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STABILITY AND APPROXIMATIONS OF EIGENVALUES AND
EIGENFUNCTIONS FOR THE NEUMANN LAPLACIAN, PART I

RODRIGO BAÑUELOS, MICHAEL M. H. PANG

Abstract. We investigate stability and approximation properties of the low-

est nonzero eigenvalue and corresponding eigenfunction of the Neumann Lapla-

cian on domains satisfying a heat kernel bound condition. The results and
proofs in this paper will be used and extended in a sequel paper to obtain

stability results for domains in R2 with a snowflake type boundary.

1. Introduction

The goal of this paper and its sequel [13] is to prove stability results for the
smallest positive Neumann eigenvalue and its associated eigenfunctions of domains
in R2 with a snowflake type fractal boundary. In particular, our goal is that our
results should apply to the Koch snowflake domain and its usual sequence of ap-
proximating polygons from inside.

Suppose the Neumann Laplacian −∆Ω ≥ 0 defined on a domain Ω in Rd has
discrete spectrum. The numerical computation of its eigenvalues and eigenfunctions
often assumes that if Ω is replaced by an approximating domain with polygonal
or piecewise smooth boundary, then the eigenvalues and eigenfunctions will not
change too much. This continuous dependence of the Neumann eigenvalues and
eigenfunctions on the domain, however, is not obvious. Moreover, it is known
that even if Ω has smooth boundary, the spectrum of its Neumann Laplacian does
not necessarily remain discrete under “small” perturbations (see [8, 9]). Therefore
the approximating domain, apart from being “close” to Ω, must also satisfy some
“regularity conditions”. Burenkov and Davies [3] studied this problem when Ω
and its approximating domain both have a boundary satisfying a uniform Holder
condition, and they obtained explicit estimates for the change in the Neumann
eigenvalues. More recently, Renka [14], Benjai [1], and Neuberger, Sieben and Swift
[10] have numerically computed the Neumann eigenvalues and eigenfunctions of the
Koch snowflake domain. However, the boundary of the Koch snowflake domain does
not satisfy a uniform Holder condition. This motivates us to prove stability results
for the Neumann eigenvalues and eigenfunctions starting from a different set of
assumptions. In this paper we mainly consider the case when the lowest positive
Neumann eigenvalue has multiplicity 1. In [13] we shall extend these results, and
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their ideas of proof, to the case when the lowest positive Neumann eigenvalue has
multiplicity at least 2, and show that these results apply to the Koch snowflake
domain and its usual sequence of approximating polygons from inside.

Let Ω be a bounded domain in Rd and, for all sufficiently small δ > 0, say
0 < δ < δ0, let Ωδ be a subdomain of Ω satisfying

∂Ωδ ⊆ {x ∈ Ω : dist(x, ∂Ω) ≤ δ}. (1.1)

Let PΩ
t (x, y) and PΩδ

t (x, y) be the heat kernels corresponding to the semigroups
generated by −∆Ω and −∆Ωδ

, respectively.

Hypothesis 1.1. Our main assumption on Ω and Ωδ is that there exist c0 ≥ 1
and N > 0 such that, for all 0 < t ≤ 1 and all x, y ∈ Ω,

PΩ
t (x, y) ≤ c0t

−N/2 (1.2)

and that, for all 0 < δ < δ0, all 0 < t ≤ 1 and all x, y ∈ Ωδ,

PΩδ
t (x, y) ≤ c0t

−N/2. (1.3)

Remark 1.2. (i) Let Ω is the Koch snowflake domain in R2 and Ωδ be its usual
approximating polygons from inside. Then (1.2) is true by [6, Theorem 5.2]. Since
each of the approximating polygons Ωδ is a Lipschitz domain, an upper heat kernel
bound of the form (1.3) holds for each Ωδ with N = 2 (see ([5, Section 2.4]). In [13]
we shall show that there exists c0 ≥ 1 such that (1.3) holds for all the approximating
polygons with N = 2.

(ii) We note that since PΩ
t (x, y) is continuous on (0,∞)× Ω× Ω, by the parabolic

Harnack inequality (see, for example, Lemma 2.1 below), if Ω has the extension
property, then (1.2) holds with N = d and some c0 > 0 (see [5, p.77]).

Under Hypothesis 1.1, −∆Ω and −∆Ωδ
have compact resolvent (see [5, p. 61]).

We let 0 < µ2 ≤ µ3 ≤ . . . be the eigenvalues of −∆Ω, counting multiplicity, and
let ϕ2, ϕ3, ϕ4, . . . be the eigenfunction associated to µ2, µ3, µ4, . . . respectively. We
assume that |Ω|−1/2, ϕ2, ϕ3, . . . form a complete orthonormal system on L2(Ω). We
let 0 < µδ

2 ≤ µδ
3 ≤ . . . and ϕδ

2, ϕ
δ
3, ϕ

δ
4, . . . be the corresponding quantities for the

Neumann Laplacian −∆Ωδ
on Ωδ.

