Electronic Journal of Differential Equations, Vol. 2008(2008), No. 13, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR SUPERLINEAR SINGULAR m-POINT BOUNDARY-VALUE PROBLEMS

XINGQIU ZHANG

Abstract

Using topological methods and a well known generalization of the Birkhoff-Kellogg theorem, we study the global structure of a class of superlinear singular m-point boundary value problem.

1. Introduction

We are concerned with the nonlinear second-order singular m-point boundaryvalue problem

$$
\begin{gather*}
-(L \varphi)(x)=\lambda f(x, \varphi(x)), \quad 0<x<1 \\
\varphi(0)=0, \quad \varphi(1)=\sum_{i=1}^{m-2} a_{i} \varphi\left(\xi_{i}\right) \tag{1.1}
\end{gather*}
$$

where

$$
(L \varphi)(x)=\left(p(x) \varphi^{\prime}(x)\right)^{\prime}+q(x) \varphi(x)
$$

$\xi_{i} \in(0,1), 0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1, a_{i} \in[0,+\infty), f \in\left[C(0,1) \times(0,+\infty), R^{+}\right]$, $\lambda \in R^{+}=[0,+\infty), f(x, u)$ may be singular not only at $x=0, x=1$ but also at $u=0$.

The existence of solutions for nonlinear singular multi-point boundary value problems has been studied extensively in the literature (see [4, 6, 7] and references therein). However, up to now, there are few papers consider the global structure of solutions for singular m-point boundary-value problem. In this paper, we use the topological method and the generalization of the well known Birkhoff-Kellogg theorem to get the global structure of the closure of positive solution set of 1.1 (denoted by \bar{L}) when $f(x, \varphi)$ satisfying superlinear condition at ∞ where

$$
\begin{equation*}
L:=\{(\lambda, \varphi) \in(0,+\infty) \times P \backslash\{\theta\}:(\lambda, \varphi) \text { satisfying 1.1 }\} \tag{1.2}
\end{equation*}
$$

Under some suplinear conditions, we get that \bar{L} possesses a maximal and unbounded subcontinuum C (i.e., a maximal closed connected subsets of solution) which comes from $(0, \theta)$ and tends to $(0,+\infty)$ eventually.

[^0]The basic space used in this paper is $E=R \times C[I, R]$. As is known, $C[I, R]$ is a Banach space with the norm $\|\varphi\|=\max _{x \in I}|\varphi(x)|$ for $\varphi \in C[I, R]$. Furthermore, E is also a Banach space if we endowed a norm $\|(\lambda, \varphi)\|=\max \{|\lambda|,\|\varphi\|\}$ for $(\lambda, \varphi) \in E .(\lambda, \varphi)$ is called a solution of 1.1), if $\lambda>0, \varphi \in C[I, R] \cap C^{2}[(0,1), R]$ satisfying (1.1), where $I=[0,1]$. In addition, if $\lambda>0, \varphi(x)>0$ holds for any $x \in(0,1)$, then (λ, φ) is called a positive solution of 1.1).

The rest of this paper is organized as follows. Section 2 gives some necessary lemmas. Section 3 is devoted to the main result and its proof. An example is worked out in Section 4 to indicate the application of our main result.

2. Preliminary Lemmas

Throughout this paper, we always suppose
(H1) $p(x) \in C^{1}[0,1], p(x)>0, q(x) \in C[0,1], q(x) \leq 0$.
Lemma 2.1 ([7]). Assume that (H1) holds. Let $\phi_{1}(x), \phi_{2}(x)$ be the solution of

$$
\begin{gather*}
(L \varphi)(x)=0, \quad 0<x<1 \\
\varphi(0)=0, \quad \varphi(1)=1 \tag{2.1}
\end{gather*}
$$

and

$$
\begin{gather*}
(L \varphi)(x)=0, \quad 0<x<1 \\
\varphi(0)=1, \quad \varphi(1)=0 \tag{2.2}
\end{gather*}
$$

respectively. Then
(i) $\phi_{1}(x)$ is increasing on [0,1] and $\phi_{1}(x)>0, x \in(0,1]$;
(ii) $\phi_{2}(x)$ is decreasing on [0,1] and $\phi_{2}(x)>0, x \in[0,1)$.

Let

$$
k(x, y)= \begin{cases}\frac{1}{\rho} \phi_{1}(x) \phi_{2}(y), & 0 \leq x \leq y \leq 1 \tag{2.3}\\ \frac{1}{\rho} \phi_{1}(y) \phi_{2}(x), & 0 \leq y \leq x \leq 1\end{cases}
$$

where $\rho=\phi_{1}^{\prime}(0)$. By Lemma 2.1 we know that $\phi_{1}^{\prime}>0$. Let

$$
\begin{equation*}
K(x, y)=k(x, y)+D^{-1} \phi_{1}(x) \sum_{i=1}^{m-2} a_{i} k\left(\xi_{i}, y\right), \quad 0 \leq x, y \leq 1 \tag{2.4}
\end{equation*}
$$

where $D=1-\sum_{i=1}^{m-2} a_{i} \phi_{1}\left(\xi_{i}\right)$.
Lemma 2.2 ([7]). Assume (H1) holds. Then $k(x, y)$ defined by 2.3) possesses the following properties:
(i) $k(x, y)$ is continuous and symmetrical over $[0,1] \times[0,1]$;
(ii) $k(x, y) \geq 0$, and $k(x, y) \leq k(y, y)$, for all $0 \leq x, y \leq 1$;
(iii) There exist constants $k_{1}, k_{2}>0$ such that

$$
k_{1} x(1-x) \leq k(x, x) \leq k_{2} x(1-x), x \in[0,1]
$$

We make the following assumptions:
(H2) $\sum_{i=1}^{m-2} a_{i} \phi_{1}\left(\xi_{i}\right)<1$, where $\phi_{1}(x)$ is the unique solution of (2.1).
(H3) $f:(0,1) \times(0,+\infty) \rightarrow R^{+}$is continuous (it may be singular at $x=0,1$ and $\varphi=0)$ and for any $R>r>0, \int_{0}^{1} K_{1}(y, y) f_{r, R}(y) \mathrm{d} y<+\infty$ where

