γ|/2‖ω0‖ <
ε

2
.

(5.11)

(ii) Now we estimate the nonlinear integral term in (5.9). Let

F (x, s) =
1

4πν(1− s)
exp

(
− |x|2

4ν(1− s)

)
, 0 < s < 1.

By variable changes similar to what we did in deriving (5.10), we have∫ 1

1/2

‖∂γ
xe

A(1−s)(vλ(s, · − y)− vλ(s, ·))‖p ds

≤
∫ 1

1−d

(‖F (· − y, s)‖+ ‖F (·, s)‖) ‖∂γ
xvλ(s, ·)‖p ds

+
∫ 1−d

1/2

‖F (· − y, s)− F (·, s)‖ ‖∂γ
xvλ(s, ·)‖p ds

(5.12)

where 0 < d < 1/2. By (3.4), (3.5), (5.4), and since s ≥ 1/2 in (5.12), we get

‖∂γ
xvλ(s, x)‖p

≤
∑
µ≤γ

(
γ

µ

)
‖(∂µ

xuλ(s, x))∂γ−µ
x (∇ωλ(s, x))‖p

≤
∑
µ≤γ

(
γ

µ

)
Nu(0, |µ|,∞)s−(

|µ|
2 + 1

2 )‖ω0,λ‖Nω(0, |γ − µ|+ 1, p)s−
|γ−µ|+1

2 ‖ω0,λ‖

≤
∑
µ≤γ

(
γ

µ

)
2
|γ|
2 +1Nu(0, |µ|,∞)Nω(0, |γ − µ|+ 1, p)‖ω0‖2

= D(|γ|, p, ‖ω0‖),

where D(|γ|, p, ‖ω0‖) is a uniform constant independent of λ ≥ 1. For the ar-
bitrarily given ε > 0 mentioned in (i), there exists a d(ε) ∈ (0, 1/2) such that
d(ε)D(|γ|, p, ‖ω0‖) < ε/8, which yields∫ 1

1−d

(‖F (· − y, s)‖+ ‖F (·, s)‖)‖∂γ
xvλ(s, ·)‖p ds ≤ 2d(ε)D(|γ|, p, ‖ω0‖) <

ε

4
, (5.13)

due to ‖F (· − y, s)‖ = ‖F (·, s)‖ = 1. Moreover, we have

‖F (x− y, s)− F (x, s)‖

=
∫

R2

1
4πν(1− s)

∣∣∣ exp
(
− |x− y|2

4ν(1− s)

)
− exp

(
− |x− y|2

4ν(1− s)

)∣∣∣dx
=
∫

R2

1
π

∣∣exp(−|x̃− ỹ|2)− exp(−|x̃|2)
∣∣ dx̃,

where
x̃ =

x√
4ν(1− s)

and ỹ =
y√

4ν(1− s)
.
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By the continuity of the integrable function exp(−|x̃|2) with respect to the L1-
norm, for the arbitrarily given ε > 0 there exists a uniform δ2(ε) > 0 independent
of λ ≥ 1, such that if

|y|√
4ν(1− s)

= |ỹ| < δ2(ε), for any s ∈ [1/2, 1− d(ε)], (5.14)

then
‖F (x− y, s)− F (x, s)‖ < ε

2D(|γ|, p, ‖ω0‖)
,

so that ∫ 1−d

1/2

‖F (· − y, s)− F (·, s)‖ ‖∂γ
xvλ(s, ·)‖p ds <

ε

4
. (5.15)

Note that (5.14) holds if |y| <
√

4νd(ε)δ2(ε). ¿From (5.12), (5.13), and (5.15), we
have shown that if |y| <

√
4νd(ε)δ2(ε), then∫ 1

1/2

‖∂γ
xe

A(1−s)(vλ(s, · − y)− vλ(s, ·))‖p <
ε

4
+
ε

4
=
ε

2
. (5.16)

In turn by (5.9), (5.11) and (5.16), there exists a uniform constant

δ = δ(ε) = min{δ1(ε),
√

4νd(ε)δ2(ε)},

which is independent of λ ≥ 1, such that if |y| < δ, then

‖∂γ
xωλ(1, · − y)− ∂γ

xωλ(1, ·)‖p <
ε

2
+
ε

2
= ε. (5.17)

Therefore, the equicontinuity of {∂γ
xωλ(1, x)}λ≥1 in Lp(R2) is proved.