Theorem 1.3. Suppose Ω and Ωδ satisfy Hypothesis 1.1. Then

lim
δ↓0

µδ
2 = µ2. (1.4)

Theorem 1.4. Suppose Ω and Ωδ satisfy Hypothesis 1.1. If µ2 has multiplicity 1,
then there exists δ1 > 0 such that

µδ
3 ≥ µ2 + δ1 (1.5)

for all 0 < δ < δ1. Hence, from (1.4) and (1.5), µδ
2 has multiplicity 1 for all

0 < δ < δ1.

Theorem 1.5. Suppose Ω and Ωδ satisfy Hypothesis 1.1 and assumed that µ2 has
multiplicity 1. If Ω′ is a subdomain of Ω such that Ω′ ⊆ Ω, then

lim
δ↓0

sup
z∈Ω′

|ϕδ
2(z)− ϕ2(z)| = 0. (1.6)
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Remark 1.6. (i) Using Theorem 1.4 in the following example, one can show that
multiplicity 2 of µ2 is not stable under small perturbations. Let Ω(t), 0 ≤ t ≤ 1, be
a continuous family of convex deformations from a long thin rectangle to a square.
That is,

(a) Ω(t) is a convex domain for 0 ≤ t ≤ 1,
(b) Ω(0) is a long thin rectangle and Ω(1) is a square.

We can assume that Ω(t) is symmetric with respect to the x and y axes for all
t ∈ [0, 1]. For each t ∈ [0, 1], let µ(t) be the smallest non-zero Neumann eigenvalue
of Ω(t). Then µ(0) and µ(1) have multiplicity 1 and 2, respectively. So we can let

t0 = inf{t ∈ [0, 1] : µ(t)has multiplicity 2}.
Let {tn}∞n=1 be a decreasing sequence of numbers in [0, 1] such that tn ↓ t0 as n →∞
and that µ(tn) has multiplicity 2 for all n = 1, 2, 3, . . . . Since dist(∂Ω(t0), ∂Ω(tn)) →
0 as n →∞ and since the domains Ω(t) are convex and symmetric with respect to
the x and y axes, for each n = 1, 2, 3, . . . we can let D(tn) be an dilation of Ω(tn)
such that

(c) D(tn) ⊆ Ω(t0),
(d) dist(∂Ω(t0), ∂D(tn)) → 0 as n →∞.

Let λn be the smallest nonzero Neumann eigenvalue of D(tn). Then, since D(tn)
is a dilation of Ω(tn), the multiplicity of λn is the same as that of µ(tn); i.e., λn

has multiplicity 2 for all n = 1, 2, 3, . . . . Then, by Theorem 1.4, µ(t0) must have
multiplicity 2. In particular, t0 > 0. Let {sn}∞n=1 be an increasing sequence on
[0, 1] such that sn ↑ t0 as n → ∞. Then, just as for {tn}∞n=1 before, we can let
D(sn) be a dilation of Ω(sn) satisfying

(e) D(sn) ⊆ Ω(t0),
(f) dist(∂Ω(t0), ∂D(sn)) → 0 as n →∞.

Let ζn be the smallest nonzero Neumann eigenvalue of D(sn). Then ζn has the
same multiplicity as that of µ(sn) since D(sn) is a dilation of Ω(sn). But, by the
definition of t0, ζn has multiplicity 1 for all n = 1, 2, 3, . . . .
(ii) Theorems 1.3, 1.4, and 1.5 will be extended to the case when µ2 has multiplicity
at least 2 in [13]. With an additional inductive argument, it is possible to extend
these results to all higher Neumann eigenvalues and eigenfunctions and to more
general elliptic operators, including some non-uniformly elliptic operators. We plan
to return to these issues in a later paper.
(iii) We mention that spectral stability results for the Dirichlet Laplacian are much
more extensive than those for the Neumann Laplacian. Sharp rates for the conver-
gence of Dirichlet eigenvalues and eigenfunctions can be found in [12] and [7]. We
refer the readers to the excellent article [4] for a recent survey of spectral stabil-
ity results for the Dirichlet and Neumann Laplacians and for more general elliptic
operators.