$$
K_{1}(y, y)=y(1-y)+D^{-1} \sum_{i=1}^{m-2} a_{i} k\left(\xi_{i}, y\right)
$$

$f_{r, R}(y):=\sup \left\{f(y, \varphi): \varphi \in\left[\rho k_{1} y(1-y) r, R\right], y \in(0,1)\right\}, k_{1}$ has the same meaning as in Lemma 2.2.
(H4) For every $R>0$, there exists $\psi_{R} \in C\left[I, R^{+}\right]\left(\psi_{R} \not \equiv \theta\right)$ such that

$$
f(x, \varphi) \geq \psi_{R}(x), \quad \text { for } x \in(0,1), \varphi \in(0, R] .
$$

(H5) There exists $[a, b] \subset(0,1)$ such that

$$
\lim _{\varphi \rightarrow+\infty} \frac{f(x, \varphi)}{\varphi}=+\infty \quad \text { uniformly for } x \in[a, b]
$$

Set

$$
\begin{equation*}
(A \varphi)(x)=\int_{0}^{1} K(x, y) \widetilde{p}(y) f(x, \varphi(y)) \mathrm{d} y, \quad x \in[0,1] \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{p}(y)=\frac{1}{p(y)} \exp \left(\int_{0}^{y} \frac{p^{\prime}(s)}{p(s)} \mathrm{d} s\right) . \tag{2.6}
\end{equation*}
$$

Let

$$
P=\left\{\varphi \in C[0,1]: \varphi(x) \geq 0, \varphi(x) \geq\|\varphi\| \rho k_{1} x(1-x), \rho k_{1}<4, x \in[0,1]\right\} .
$$

where k_{1} has the same meaning as in Lemma 2.2. It is easy to check that P is a cone in $C[0,1]$.

The following theorem is the generalization of the well known Birkhoff-Kellogg.
Lemma 2.3 ([1, 5]). Let X be an infinite-dimensional Banach space, P a cone of X, and $A: P \rightarrow P$ a completely continuous operator. Suppose that there exists a bounded open set Ω in $X, \theta \in \Omega$ such that

$$
\inf _{x \in P \cap \partial \Omega}\|A x\|>0
$$

Then the closure of the set of nonzero solutions of the equation $\varphi=\lambda A \varphi$, i.e.,

$$
\Sigma:=\overline{\left\{(\lambda, \varphi): \lambda \in R_{+}, \varphi \in P, \varphi \neq \theta, \varphi=\lambda A \varphi\right\}}
$$

possesses a maximal subcontinuum C (i.e., a maximal closed connected subsets of \sum), which is unbounded and there exists $\bar{\lambda}>0$ (for example we may choose $\left.\bar{\lambda}>\sup _{x \in P \cap \partial \Omega}\|x\| / \inf _{x \in P \cap \partial \Omega}\|A x\|\right)$ such that
(i) $C \cap((0,+\infty) \times P \backslash((\bar{\lambda},+\infty) \times \bar{\Omega}))$ is unbounded;
(ii) $C \cap([\bar{\lambda},+\infty) \times \partial \Omega)=\emptyset, C \cap(\{0\} \times(P \backslash\{\theta\}))=\emptyset$; and either
(iii) $C \cap([\bar{\lambda},+\infty) \times \Omega)$ is unbounded, or
(iii)* $C \cap([0,+\infty) \times\{\theta\}) \neq \emptyset$,
where θ denotes zero element of X.

3. Main Result

First, we consider the following approximating problem of BVP 1.1)

$$
\begin{gather*}
-(L \varphi)(x)=\lambda f_{n}(x, \varphi(x)), \quad 0<x<1, \\
\varphi(0)=0, \quad \varphi(1)=\sum_{i=1}^{m-2} a_{i} \varphi\left(\xi_{i}\right) \tag{3.1}
\end{gather*}
$$

where $f_{n}(x, \varphi(x))=f\left(x, \max \left\{\frac{1}{n}, \varphi(x)\right\}\right)$. Obviously, $f_{n}(x, \varphi(x))$ only has the singularity at $x=0,1$ and has no singularity at $\varphi=0$ any more. Define an operator A_{n} on the cone P by

$$
\begin{equation*}
\left(A_{n} \varphi\right)(x)=\int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \quad \text { for any } \varphi \in P \tag{3.2}
\end{equation*}
$$

where $K(x, y)$ and $\widetilde{p}(y)$ are defined as in (2.4) respectively. It follows from (H3) and the definition of $K(x, y)$ that A_{n} is well defined on P for each $n \in N$.

Lemma 3.1. Assume (H2), (H3) hold. Then for each $n \geq 1$, 3.1) has a positive solution belonging to $C^{2}[(0,1), R] \cap C[I, R]$ if and only λA_{n} has a fixed point in $P \backslash\{\theta\}$.

Proof. Sufficiency is obvious. Now we are in position to prove necessity.
Suppose $(\lambda, \varphi)=(\lambda, \varphi(x))$ is a positive solution of (3.1). Then, $\lambda>0, \varphi \in$ $C^{2}\left[(0,1), R^{+}\right] \cap C\left[I, R^{+}\right]$and for any $x \in(0,1), \varphi(x)>0$. It is obvious, $\varphi(x)=$ $\lambda A_{n} \varphi(x)$. Take $x_{0} \in[0,1]$ such that $\varphi\left(x_{0}\right)=\|\varphi\|$. From [7], for any $x, y \in[0,1]$ we have $k(x, y) \geq k\left(x_{0}, y\right) \phi_{1}(x) \phi_{2}(x)$. So, we have