By the Riesz criterion, we have proved the statement (5.7) and consequently
{ωλ(1, x)}λ≥1 is a precompact set in the space W |β|,p(R2) for all β ∈ Z+×Z+ and
for p ∈ [1,∞). For p = ∞, by using Ascoli-Arzelà Theorem, we can also prove that
{ωλ(1, x)}λ≥1 is a precompact set in the space W |β|,∞(R2) for all β ∈ Z+×Z+. �

Proof of Theorem 5.1. By the result shown in Lemma 5.2, for p ∈ [1,∞], and for
any β ∈ Z+ × Z+, {ωλ(1, x)}λ≥1 is precompact in W |β|,p(R2). Thus there exist a
sequence {ωλ`

(1, x)}∞`=1 of {ωλ(1, x)}λ≥1, where λ` < λ`+1 → ∞ as ` → ∞, and a
function h(x) ∈W |β|,p(R2) such that

lim
`→∞

ωλ`
(1, ·) = h(·) in W |β|,p(R2). (5.18)

It has been shown (as mentioned in Section 1) that

lim
t→∞

t1−
1
p ‖ω(t, ·)− ω∗(t, ·)‖p = 0,

which implies
lim

`→∞
‖ωλ`

(1, ·)− ω∗(1, ·)‖p = 0 (5.19)

due to the equivalence of (5.1) and (5.6) here for α = 0, |β| = 0. By the uniqueness
of limit in Lp(R2), (5.18) and (5.19) imply that

h(x) = ω∗(1, x) in Lp(R2) and also in W |β|,p(R2). (5.20)

From (5.18) and (5.20) it follows that

lim
`→∞

‖∂β
xωλ`

(1, ·)− ∂β
xω

∗(1, ·)‖p = 0. (5.21)
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Since any sequence itself of {ωλ(1, ·)}λ≥1 contains a subsequence convergent to the
same limit ω∗(1, ·) in W |β|,p(R2), we have proved that (5.6) holds for α = 0, namely,

lim
λ→∞

‖∂β
xωλ(1, ·)− ∂β

xω
∗(1, ·)‖p = 0 for any β ∈ Z+ × Z+, p ∈ [1,∞]. (5.22)

Note that (5.22) is stronger than the sequence limit (5.21).
Now we take the bootstrap approach to prove (5.6) and equivalently (5.1) for

any α ≥ 1, based on the result (5.22). Suppose that (5.6) is valid for an α ≥ 0 with
any β ∈ Z+ × Z+ and p ∈ [1,∞]. From (1.2) we have

∂α+1
t ∂β

xωλ = ∂α
t ∂

β
x∆ωλ − ∂α

t ∂
β
x (uλ · ∇)ωλ,

∂α+1
t ∂β

xω
∗ = ∂α

t ∂
β
x∆ω∗ − ∂α

t ∂
β
x (u∗ · ∇)ω∗.

Consequently,

‖∂α+1
t ∂β

xωλ(1, ·)− ∂α+1
t ∂β

xω
∗(1, ·)‖p

≤ ‖∂α
t ∂

β
x (∆ωλ(1, ·)−∆ω∗(1, ·))‖p + ‖∂α

t ∂
β
x (vλ(1, ·)− v∗(1, ·))‖p

(5.23)

where vλ(t, x) = (uλ(t, x) · ∇)ωλ(t, x) and v∗(t, x) = (u∗(t, x) · ∇)ω∗(t, x). By the
assumption of induction, we readily have

lim
λ→∞

‖∂α
t ∂

β
x (∆ωλ(1, ·)−∆ω∗(1, ·))‖p = 0. (5.24)

Moreover,

‖∂α
t ∂

β
x (vλ(1, ·)− v∗(1, ·))‖p

≤
∑
θ≤α

∑
γ≤β

(
α

θ

)(
β

γ

)
(‖∂θ

t ∂
γ
x(uλ(1, ·)− u∗(1, ·))‖∞‖∂α−θ

t ∂β−γ
x ∇ωλ(1, ·)‖p

+ ‖∂θ
t ∂

γ
xu

∗(1, ·)‖∞‖∂α−θ
t ∂β−γ

x ∇(ωλ(1, ·)− ω∗(1, ·))‖p).

(5.25)

Since ‖∂θ
t ∂

γ
xu

∗(1, ·)‖∞ is a constant and by the assumption of induction we obtain

lim
λ→∞

‖∂α−θ
t ∂β−γ

x ∇(∆ωλ(1, ·)−∆ω∗(1, ·))‖p = 0 .

It follows that

lim
λ→∞

∑
θ≤α

∑
γ≤β

(
α

θ

)(
β

γ

)
‖∂θ

t ∂
γ
xu

∗(1, ·)‖∞‖∂α−θ
t ∂β−γ

x ∇(ωλ(1, ·)− ω∗(1, ·))‖p = 0 .