2. Proofs of Theorems 1.3, 1.4 and 1.5

Lemma 2.1 (see [11, Lemma 4.10]). Let Σ be a domain in Rd, let u be a solution
of the parabolic equation

∂u

∂t
− ω−1

d∑
i,j=1

{ ∂

∂xi

(
aij

∂u

∂xj

)}
= 0
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in
∑
×(τ1, τ2), where ω and {aij} satisfy

0 < λ−1 ≤ {aij(x)} ≤ λ < ∞
0 < λ−1 ≤ ω(x) ≤ λ < ∞

(x ∈ Σ)

for some λ ≥ 1. Let Σ′ be a subdomain of Σ and suppose that

dist(Σ′, ∂Σ) > η and t1 − τ1 ≥ η2.

Then
|u(x, t)− u(y, s)| ≤ A[|x− y|+ (t− s)1/2}α

for all x, y ∈ Σ′ and t, s ∈ [t1, τ2], where α depends only on d and λ and

A =
(4
η

)α
θ

where θ is the oscillation of u in Σ× (τ1, τ2).

Lemma 2.2 ([2]). Let Ω and Ωδ, 0 < δ ≤ δ0, be as described in Section 1. Let TΩ
t

and TΩδ
t be the semigroups generated by the Neumann Laplacians −∆Ω and −∆Ωδ

on Ω and Ωδ, respectively. Then, for all f ∈ L∞(Ω) and compact subset K ⊆ Ω,
we have

lim
δ↓0

TΩδ
t (f1Ωδ

)(x) = TΩ
t f(x) (a.e. x ∈ K)

Proposition 2.3. For all t0 ∈ (0, 1] and all x0, y0 ∈ Ω, we have

lim
δ↓0

PΩδ
t0 (x0, y0) = PΩ

t0 (x0, y0).

Proof. Applying Lemma 2.1 with

Σ = Ω, τ1 =
1
4
t0, τ2 = 1,

u(x, t) = PΩ
t (x, y0), λ = 1, ω(x) ≡ 1,

Σ′ = B
(
x0,

1
4

dist(x0, ∂Ω)
)
, t1 =

1
2
t0,

η = min
{1

4
dist(x0, ∂Ω),

1
2
t
1/2
0

}
,

we obtain, for all t ∈ (t1, τ2) and x ∈ B(x0,
1
4 dist(x0, ∂Ω)),

|PΩ
t (x, y0)− PΩ

t (x0, y0)| ≤ A|x− x0|α (2.1)

where α ∈ (0, 1] depends only on d, and A > 0 depends only on d, dist(x0, ∂Ω), t0,
N and c0 in (1.2). Similarly, we deduce that

|PΩδ
t (x, y0)− PΩδ

t (x0, y0)| ≤ A|x− x0|α, (2.2)

where α and A in (2.2) have the same values as in (2.1) for all δ > 0 satisfying

0 < δ < min
{
δ0,

1
2

dist(x0, ∂Ω)
}
.

For all 0 < r < 1
4 dist(x0, ∂Ω), we have

|B(x0, r)|−1

∫
B(x0,r)

PΩδ
t0 (x, y0) dx = PΩδ

t0 (x0, y0) + β1(δ, t0, x0, y0, r) (2.3)

where, by (2.2), we have

|β1(t0, δ, x0, y0, r)| ≤ Arα. (2.4)
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Similarly, we have

|B(x0, r)|−1

∫
B(x0,r)

PΩ
t0 (x, y0) dx = PΩ

t0 (x0, y0) + β2(t0, x0, y0, r) (2.5)

where
|β2(t0, x0, y0, r)| ≤ Arα. (2.6)

Applying Lemma 2.2 to the left side of (2.3) and (2.5), we see that as δ ↓ 0 we have

PΩδ
t0 (x0, y0) + β1(δ, t0, x0, y0, r) → PΩ

t0 (x0, y0) + β2(t0, x0, y0, r) (2.7)

Let ε > 0 be given. Then we can first fix r ∈
(
0, 1

4 dist(x0, ∂Ω)
)

such that

0 < r ≤
( ε

3A

)1/α

. (2.8)

By (2.7), there exists δ2 > 0 such that, for all 0 < r < 1
4 dist(x0, ∂Ω) and 0 < δ < δ2,

we have
|PΩδ

t0 (x0, y0)− PΩ
t0 (x0, y0) + β1 − β2| <

ε

3
. (2.9)

Thus, by (2.4), (2.6), (2.8) and (2.9), we see that for all δ ∈ (0, δ2) we have

|PΩδ
t0 (x0, y0)− PΩ

t0 (x0, y0)| ≤ ε.

�

Notation. (i) Let f : Ω → R be a function on Ω. Then we write Rδf : Ωδ → R
for the restriction of f to Ωδ; i.e., Rδf = 1Ωδ

f .
(ii) Let f : Ωδ → R be a function on Ωδ. Then we write Eδf : Ω → R for the

extension of f to Ω defined by

Eδf(x) =

{
f(x) x ∈ Ωδ

0 x ∈ Ω\Ωδ.