$$
\begin{aligned}
\varphi(x)= & \lambda \int_{0}^{1} k(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
& +\lambda D^{-1} \phi_{1}(x) \sum_{i=1}^{m-2} a_{i} \int_{0}^{1} k\left(\xi_{i}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
\geq & \lambda \phi_{1}(x) \phi_{2}(x) \int_{0}^{1} k\left(x_{0}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
& +\lambda D^{-1} \phi_{1}(x) \sum_{i=1}^{m-2} a_{i} \int_{0}^{1} k\left(\xi_{i}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
\geq & \lambda \phi_{1}(x) \phi_{2}(x)\left[\int_{0}^{1} k\left(x_{0}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y\right. \\
& \left.+D^{-1} \sum_{i=1}^{m-2} a_{i} \int_{0}^{1} k\left(\xi_{i}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y\right] \\
\geq & \lambda \phi_{1}(x) \phi_{2}(x)\left[\int_{0}^{1} k\left(x_{0}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y\right. \\
& \left.+D^{-1} \phi_{1}\left(x_{0}\right) \sum_{i=1}^{m-2} a_{i} \int_{0}^{1} k\left(\xi_{i}, y\right) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y\right] \\
= & \varphi\left(x_{0}\right) \phi_{1}(x) \phi_{2}(x)=\|\varphi\| \rho k_{1} x(1-x)
\end{aligned}
$$

As a consequence, $\varphi \in P \backslash\{\theta\}$.
Lemma 3.2. Assume (H1)-(H3) hold. Then $A_{n}: P \rightarrow P$ is continuous for each $n \in N$.

The proof of the above lemma is obvious, so we omit it. Let

$$
L_{n}:=\left\{(\lambda, \varphi) \in R^{+} \times P: \varphi=\lambda A_{n} \varphi\right\} \text { for all } n \geq 1
$$

Lemma 3.3. Suppose (H1)-(H4) hold. Then for each n, L_{n} is locally compact in $[0,+\infty) \times P$ and

$$
L_{n}=\overline{\left\{(\lambda, \varphi) \in R^{+} \times P: \varphi=\lambda A_{n} \varphi, \varphi \neq \theta\right\}}
$$

Proof. For every $R>0$, let $L_{n}^{R}:=\left\{(\lambda, \varphi) \in L_{n}:|\lambda| \leq R,|\varphi| \leq R\right\}$. If $(\lambda, \varphi) \in L_{n}$ and $\varphi=\theta$, then by (H4) we get $\lambda=0$. So, we need only to prove that L_{n}^{R} is relatively compact and closed.

In fact, for each $(\lambda, \varphi) \in L_{n}^{R}$, from the construction of P we have

$$
f_{n}(x, \varphi(x)) \leq f_{\frac{1}{n}, R}(x) \text { for all } x \in(0,1)
$$

and

$$
\varphi(x)=\lambda \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y, \quad x \in[0,1]
$$

Combining with (H3), it is easy to know that $\left\{\varphi=\varphi(x):(\lambda, \varphi) \in L_{n}^{R}\right\}$ are equicontinuous on I. Thus, from Ascoli-Arzela theorem we get that L_{n}^{R} is relatively compact. On the other hand, (H3) and Lebesgue dominated convergence theorem guarantee that L_{n}^{R} is closed.

The next theorem gives the global structure of L_{n}.
Theorem 3.4. Suppose that (H1)-(H5) hold. Then for each $n \geq 1, L_{n}$ possesses a maximal and unbounded subcontinuum C_{n}, which comes from $(0, \theta)$ and tends to $(0,+\infty)$ eventually satisfying
(1) $(0, \theta) \in C_{n}$;
(2) There exists $\lambda_{n}^{0} \in(0,+\infty)$ such that

$$
C_{n} \subset\left[0, \lambda_{n}^{0}\right] \times P, \quad C_{n} \cap(\{\lambda\} \times P) \neq \emptyset, \quad \forall \lambda \in\left[0, \lambda_{n}^{0}\right]
$$

(3) C_{n} is unbounded in $\left[0, \lambda_{n}^{0}\right] \times P$;
(4) $\lambda=0$ is an unique asymptotic bifurcation point of A_{n};
(5) There exists $\lambda_{n}^{*} \in\left(0, \lambda_{n}^{0}\right]$ such that for each $\lambda \in\left(0, \lambda_{n}^{*}\right)$, (3.1) has at least two positive solution $\varphi_{n \lambda}^{*}$ and $\varphi_{n \lambda}^{* *}$ satisfying

$$
\left\|\varphi_{n \lambda}^{*}\right\| \leq\left\|\varphi_{n \lambda}^{* *}\right\|, \quad\left(\lambda, \varphi_{n \lambda}^{*}\right),\left(\lambda, \varphi_{n \lambda}^{* *}\right) \in C_{n}
$$

(6)

$$
\lim _{\lambda \rightarrow 0^{+},\left(\lambda, \varphi_{n \lambda}^{*}\right) \in C_{n}}\left\|\varphi_{n \lambda}^{*}\right\|=0, \quad \lim _{\lambda \rightarrow 0^{+},\left(\lambda, \varphi_{n \lambda}^{* *}\right) \in C_{n}}\left\|\varphi_{n \lambda}^{* *}\right\|=+\infty .
$$

Proof. First we prove that for every $\bar{\lambda}>0$, there exists $\bar{R}>0$ such that

$$
\begin{equation*}
L_{n} \cap\left([\bar{\lambda},+\infty) \times\left(P \backslash \bar{P}_{\bar{R}}\right)\right)=\emptyset, \quad n=1,2, \ldots \tag{3.3}
\end{equation*}
$$

where $P_{\bar{R}}=\{\varphi \in P:\|\varphi\|<\bar{R}\}$.
In fact, take a positive number l satisfying

$$
\begin{equation*}
l>\left(\rho k_{1} \bar{\lambda} \max _{x \in I} \int_{a}^{b} K(x, y) \widetilde{p}(y) y(1-y) \mathrm{d} y\right)^{-1}>0 \tag{3.4}
\end{equation*}
$$

where a, b are as the same as in (H5). Then there exists $R^{\prime}>1$ such that

$$
\begin{equation*}
f(x, u) \geq l u \quad \text { for all } x \in[a, b], u>R^{\prime} . \tag{3.5}
\end{equation*}
$$