(5.26)
For another part in (5.25), note that (3.4) and (5.4) yield

‖∂α−θ
t ∂β−γ

x ∇ωλ(1, ·)‖p ≤ Nω(α− θ, |β − γ|+ 1, p)‖ω0‖. (5.27)

The rest issue is the convergence of ‖∂θ
t ∂

γ
x(uλ(1, ·) − u∗(1, ·))‖∞. By the Sobolev

imbedding theorem, there is a uniform constant C0 > 0 such that ‖ϕ‖∞ ≤ C0‖ϕ‖H2 ,
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where H2 stands for the Sobolev space H2(R2). By the Biot-Savart law, we get

‖∂θ
t ∂

γ
x(uλ(1, ·)− u∗(1, ·))‖∞

≤ C0‖∂θ
t ∂

γ
x(uλ(1, ·)− u∗(1, ·))‖H2

≤ C0

∑
|ρ|≤2

‖∂θ
t ∂

γ+ρ
x (uλ(1, ·)− u∗(1, ·))‖2

=
C0

2π

∑
|ρ|≤2

∥∥∫
R2
∂θ

t ∂
γ+ρ
x

(x− y)⊥

|x− y|2
(ωλ(1, y)− ω∗(1, y)) dy

∥∥
2

(by a variable changes as in (5.10))

=
C0

2π

∑
|ρ|≤2

∥∥∫
R2

(x− y)⊥

|x− y|2
∂θ

t ∂
γ+ρ
y (ωλ(1, y)− ω∗(1, y)) dy

∥∥
2

≤ C0

2π

∑
|ρ|≤2

∥∥∫
R2

1
|x− y|

∣∣∂θ
t ∂

γ+ρ
y (ωλ(1, y)− ω∗(1, y))

∣∣ dy∥∥
2

≤ C0

2π

∑
|ρ|≤2

S2,1,2‖∂θ
t ∂

γ+ρ
x (ωλ(1, x)− ω∗(1, x))‖ −→ 0, as λ→∞,

(5.28)

by the assumption of induction and the Hardy-Littlewood-Sobolev inequality (1.11)
here with n = 2, a = 2, p = 1, q = 2. Thus we can combine (5.27) and (5.28) to get

lim
λ→∞

∑
θ≤α

∑
γ≤β

(
α

θ

)(
β

γ

)
‖∂θ

t ∂
γ
x(uλ(1, ·)− u∗(1, ·))‖∞‖∂α−θ

t ∂β−γ
x ∇ωλ(1, ·)‖p = 0.

(5.29)
Finally, substituting (5.26) and (5.29) into (5.25), we obtain

lim
λ→∞

‖∂α
t ∂

β
x (vλ(1, ·)− v∗(1, ·))‖p = 0 . (5.30)

Then (5.23), (5.24) and (5.30) altogether imply that (5.6) holds for α+ 1; i.e.,

lim
λ→∞

‖∂α+1
t ∂β

x (ωλ(1, ·)− ω∗(1, ·))‖p = 0, β ∈ Z+ × Z+, p ∈ [1,∞],

and equivalently (5.1) holds for α + 1 and any β ∈ Z+ × Z+, p ∈ [1,∞]. This
bootstrap induction shows that the convergence statement (5.1) is valid.

By the Biot-Savart law and utilizing the corresponding equivalence of (5.2) and
the following statement,

lim
λ→∞

‖∂α
t ∂

β
x (uλ(1, ·)− u∗(1, ·))‖q = 0, α ≥ 0, β ∈ Z+ × Z+, q ∈ (2,∞],

we can also prove that (5.2) is valid. The detail is omitted. �

Remark. For the three-dimensional Navier-Stokes equation [34, Chapter 6],
the global existence and regularity of strong solutions is an extremely challenging
open problem, that is defined by the Clay Mathematics Institute as one of the
century problems in mathematics for the new millennium. Nevertheless, the study
of 3D vorticity plays an important role. In this regard, one of the major differences
between 2D and 3D vorticity behavior arises from the fact that the 3D vorticity is
governed by a different evolutionary equation:

∂ω

∂t
= ν∆ω − (u · ∇)ω + (ω · ∇)u, t > 0, x ∈ R3, (5.31)
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where the additional nonlinear term (ω · ∇)u known as the vorticity stretching
amplifies the vorticity strength by the interaction with the gradient of velocity
field. Therefore, the dynamics, regularity, and asymptotics of the three-dimensional
vorticity evolution are much more complicated than the two-dimensional case.

The extension of Oseen vortices in the three-dimensional case is Burgers vortices.
A Burgers vortex is an exact solution of the 3D Navier-Stokes equation that is a
superposition of a background irrotational strain field/flow and a 2D vortex, just
like the Oseen vortex, in the plane perpendicular to the strain axis. In recent years
some results from the ongoing researches are emerging in regard to the local stability
and asymptotic structures of the 3D Burgers vortices. In [17] it has been shown that
the whole family of axisymmetric and non-axisymmetric Burgers vortex solutions
parametrized by the total circulation numbers of the 3D Navier-Stokes equation is
locally stable for small Reynolds numbers. Based on several numerical simulation
results of turbulent fluid flows shown in [35] and others, very recently in [26] the
existence of Burgers vortices as the swirling, tube-like structures in 3D turbulence
is rigorously proved for high Reynolds numbers with asymmetric parameters less
than one half. However, the stability of the 3D Burgers vortices for high Reynolds
numbers is still not known even though some numerical studies indicate some kind
of tendency of persistence possibly toward stability.
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