Proposition 2.4. Let M ≥ 0 be a fixed number. For all sufficiently small δ > 0,
let fδ ∈ L∞(Ωδ) such that

‖fδ‖∞ ≤ M.

Then, for all 0 < t ≤ 1,

‖TΩ
t (Eδfδ)− Eδ(TΩδ

t fδ)‖L2(Ω) → 0

as δ ↓ 0.

Proof. Let t ∈ (0, 1] and ε ∈ (0, 1) be fixed. Choose δ3 > 0 sufficiently small so that

2c0t
−N

2 M |Ω\Ωδ3 | ≤
ε

2
(2.10)

and
2c0t

−N
2 M |Ω||Ω\Ωδ3 |1/2 ≤ ε

2
. (2.11)

Then, for all δ ∈ (0, δ3] and x ∈ Ωδ3 , we have

(TΩ
t Eδfδ − EδT

Ωδ
t fδ)(x)

=
∫

Ωδ

[PΩ
t (x, y)− PΩδ

t (x, y)]fδ(y)dy

=
( ∫

Ωδ\Ωδ3

+
∫

Ωδ3

)[
PΩ

t (x, y)− PΩδ
t (x, y)

]
fδ(y)dy.

(2.12)
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By (1.2), (1.3) and (2.10), we have∣∣ ∫
Ωδ\Ωδ3

[PΩ
t (x, y)− PΩδ

t (x, y)]fδ(y)dy
∣∣ ≤ 2c0t

−N
2 M |Ω\Ωδ3 | ≤

ε

2
. (2.13)

By (1.2), (1.3) and Proposition 2.3, there exists δ4 = δ4(ε, x) > 0 such that∣∣ ∫
Ωδ3

[PΩ
t (x, y)− PΩδ

t (x, y)]fδ(y)dy
∣∣ ≤ ε

2
(2.14)

for all δ ∈ (0, δ4). Therefore (2.12), (2.13) and (2.14) imply that

(TΩ
t Eδfδ − EδT

Ωδ
t fδ)(x) → 0 as δ ↓ 0 (2.15)

for all x ∈ Ωδ3 . Since, by (1.2) and (1.3),

‖TΩ
t Eδfδ − EδT

Ωδ
t fδ‖∞ ≤ 2c0t

−N/2M |Ω|,

there exists δ5 = δ5(ε) > 0 such that

‖Rδ3(T
Ω
t Eδfδ − EδT

Ωδ
t fδ)‖2

L2(Ωδ3 ) ≤
ε2

4
(2.16)

for all δ ∈ (0, δ5). Also, by (2.11), we have∫
Ω\Ωδ3

|(TΩ
t Eδfδ − EδT

Ωδ
t fδ)(x)|2dx ≤ (2c0t

−N
2 M |Ω|)2|Ω\Ωδ3 | ≤

ε2

4
(2.17)

for all δ ∈ (0, δ3). The proposition now follows from (2.16) and (2.17). �

Proof of Theorem 1.3. Let ε ∈ (0, 1) be given. For all sufficiently small δ > 0, let

β1(δ) = |Ωδ|−1

∫
Ωδ

ϕ2(x)dx.

Taking inner products and norms in L2(Ωδ), we get

e−µδ
2t ≥ ‖Rδ(ϕ2 − β1(δ))‖−2

2 〈TΩδ
t Rδ(ϕ2 − β1(δ)), Rδ(ϕ2 − β1(δ))〉

= ‖Rδ(ϕ2 − β1(δ))‖−2
2 {〈TΩδ

t Rδϕ2, Rδϕ2〉 − 2〈Rδϕ2, β1(δ)1Ωδ
〉+ β1(δ)2|Ωδ|}.

So for 0 < δ < δ6, we have

e−µδ
2t ≥ ‖Rδ(ϕ2 − β1(δ))‖−2

2 {〈TΩδ
t (Rδϕ2 − (Rδϕ2)1Ωδ6

)

+ TΩδ
t ((Rδϕ2)1Ωδ6

), (Rδϕ2 − (Rδϕ2)1Ωδ6
)

+ (Rδϕ2)1Ωδ6
〉 − 2〈Rδϕ2, β1(δ)1Ωδ

〉+ β1(δ)2|Ωδ|}

= ‖Rδ(ϕ2 − β1(δ))‖−2
2 {〈TΩδ

t (Rδϕ2 − (Rδϕ2)1Ωδ6
),

(Rδϕ2 − (Rδϕ2)1Ωδ6
)〉+ 2〈TΩδ

t (Rδϕ2 − (Rδϕ2)1Ωδ6
),

(Rδϕ2)1Ωδ6
〉+ 〈TΩδ

t (Rδϕ2)1Ωδ6
, (Rδϕ2)1Ωδ6

〉
− 2〈Rδϕ2, β1(δ)1Ωδ6

〉+ β1(δ)2|Ωδ|}.