Choose a number \bar{R} with $\bar{R}>\frac{R^{\prime}}{\rho k_{1} a(1-b)}$. It follows from the definition of cone P that

$$
\begin{equation*}
\varphi(y) \geq\|\varphi\| \rho k_{1} y(1-y) \geq \rho k_{1} a(1-b) \bar{R}>R^{\prime} \quad \text { for all } y \in[a, b], \varphi \in P \backslash \bar{P}_{\bar{R}} . \tag{3.6}
\end{equation*}
$$

Therefore, by (3.5) and (3.6) for $\lambda \geq \bar{\lambda}$ and $\varphi \in P \backslash \bar{P}_{\bar{R}}$

$$
\begin{aligned}
\lambda A_{n} \varphi(x) & =\lambda \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
& \geq \bar{\lambda} \int_{a}^{b} K(x, y) \widetilde{p}(y) f(y, \varphi(y)) \mathrm{d} y \\
& \geq l \bar{\lambda} \int_{a}^{b} K(x, y) \widetilde{p}(y) \varphi(y) \mathrm{d} y \\
& \geq \rho k_{1} l \bar{\lambda}\|\varphi\| \int_{a}^{b} K(x, y) \widetilde{p}(y) y(1-y) \mathrm{d} y
\end{aligned}
$$

Combining with (3.4), we have

$$
\begin{equation*}
\left\|\lambda A_{n} \varphi\right\| \geq \rho k_{1} l \bar{\lambda}\|\varphi\| \max _{x \in I} \int_{a}^{b} K(x, y) \widetilde{p}(y) y(1-y) \mathrm{d} y>\|\varphi\| \tag{3.7}
\end{equation*}
$$

for all $\lambda \geq \bar{\lambda}, \varphi \in P \backslash \bar{P}_{\bar{R}}$, which implies that 3.3 holds.
On the other hand, from the definition of $f_{n}(x, \varphi(x))$, for fixed $n \geq 1$ we have $0<\varphi(y) \leq \bar{R}$, for all $\varphi \in \bar{P}_{\bar{R}}$. Consequently, by (H4) we know

$$
\begin{equation*}
A_{n} \varphi(x)=\int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(x, \varphi(y)) \mathrm{d} y \geq \int_{0}^{1} K(x, y) \widetilde{p}(y) \psi_{\bar{R}}(y) \mathrm{d} y, \forall \varphi \in \bar{P}_{\bar{R}} \tag{3.8}
\end{equation*}
$$

Let $r<\min \left\{R, \bar{\lambda} \max _{x \in I} \int_{0}^{1} K(x, y) \widetilde{p}(y) \psi_{\bar{R}}(y) \mathrm{d} y\right\}$. This together with (3.8) implies that for any $\varphi \in \bar{P}_{r}, \lambda>\bar{\lambda}$

$$
\begin{align*}
\left\|\lambda A_{n} \varphi\right\| & =\lambda \max _{x \in I} \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
& >\bar{\lambda} \max _{x \in I} \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \geq r=\|\varphi\| \tag{3.9}
\end{align*}
$$

which yields

$$
\begin{equation*}
L_{n} \cap\left((\bar{\lambda},+\infty) \times P_{r}\right)=\emptyset \tag{3.10}
\end{equation*}
$$

Note that (3.7) implies

$$
\begin{aligned}
\inf _{\varphi \in \partial P_{\bar{R}}}\left\|A_{n} \varphi\right\| & \geq \rho k_{1} l \bar{R} \max _{x \in I} \int_{a}^{b} K(x, y) \widetilde{p}(y) y(1-y) \mathrm{d} y>0, \\
\bar{\lambda} & >\sup _{\varphi \in \partial P_{\bar{R}}}\|\varphi\| / \inf _{\varphi \in \partial P_{\bar{R}}}\left\|A_{n} \varphi\right\| .
\end{aligned}
$$

As a consequence, by (3.3 (3.10 and Lemma 2.3 we get that L_{n} possesses a maximal and unbounded subcontinuum C_{n} satisfying that

$$
\begin{gather*}
C_{n} \cap((0,+\infty) \times P) \backslash\left((\bar{\lambda},+\infty) \times \bar{P}_{\bar{R}}\right) \text { is unbounded and } \tag{3.11}\\
C_{n} \cap\left((\bar{\lambda},+\infty) \times\left\{P_{r} \cup\left(P \backslash \bar{P}_{\bar{R}}\right)\right\}\right)=\emptyset
\end{gather*}
$$

Next, for $(\lambda, \varphi) \in L_{n} \cap\left([\bar{\lambda},+\infty) \times\left(\bar{P}_{\bar{R}} \backslash P_{r}\right)\right)$, noticing that $\rho k_{1} r x(1-x) \leq$ $\varphi(x) \leq \bar{R}$ for $x \in I$, by (H4) we can get

$$
\varphi(x)=\lambda\left(A_{n} \varphi\right)(x)=\lambda \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(x, \varphi(y)) \mathrm{d} y \geq \lambda \int_{0}^{1} K(x, y) \widetilde{p}(y) \psi_{\bar{R}}(y) \mathrm{d} y
$$

This means

$$
\begin{equation*}
\lambda \leq \bar{R}\left(\max _{x \in I} \int_{a}^{b} K(x, y) \widetilde{p}(y) \psi_{\bar{R}}(y) \mathrm{d} y\right)^{-1} \tag{3.12}
\end{equation*}
$$

which implies $L_{n} \cap\left([\bar{\lambda},+\infty) \times\left(\bar{P}_{\bar{R}} \backslash P_{r}\right)\right)$ is bounded. This together with (3.3) and (3.10) guarantees that

$$
\begin{equation*}
L_{n} \cap([\bar{\lambda},+\infty) \times P) \text { is bounded }, \forall \bar{\lambda}>0 \tag{3.13}
\end{equation*}
$$