(2.18)
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But
〈TΩδ

t ((Rδϕ2)1Ωδ6
), (Rδϕ2)1Ωδ6

〉

= 〈TΩδ
t ((Rδϕ2)1Ωδ6

)−RδT
Ω
t (ϕ21Ωδ6

), (Rδϕ2)1Ωδ6
〉

+ 〈RδT
Ω
t (ϕ21Ωδ6

), (Rδϕ2)1Ωδ6
〉

= 〈TΩδ
t ((Rδϕ2)1Ωδ6

)−RδT
Ω
t (ϕ21Ωδ6

), (Rδϕ2)1Ωδ6
〉

+ 〈RδT
Ω
t (ϕ21Ωδ6

)−RδT
Ω
t ϕ2 + RδT

Ω
t ϕ2, (Rδϕ2)1Ωδ6

−Rδϕ2 + Rδϕ2〉

= 〈TΩδ
t ((Rδϕ2)1Ωδ6

)−RδT
Ω
t (ϕ21Ωδ6

), (Rδϕ2)1Ωδ6
〉

+ 〈RδT
Ω
t (ϕ21Ω\Ωδ6

), Rδ(ϕ21Ω\Ωδ6
)〉 − 〈RδT

Ω
t (ϕ21Ω\Ωδ6

), Rδϕ2〉

− 〈RδT
Ω
t ϕ2, Rδ(ϕ21Ω\Ωδ

)〉+ 〈RδT
Ω
t ϕ2, Rδϕ2〉.

(2.19)

From (2.18) and (2.19) we obtain

e−µδ
2t ≥ ‖Rδ(ϕ2 − β1(δ))‖−2

2

{
〈TΩδ

t Rδ(ϕ21Ω\Ωδ6
), Rδ(ϕ21Ω\Ωδ6

)〉

+ 2〈TΩδ
t Rδ(ϕ21Ω\Ωδ6

), Rδ(ϕ21Ωδ6
)〉

− 2〈Rδϕ2, β1(δ)1Ωδ6
〉+ β1(δ)2|Ωδ|

+ 〈TΩδ
t ((Rδϕ2)1Ωδ6

)−RδT
Ω
t (ϕ21Ωδ6

), (Rδϕ2)1Ωδ6
〉

+ 〈RδT
Ω
t (ϕ21Ω\Ωδ6

), Rδ(ϕ21Ω\Ωδ6
)〉 − 〈RδT

Ω
t (ϕ21Ω\Ωδ6

), Rδϕ2〉

− e−µ2t〈Rδϕ2, Rδ(ϕ21Ω\Ωδ6
)〉+ e−µ2t〈Rδϕ2, Rδϕ2〉

}
= A{B1 + B2 −B3 + B4 + B5 + B6 −B7 −B8 + B9}.

(2.20)

Since ϕ2 is orthogonal to 1 in L2(Ω), we have

lim
δ↓0

β1(δ) = 0. (2.21)

Hence
lim
δ↓0

A = 1, lim
δ↓0

B3 = 0, lim
δ↓0

B4 = 0. (2.22)

Since
‖ϕ2‖∞ = eµ2t‖TΩ

t ϕ2‖∞ ≤ eµ2tc
1/2
0 t−

N
4 (0 < t ≤ 1),

we can choose δ6 > 0 sufficiently small so that

‖ϕ21Ω\Ωδ6
‖L2(Ω) ≤

ε

12
.

Then we have, for 0 < δ < δ6,

|B1| ≤
ε

12
, |B2| ≤

ε

6
, |B6| ≤

ε

12
, |B7| ≤

ε

12
, |B8| ≤

ε

12
, (2.23)

and

B9 = e−µ2t
{∫

Ω

ϕ2(x)2dx−
∫

Ω\Ωδ

ϕ2(x)2dx
}

= e−µ2t −B10 (2.24)

where

0 ≤ B10 = e−µ2t

∫
Ω\Ωδ

ϕ2(x)2dx ≤ ε2

144
<

ε

12
. (2.25)

By Proposition 2.4 we have
lim
δ↓0

B5 = 0. (2.26)
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Thus, by (2.22) and (2.26), there exists δ7 ∈ (0, δ6] such that, for all 0 < δ < δ7,

|B3| ≤
ε

12
, |B4| ≤

ε

12
, |B5| ≤

ε

12
, |A− 1| ≤ ε

12
. (2.27)

Then, by (2.20), (2.23), (2.24), (2.25) and (2.27), we have

eµδ
2t ≥ e−µ2t − ε (0 < δ < δ7). (2.28)

We next prove the reverse inequality of (2.28). For all 0 < δ < δ6 we have

e−µ2t ≥ 〈TΩ
t Eδϕ

δ
2, Eδϕ

δ
2〉

= 〈TΩ
t Eδ[(ϕδ

2 − ϕδ
21Ωδ6

) + ϕδ
21Ωδ6

], Eδ[(ϕδ
2 − ϕδ

21Ωδ6
) + ϕδ

21Ωδ6
]〉

= 〈TΩ
t Eδ[ϕδ

21Ω\Ωδ6
], Eδ[ϕδ

21Ω\Ωδ6
]〉+ 2〈TΩ

t Eδ[ϕδ
21Ω\Ωδ6

], Eδ[ϕδ
21Ωδ6

]〉

+ 〈TΩ
t Eδ[ϕδ

21Ωδ6
], Eδ[ϕδ

21Ωδ6
]〉

= 〈TΩ
t Eδ[ϕδ

21Ω\Ωδ6
], Eδ[ϕδ

21Ω\Ωδ6
]〉+ 2〈TΩ

t Eδ[ϕδ
21Ω\Ωδ6

], Eδ[ϕδ
21Ωδ6

]〉

+ 〈TΩ
t Eδ[ϕδ

21Ωδ6
]− EδT

Ωδ
t (ϕδ

21Ωδ6
), Eδ[ϕδ

21Ωδ6
]〉

+ 〈EδT
Ωδ
t (ϕδ

21Ωδ6
), Eδ[ϕδ

21Ωδ6
]〉.

(2.29)

But
〈EδT

Ωδ
t (ϕδ

21Ωδ6
), Eδ(ϕδ

21Ωδ6
)〉

= 〈TΩδ
t (ϕδ

21Ωδ6
), ϕδ

21Ωδ6
〉L2(Ωδ)

= 〈TΩδ
t ϕδ

2 − TΩδ
t (ϕδ

21Ωδ\Ωδ6
), ϕδ

2 − ϕδ
21Ωδ\Ωδ6

〉L2(Ωδ)

= e−µδ
2t − 2e−µδ

2t〈ϕδ
21Ωδ\Ωδ6

, ϕδ
2〉L2(Ωδ)

+ 〈TΩδ
t (ϕδ

21Ωδ\Ωδ6
), ϕδ

21Ωδ\Ωδ6
〉L2(Ωδ).

(2.30)

From (2.29) and (2.30) we have, for 0 < δ < δ6,

e−µ2t ≥ 〈TΩ
t Eδ[ϕδ

21Ω\Ωδ6
], Eδ[ϕδ

21Ω\Ωδ6
]〉

+ 2〈TΩ
t Eδ[ϕδ

21Ω\Ωδ6
], Eδ[ϕδ

21Ωδ6
]〉

+ 〈TΩ
t Eδ[ϕδ

21Ωδ6
]− EδT

Ωδ
t (ϕδ

21Ωδ6
), Eδ[ϕδ

21Ωδ6
]〉

− 2e−µδ
2t〈ϕδ

21Ωδ\Ωδ6
, ϕδ

2〉L2(Ωδ)

+ 〈TΩδ
t (ϕδ

21Ωδ\Ωδ6
), ϕδ

21Ωδ\Ωδ6
〉L2(Ωδ) + e−µδ

2t

= C1 + C2 + C3 − C4 + C5 + e−µδ
2t.

(2.31)

We now need the following estimate from [15]:

µδ
2 ≤ p2

d/2,1π
d/2Γ(

d

2
+ 1)−1|Ωδ|−

2
d (2.32)

where pν,k denotes the kth positive zero of the derivative of x1−νJν(x) and Jν(x)
is the standard Bessel function of the first kind of order ν. From (1.3) and (2.32)
we obtain, for 0 < t ≤ 1 and all sufficiently small δ > 0,

‖ϕδ
2‖∞ = eµδ

2t‖TΩδ
t ϕδ

2‖∞ ≤ eµδ
2tc

1/2
0 t−

N
4 = c

1/2
0 ct

1t
−N/4 (0 < t ≤ 1) (2.33)

where c1 ≥ 1 depends only on d and the volume of Ω. Hence we may assume that
δ6 is sufficiently small so that

‖ϕδ
21Ωδ\Ωδ6

‖2 ≤
ε

7
(0 < δ < δ6).
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Then, for all 0 < δ < δ6, we have

|C1| ≤
ε

7
, |C2| ≤

2ε

7
, |C4| ≤

2ε

7
, |C5| ≤

ε

7
. (2.34)

By Proposition 2.4 we have, for all 0 < t ≤ 1,

lim
δ↓0

‖TΩ
t Eδ(ϕδ

21Ωδ6
)− EδT

Ωδ
t (ϕδ

21Ωδ6
)‖L2(Ω) = 0.