Thus, by 3.11$)$ we know that $C_{n} \cap((0, \bar{\lambda}] \times P)$ is unbounded. Furthermore, by virtue of (iii) and (iii) of Lemma 2.3 and 3.11 3.12) one can get

$$
C_{n} \cap([0,+\infty) \times\{\theta\}) \neq \emptyset
$$

Now we show that

$$
C_{n} \cap([0,+\infty) \times\{\theta\})=\{(0, \theta)\}
$$

Suppose $\left(\lambda_{0}, \theta\right) \in C_{n} \cap([0,+\infty) \times\{\theta\})$, then there exist $\lambda_{m} \in R^{+}$and $\varphi_{m} \in$ $P \backslash\{\theta\}, m=1,2, \ldots$ such that

$$
\varphi_{m}(x)=\lambda_{m}\left(A_{n} \varphi_{m}\right)(x), \quad \lambda_{m} \rightarrow \lambda_{0}, \quad \varphi_{m} \rightarrow \theta \quad(m \rightarrow+\infty)
$$

Without loss of generality, assume $\varphi_{m} \in P_{\bar{R}} \backslash\{\theta\}$. Then

$$
\left(A_{n} \varphi_{m}\right)(x) \geq \int_{0}^{1} K(x, y) \widetilde{p}(y) \psi_{\bar{R}}(y) \mathrm{d} y
$$

Therefore,

$$
\left|\lambda_{m}\right| \leq \frac{\left\|\varphi_{m}\right\|}{\max _{x \in I} \int_{0}^{1} K(x, y) \widetilde{p}(y) \psi_{\bar{R}}(y) \mathrm{d} y} \rightarrow 0 \quad(m \rightarrow+\infty)
$$

So, $\lambda_{0}=0$, i.e., $C_{n} \cap([0,+\infty) \times\{\theta\})=\{(0, \theta)\}$. As a consequence, (1) holds. By Lemma 2.3 we know C_{n} is a maximal and unbounded subcontinuum which comes from $(0, \theta)$.

On the other hand, suppose $\lambda_{0} \in(0, \bar{\lambda}]$ is an asymptotic bifurcation point of the operator A_{n}. Then there exist $\lambda_{m} \in R^{+}$and $\varphi_{m} \in P \backslash P_{\bar{R}}$ such that $\varphi_{m}=\lambda_{m} A_{n} \varphi_{m}$ and $\lambda_{m} \rightarrow \lambda_{0},\left\|\varphi_{m}\right\| \rightarrow+\infty$ as $m \rightarrow+\infty$.

From (H5), as in the proof of (3.7), one obtain

$$
\frac{1}{\lambda_{m}}=\frac{\left\|A_{n} \varphi_{m}\right\|}{\left\|\varphi_{m}\right\|} \rightarrow+\infty \quad\left(\left\|\varphi_{m}\right\| \rightarrow+\infty\right)
$$

This means that $\lambda_{0}=0$ is the unique asymptotic bifurcation point. Therefore, C_{n} tends to $(0,+\infty)$; i.e., (4) holds.

Let $\mathcal{L}:=\left\{\lambda\right.$: there exists $\varphi \in P \backslash\{\theta\}$ such that $\left.\varphi=\lambda A_{n} \varphi\right\}$. Obviously, $\mathcal{L} \neq \emptyset$. Let $\lambda_{n}^{0}:=\sup \{\lambda: \lambda \in \mathcal{L}\}$. By virtue of 3.11 (3.12) we know $\lambda_{n}^{0} \in$ $(0,+\infty)$. Suppose $\left(\lambda_{m}, \varphi_{m}\right) \in L_{n}$ satisfying $\lambda_{m} \rightarrow \lambda_{n}^{0}, m \rightarrow \infty$. It follows from (3.13) that $\left\{\varphi_{m}\right\}$ is bounded. By Lemma 3.3 there exists $\varphi \in P \backslash\{\theta\}$ such that $\left(\lambda_{n}^{0}, \varphi\right) \in L_{n}$. Consequently, noticing C_{n} is unbounded, by virtue of the connection of subcontinuum one can get (2) holds. Consequently, we have

$$
\begin{equation*}
L_{n} \cap\left(\left(\lambda_{n}^{0},+\infty\right) \times P\right)=\emptyset \tag{3.14}
\end{equation*}
$$

Considering C_{n} is unbounded and 0 is the unique asymptotic bifurcation point, it is not difficult to know from (3.14) that (3) also holds.

To get (5) and (6), noticing that for $(\lambda, \varphi) \in L_{n} \cap\left((0,+\infty) \times\left(\bar{P}_{R} \backslash P_{r}\right)\right)(R>$ $1>r>0$), we have

$$
\begin{aligned}
\varphi(x) & =\lambda\left(A_{n} \varphi\right)(x)=\lambda \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{n}(y, \varphi(y)) \mathrm{d} y \\
& \leq \lambda \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{r, R}(y) \mathrm{d} y
\end{aligned}
$$

This together with (3.12), we get

$$
\begin{align*}
\lambda^{\prime} & :=r\left(\max _{x \in I} \int_{0}^{1} K(x, y) \widetilde{p}(y) f_{r, R}(y) \mathrm{d} y\right)^{-1} \leq \lambda \\
& \leq R\left(\max _{x \in I} \int_{0}^{1} K(x, y) \widetilde{p}(y) \psi_{R}(y) \mathrm{d} y\right)^{-1}:=\lambda^{\prime \prime} \tag{3.15}
\end{align*}
$$

Thus

$$
\begin{equation*}
C_{n} \cap\left((0,+\infty) \times\left(\bar{P}_{R} \backslash P_{r}\right)\right) \subset\left[\lambda^{\prime}, \lambda^{\prime \prime}\right] \times \bar{P}_{R} \backslash P_{r} \tag{3.16}
\end{equation*}
$$

Since C_{n} is a maximal and unbounded subcontinuum which comes from $(0, \theta)$ and tends to $(0,+\infty)$ eventually, for any $\lambda \in\left(0, \lambda^{\prime}\right)$ from 3.15 and 3.16 one can get that there exist at least two points $\varphi_{n \lambda}^{*}$ and $\varphi_{n \lambda}^{* *} \in P \backslash\{\theta\}$ such that $\left(\lambda, \varphi_{n \lambda}^{*}\right),\left(\lambda, \varphi_{n \lambda}^{* *}\right) \in C_{n}$ with $\left\|\varphi_{n \lambda}^{* *}\right\|>R>r>\left\|\varphi_{n \lambda}^{*}\right\|>0$. Notice that R and r satisfying $R>1>r>0$ are arbitrary. Thus, it is easy to know (5) and (6) hold.