Hence there exists δ8 ∈ (0, δ6) sufficiently small such that

|C3| ≤
ε

7
(0 < δ < δ8). (2.35)

From (2.31), (2.34) and (2.35) we have

e−µ2t ≥ e−µδ
2t − ε (0 < δ < δ8). (2.36)

The inequality (1.4) now follows from (2.28) and (2.36). �

Proposition 2.5. Suppose that µ2 has multiplicity 1. Then

lim
δ↓0

〈ϕ3, Eδϕ
δ
2〉 = 0.

Proof. For all sufficiently small δ > 0, we have

e−µδ
2t〈ϕ3, Eδϕ

δ
2〉 = 〈ϕ3, EδT

Ωδ
t ϕδ

2〉

= 〈ϕ3, EδT
Ωδ
t ϕδ

2 − TΩ
t Eδϕ

δ
2〉+ 〈ϕ3, T

Ω
t Eδϕ

δ
2〉

= 〈ϕ3, EδT
Ωδ
t ϕδ

2 − TΩEδϕ
δ
2〉+ e−µ3t〈ϕ3, Eδϕ

δ
2〉.

Thus
(e−µδ

2t − e−µ3t)〈ϕ3, Eδϕ
δ
2〉 = 〈ϕ3, EδT

Ωδ
t ϕδ

2 − TΩ
t Eδϕ

δ
2〉. (2.37)

Let ε ∈ (0, 1) be given. Then (1.4) and Proposition 2.4 imply that for any t ∈ (0, 1]
there exists δ9 > 0 such that, for all 0 < δ < δ9, we have

|〈ϕ3, EδT
Ωδ
t ϕδ

2 − TΩ
t Eδϕ

δ
2〉| ≤

1
2
(e−µ2t − e−µ3t)ε (2.38)

and
0 <

1
2
(e−µ2t − e−µ3t) ≤ e−µδ

2t − e−µ3t. (2.39)

Therefore, by (2.37), (2.38) and (2.39), we have

|〈ϕ3, Eδϕ
δ
2〉| ≤ ε (0 < δ < δ9).

This proves the proposition. �

Proof of Theorem 1.4. Suppose (1.5) is false. Let {εk}∞k=1 be a decreasing sequence
of positive numbers such that limk→∞ εk = 0 and, by (1.4),

lim
k→∞

µεk
3 = µ2. (2.40)

Let

Eεk
ϕεk

3 = a1(k)|Ω|−1/2 + a2(k)ϕ2 +
∞∑

`=3

a`(k)ϕ`,

Eεk
ϕεk

2 = b1(k)|Ω|−1/2 + b2(k)ϕ2 +
∞∑

`=3

b`(k)ϕ`.



10 R. BANUELOS, M. M. H. PANG EJDE-2008/145

Then

a1(k) =
∫

Ω

Eεk
ϕεk

3 |Ω|−1/2dx =
∫

Ωεk

ϕεk
3 dx|Ω|−1/2 = 0. (2.41)

We next want to show that∥∥ ∞∑
`=3

a`(k)ϕ`

∥∥
2
→ 0 as k →∞. (2.42)

Let t ∈ (0, 1] and consider

TΩ
t Eεk

ϕεk
3 − Eεk

T
Ωεk
t ϕεk

3

= TΩ
t Eεk

ϕεk
3 − e−µ

εk
3 tEεk

ϕεk
3

= (e−µ2t − e−µ
εk
3 t)a2(k)ϕ2 +

∞∑
`=3

a`(k)(e−µ`t − e−µ
εk
3 t)ϕ`

= (e−µ2t − e−µ
εk
3 t)a2(k)ϕ2 +

∞∑
`=3

a`(k)(e−µ`t − e−µ2t)ϕ`

+
∞∑

`=3

a`(k)(e−µ2t − e−µ
εk
3 t)ϕ`.

(2.43)

Now ∥∥ ∞∑
`=3

ak(`)(e−µ`t − e−µ2t)ϕ`

∥∥2

2
=

∞∑
`=3

ak(`)2(e−µ`t − e−µ2t)2

≥ (e−µ2t − e−µ3t)2
∞∑

`=3

a`(k)2

= (e−µ2t − e−µ3t)2
∥∥ ∞∑

`=3

a`(k)ϕ`

∥∥2

2
.

(2.44)

By Proposition 2.4 we have

‖TΩ
t Eεk

ϕεk
3 − Eεk

T
Ωεk
t ϕεk

3 ‖2 → 0 as k →∞. (2.45)

Thus, by (2.40), (2.41), (2.43) and (2.45), we obtain

lim
k→∞

∥∥ ∞∑
`=3

a`(k)(e−µ`t − e−µ2t)ϕ`

∥∥2

2
= 0. (2.46)

So (2.42) follows from (2.44) and (2.46). By a similar argument we can show that

b1(k) = 0 (2.47)

and

lim
k→∞

∥∥ ∞∑
`=3

b`(k)ϕ`

∥∥
2

= 0. (2.48)

Since (2.41), (2.42), (2.47) and (2.48) imply that

lim
k→∞

a2(k) = lim
k→∞

b2(k) = 1,
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we have
0 = 〈ϕεk

3 , ϕεk
2 〉L2(Ωεk

)

= 〈Eεk
ϕεk

3 , Eεk
ϕεk

2 〉L2(Ω)

=
〈
a2(k)ϕ2 +

∞∑
`=3

a`(k)ϕ`, b2(k)ϕ2 +
∞∑

`=3

b`(k)ϕ`

〉
L2(Ω)

= a2(k)b2(k) +
〈 ∞∑

`=3

a`(k)ϕ`,
∞∑

`=3

b`(k)ϕ`

〉
L2(Ω)

→ 1 as k →∞

which gives a contradiction. Thus (1.5) holds. �

Proof of Theorem 1.5. By (1.4) there exists δ10 ∈ (0, 1
2 ) such that

µδ
2 < 2µ2 (0 < δ < δ10)

and that
D = {x ∈ Ω : dist(x, ∂Ω) > δ10} ⊇ Ω′.

Applying Lemma 2.1 with Σ = Ω or Σ = Ωδ for 0 < δ < 1
2δ10, Σ′ = D, ω = 1,

aij = δij , τ1 = 1, τ2 = 2, t1 = 3
2 , η = 1

2δ10 and

u(x, t) = e−µδ
2tϕδ

2(x)

for 0 < δ < 1
2δ10, or

u(x, t) = e−µ2tϕ2(x),

we see that there exists α > 0 such that

|ϕδ
2(x)− ϕδ

2(y)| ≤ B|x− y|α, (2.49)

|ϕ2(x)− ϕ2(y)| ≤ B|x− y|α (2.50)

for all x, y ∈ D and 0 < δ < 1
2δ10, where, by (1.2), (1.3), (1.4) and (2.33), we can

assume that δ10 ∈ (0, 1
2 ) is sufficiently small that

B = (8/δ10)α2c
1/2
0 c1e

4µ2 .

Let

Eδϕ
δ
2 = b2(δ)ϕ2 +

∞∑
`=3

b`(δ)ϕ` (0 < δ < δ10).

Then, as in the proof of Theorem 1.4, we have limδ↓0 b2(δ) = 1 and

lim
δ↓0

∥∥ ∞∑
`=3

b`(δ)ϕ`

∥∥
2

= 0.

Thus
‖ϕ2 − Eδϕ

δ
2‖2 → 0 as δ ↓ 0. (2.51)

Let
r = dist(Ω′, ∂D).

Suppose that (1.6) is false. Then there exist ε > 0, a decreasing sequence of positive
numbers {ηk}∞k=1 and a sequence of points {zk}∞k=1 in Ω′ such that limk→∞ ηk = 0
and

|ϕηk

2 (zk)− ϕ2(zk)| ≥ ε (k = 1, 2, 3, . . . ). (2.52)
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Then for all w ∈ D satisfying

|w − zk| ≤ min
{
r,

( ε

6
)1/α

B− 1
α

}
we have, by (2.49) and (2.50),

|ϕηk

2 (zk)− ϕηk

2 (w)| ≤ ε

6
, (2.53)

|ϕ2(zk)− ϕ2(w)| ≤ ε

6
, (2.54)

hence, from (2.52), (2.53) and (2.54), we have

|ϕηk

2 (w)− ϕ2(w)| ≥ 2ε

3
.

Let R = min
{
r, ( ε

6 )1/αB− 1
α

}
. Then∫

B(zk,R)

|ϕηk

2 − ϕ2|2dx ≥ 4ε2

9
c2R

d > 0 (2.55)

for all k = 1, 2, 3, . . . , where c2 > 0 depends only on d. But (2.55) contradicts
(2.51), hence (1.6) holds. �
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