From (3.3 3.10 and 3.12 in above Theorem 3.4, one can obtain the following corollary.

Corollary 3.5. Assume (H1)-(H5) hold. Then for every $\varepsilon>0$, there exist positive number $R_{\varepsilon}>1>r_{\varepsilon}>0, \lambda_{\varepsilon}>0$ such that

$$
\begin{equation*}
L_{n} \cap([\varepsilon,+\infty) \times P) \subset\left[\varepsilon, \lambda_{\varepsilon}\right] \times\left(\bar{P}_{R_{\varepsilon}} \backslash P_{r_{\varepsilon}}\right), \forall n \geq 1, \tag{3.17}
\end{equation*}
$$

where R_{ε} and λ_{ε} are nonincreasing and r_{ε} is nondecreasing with respect to $\varepsilon \in$ $(0,+\infty)$.

The next theorem gives a result for L and (1.1).
Theorem 3.6. Let (H1)-(H5) be satisfied. Then \bar{L} possesses a maximal and unbounded subcontinuum C, which comes from $(0, \theta)$ and tends to $(0,+\infty)$ eventually such that
(i) There exists $\lambda^{0}>0$ satisfying $L \cap\left(\left[\lambda^{0},+\infty\right) \times P\right)=\emptyset$;
(ii) For each $\bar{\lambda}>0, C \cap([0, \bar{\lambda}] \times P)$ is unbounded;
(iii) There exist $\lambda^{*} \in\left(0, \lambda^{0}\right)$ such that for all $\lambda \in\left(0, \lambda^{*}\right)$, 1.1) has at least two positive solution φ_{λ}^{1} and φ_{λ}^{2} satisfying

$$
\left(\lambda, \varphi_{\lambda}^{1}\right),\left(\lambda, \varphi_{\lambda}^{2}\right) \in C, \quad\left\|\varphi_{\lambda}^{2}\right\|>\left\|\varphi_{\lambda}^{1}\right\| ;
$$

(iv)

$$
\lim _{\lambda \rightarrow 0^{+},\left(\lambda, \varphi_{\lambda}^{1}\right) \in C}\left\|\varphi_{\lambda}^{1}\right\|=0, \quad \lim _{\lambda \rightarrow 0^{+},\left(\lambda, \varphi_{\lambda}^{2}\right) \in C}\left\|\varphi_{\lambda}^{2}\right\|=+\infty .
$$

Proof. Firstly, we prove that $L \neq \emptyset$. By Theorem 3.4 and (3.15), we know that there exists $\lambda_{0}>0$ such that for each n, L_{n} possesses a maximal and unbounded subcontinuum C_{n} containing $(0, \theta)$, which satisfies

$$
\begin{equation*}
C_{n} \cap\left(\left\{\lambda_{0}\right\} \times P\right) \neq \emptyset, \quad \forall n \geq 1 \tag{3.18}
\end{equation*}
$$

On the other hand, from Corollary 3.5, one can get that there exist $\bar{R}>1>\bar{r}>0$ such that

$$
\begin{equation*}
L_{n} \cap\left(\left\{\lambda_{0}\right\} \times P\right) \subset\left\{\lambda_{0}\right\} \times\left(\bar{P}_{\bar{R}} \backslash P_{\bar{r}}\right) \quad \text { for all } n \geq 1 \tag{3.19}
\end{equation*}
$$

For every n, by 3.18 one can take $\varphi_{n} \in C_{n} \cap\left(\left\{\lambda_{0}\right\} \times P\right)$. Then it follows from (3.19) that $\varphi_{n} \in \bar{P}_{\bar{R}} \backslash P_{\bar{r}}$. By (H3) we know

$$
\begin{equation*}
f_{n}\left(x, \varphi_{n}(x)\right) \leq f_{\bar{r}, \bar{R}}(x) \quad \text { for all } x \in(0,1), n \geq 1 \tag{3.20}
\end{equation*}
$$

Similar to the proof of Lemma 3.3 it is easy to know that $\left\{\varphi_{n}\right\}$ is uniformly bounded and equicontinuous on $I=[0,1]$. As a consequence, Ascoli-Arzela theorem generates the compactness of $\left\{\varphi_{n}\right\}$. So there exists a subsequence (without loss of generality, we may assume this sequence is $\left\{\varphi_{n}\right\}$ as well) and $\varphi^{*} \in \bar{P}_{\bar{R}} \backslash P_{\bar{r}}$ such that $\varphi_{n} \rightarrow \varphi^{*}$ as $n \rightarrow+\infty$. 3.2 and Lebesgue dominated convergence theorem guarantee $\left(\lambda_{0}, \varphi^{*}\right) \in L$, that is, $L \neq \emptyset$.

Secondly, define an operator A on $P \backslash\{\theta\}$ as follows:

$$
\begin{equation*}
(A \varphi)(x)=\int_{0}^{1} K(x, y) \widetilde{p}(y) f(y, \varphi(y)) \mathrm{d} y \quad \text { for all } x \in I, \varphi \in P \backslash\{\theta\} \tag{3.21}
\end{equation*}
$$

By (H3), A is well defined on $P \backslash\{\theta\}$. It is easy to see that to seek a positive solution of 1.1 is equivalent to find a fixed point of λA on $P \backslash\{\theta\}$. Similar to Theorem 3.4, one can get (i) holds.

To obtain (ii), noticing that for any $\varepsilon \in\left(0, \lambda_{0}\right)$, it follows from Corollary 3.5 that there exist $R_{\varepsilon}, \lambda_{\varepsilon}$, and r_{ε} such that

$$
L_{n} \cap([\varepsilon,+\infty) \times P) \subset \bar{Q}_{\varepsilon} \quad \text { for all } n \geq 1
$$

where $R_{\varepsilon}, \lambda_{\varepsilon}$ are nonincreasing and r_{ε} is nondecreasing functions with respect to ε, $Q_{\varepsilon}:=\left(\varepsilon, \lambda_{\varepsilon}\right] \times P_{R_{\varepsilon}}$.

On the other hand,

$$
\left(\bigcup_{n=1}^{+\infty} L_{n}\right) \bigcap \bar{Q}_{\varepsilon} \subset\left(\bigcup_{n=1}^{+\infty} L_{n}\right) \bigcap\left(\left[\varepsilon, \lambda_{\varepsilon}\right] \times\left(\bar{P}_{R_{\varepsilon}} \backslash P_{r_{\varepsilon}}\right)\right)
$$

This together with Lemma 3.3 and its proof implies that

$$
\begin{equation*}
\left(\bigcup_{n=1}^{+\infty} L_{n}\right) \bigcap \bar{Q}_{\varepsilon} \quad \text { are relatively compact. } \tag{3.22}
\end{equation*}
$$

Recall that a maximal subcontinuum is a maximal, closed and connected set. In what follows, we denote by C_{n}^{ε} the subcontinuum of $C_{n} \cap \bar{Q}_{\varepsilon}$ containing $\left(\lambda_{0}, \varphi_{n}\right)$. Let

$$
\begin{align*}
F_{\varepsilon}:= & \left\{y: \text { there exist the subsequence }\left\{n_{k}\right\} \text { of }\{n\}\right. \\
& \text { and } \left.y_{n_{k}} \in C_{n_{k}}^{\varepsilon} \text { satisfying } \lim _{k \rightarrow+\infty} y_{n_{k}}=y\right\} . \tag{3.23}
\end{align*}
$$

Combining with 3.22 and Lebesgue dominated convergence theorem one can get

$$
\begin{equation*}
F_{\varepsilon} \subset L \quad \text { and } \quad\left(\lambda_{0}, \varphi^{*}\right) \in F_{\varepsilon} . \tag{3.24}
\end{equation*}
$$

Now we prove that F_{ε} is connected. Otherwise, there exist subsets V_{1} and V_{2} such that $\bar{V}_{1} \cap V_{2}=\emptyset, V_{1} \cap \bar{V}_{2}=\emptyset$ and $F_{\varepsilon}=V_{1} \cup V_{2}$. Since F_{ε} is closed, $F_{\varepsilon}=V_{1} \cup \bar{V}_{2}$,
and consequently, $V_{2}=\bar{V}_{2}$. Similarly, $V_{1}=\bar{V}_{1}$. Therefore, V_{1} and V_{2} are compact. Noticing $V_{1} \cap V_{2}=\emptyset$, there exists $\delta>0$, such that $\rho\left(V_{1}, V_{2}\right)=\delta$. Let

$$
\begin{aligned}
& U\left(V_{1}, \frac{\delta}{3}\right):=\left\{(\lambda, \varphi) \in R^{+} \times C[I, P]: d\left((\lambda, \varphi) ; V_{1}\right)<\frac{\delta}{3}\right\} \\
& U\left(V_{2}, \frac{\delta}{3}\right):=\left\{(\lambda, \varphi) \in R^{+} \times C[I, P]: d\left((\lambda, \varphi) ; V_{2}\right)<\frac{\delta}{3}\right\}
\end{aligned}
$$

where $d(\cdot, \cdot)$ denotes the distance between two sets in $E=R \times C[I, P]$.
Without loss of generality, suppose $P_{1}=\left(\lambda_{0}, \varphi^{*}\right) \in V_{1}$, and choose $P_{2} \in V_{2}$. Obviously, $P_{1 n}:=\left(\lambda_{0}, \varphi_{n}\right) \rightarrow P_{1}$ as $n \rightarrow+\infty$ and there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ and $P_{2, n_{k}} \in C_{n_{k}}^{\varepsilon}$ such that $\lim _{k \rightarrow+\infty} P_{2, n_{k}}=P_{2}$. As a consequence, there exists $N>0$ such that $P_{1, n_{k}} \in U\left(V_{1}, \frac{\delta}{3}\right), P_{2, n_{k}} \in U\left(V_{2}, \frac{\delta}{3}\right)$ for $n_{k} \geq N$. Notice that $C_{n_{k}}^{\varepsilon}$ is connected. Then there exists $P_{n_{k}} \in C_{n_{k}}^{\varepsilon} \cap \partial U\left(V_{1}, \frac{\delta}{3}\right)$ for each $n_{k} \geq n$. Since $\left\{P_{n_{k}}\right\}$ are relatively compact, without loss of generality, we may assume $\lim _{k \rightarrow+\infty} P_{n_{k}}=P^{*}$ as well. Then $P^{*} \in \partial U\left(V_{1}, \frac{\delta}{3}\right)$ and $P^{*} \in F_{\varepsilon}$, which contradicts $F_{\varepsilon} \cap \partial U\left(V_{1}, \frac{\delta}{3}\right)=\emptyset$. Consequently, F_{ε} is connected.

Let

$$
C:=\bigcup_{0<\varepsilon<\lambda_{0}} F_{\varepsilon} .
$$

Now we are in position to show that C meets our requirements. Noticing that F_{ε} is connected, it follows from (3.24) that $\left(\lambda_{0}, \varphi^{*}\right) \in F_{\varepsilon}$ for any $\varepsilon \in\left(0, \lambda_{0}\right)$. Thus, C is connected.

For every pair of positive numbers $R>r>0, \lambda \in\left(0, \lambda^{\prime}\right)\left(\lambda^{\prime}\right.$ is the same as in (3.15), $n \geq 1$, by virtue of (3.15) and the connectivity of C_{n} there exist $\varphi_{1 n}, \varphi_{2 n} \in$ $\overline{P \backslash\{\theta\}}$ such that

$$
\left(\lambda, \varphi_{1 n}\right),\left(\lambda, \varphi_{2 n}\right) \in C_{n}, \quad\left\|\varphi_{1 n}\right\| \leq r \quad \text { with }\left\|\varphi_{2 n}\right\| \geq R \text { for each } n \geq 1
$$

Using Corollary 3.5, we know that $\left\{\varphi_{2 n}\right\}$ is bounded. Moreover, notice that $\bigcup_{n=1}^{+\infty} L_{n} \bigcap(\{\lambda\} \times P)$ are relatively compact. This together with 3.23 guarantees that there exist φ_{1}^{*} and φ_{2}^{*} such that

$$
\left(\lambda, \varphi_{1}^{*}\right),\left(\lambda, \varphi_{2}^{*}\right) \in C, \quad\left\|\varphi_{1}^{*}\right\| \leq r,\left\|\varphi_{2}^{*}\right\| \geq R .
$$

Since R and r are arbitrary, we can easily know that C is an unbounded subcontinuum. Consequently, (ii) holds.

On the other hand, similar to the proof of Theorem 3.4, it is not difficult to see that C comes from $(0, \theta)$ and tends to $(0,+\infty)$ eventually. Thus, (iii) and (iv) hold.

Example. Consider the singular m-point boundary-value problem

$$
\begin{gather*}
\varphi^{\prime \prime}(x)+\lambda f(x, \varphi)=\frac{1}{\sqrt{x(1-x)}}\left(1+\varphi^{\frac{3}{2}}+\frac{1}{\sqrt[3]{\varphi}}\right), \quad 0<x<1, \tag{3.25}\\
\varphi(0)=0, \quad \varphi(1)=\frac{1}{2} \varphi\left(\frac{1}{2}\right) .
\end{gather*}
$$

Note that Theorem 3.6 applies to this problem, with $f(x, \varphi)=\frac{1}{\sqrt{x(1-x)}}\left(1+\varphi^{\frac{3}{2}}+\right.$ $\left.\frac{1}{\sqrt[3]{\varphi}}\right), a_{1}=\xi_{1}=\frac{1}{2}, \phi_{1}(x)=x, \varphi_{2}(x)=1-x, \rho=\varphi^{\prime}(0)=1, D=\frac{3}{4}$. Certainly, (H1) holds with $p(x) \equiv 1, q(x) \equiv 0$. Also (H2) is obviously satisfied.

Figure 1. Graph of continuum C

To show that (H3) holds, we take $k_{1}=1$, then

$$
f_{r, R}(y)=\frac{1}{\sqrt{y(1-y)}}\left(1+R^{\frac{3}{2}}+\frac{1}{\sqrt[3]{y(1-y) r}}\right)
$$

Thus, we can easily get

$$
\begin{aligned}
& \int_{0}^{1} K_{1}(y, y) f_{r, R}(y) \mathrm{d} y \\
& =\int_{0}^{1} y(1-y) \frac{1}{\sqrt{y(1-y)}}\left(1+R^{\frac{3}{2}}+\frac{1}{\sqrt[3]{y(1-y) r}}\right) \mathrm{d} y \\
& \quad+\frac{4}{3} \int_{0}^{\frac{1}{2}} \frac{1}{2} y \frac{1}{\sqrt{y(1-y)}}\left(1+R^{\frac{3}{2}}+\frac{1}{\sqrt[3]{y(1-y) r}}\right) \mathrm{d} y \\
& \quad+\frac{4}{3} \int_{\frac{1}{2}}^{1} \frac{1}{2}(1-y) \frac{1}{\sqrt{y(1-y)}}\left(1+R^{\frac{3}{2}}+\frac{1}{\sqrt[3]{y(1-y) r}}\right) \mathrm{d} y<+\infty
\end{aligned}
$$

It is clear, (H4) holds with $\psi_{R}(x)=\frac{1}{\sqrt{x(1-x)}}$. Also (H5) is satisfied. So, that Theorem 3.6 guarantees that the closure of positive solution set for 3.25 possesses a maximal and unbounded subcontinuum C, which comes from $(0, \theta)$ and tends to $(0,+\infty)$ eventually and meets (i)-(iv) in Theorem 3.6.

References

[1] D. Guo and J. Sun, Some global generalizations of the Birkhoff-Kellog theorem and applications, J. Math. Anal. Appl., 1988, 129: 231-242.
[2] D. Guo and J. Sun, Calculations and Application of Topological Degree, Journal of Mathematics Research and Exposition, 1988, 8(3): 469-480.
[3] D. Guo and V. Lakshminkantham, Nonlinear problems in abstract cones, San Diego:Academic Press, 1988.
[4] R. Ma, Positive Solutions of a nonlinear m-Point boundary value Problem, Computers and Mathematics with Applications, 2001, 42: 755-765.
[5] J. Sun, Global generalization of the Birkhoff-Kellog theorem on nonlinear operators, Acta Math.Sinica, 1987, 30: 264-267. (in Chinese).
[6] X. Xu, Positive solutions for singular semi-positone boundary value problems, J. Math. Anal. Appl., 2002, 273: 480-491.
[7] G. Zhang and J. Sun, Existence of positive solutions for singular second-order m-point boundary value problems, Acta Math. Appl. Sinica (English Series), 2004, 21(4): 655-664.

Xingqiu Zhang
Department of Mathematics, Liaocheng University, Liaocheng 252059, China
E-mail address: zhangxingqiu@lcu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34B10,34B16.
 Key words and phrases. Superlinear; singular; m-point boundary value problem; global structure.
 © 2008 Texas State University - San Marcos.
 Submitted May 31, 2007. Published January 31, 2008.
 Supported by grant 10671167 from the National Natural Science Foundation of China and by grant 31805 from Science Foundation of Liaocheng University.

