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GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR
SUPERLINEAR SINGULAR m-POINT BOUNDARY-VALUE

PROBLEMS

XINGQIU ZHANG

Abstract. Using topological methods and a well known generalization of the

Birkhoff-Kellogg theorem, we study the global structure of a class of superlin-

ear singular m-point boundary value problem.

1. Introduction

We are concerned with the nonlinear second-order singular m-point boundary-
value problem

−(Lϕ)(x) = λf(x, ϕ(x)), 0 < x < 1,

ϕ(0) = 0, ϕ(1) =
m−2∑
i=1

aiϕ(ξi),
(1.1)

where
(Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x),

ξi ∈ (0, 1), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai ∈ [0,+∞), f ∈ [C(0, 1)×(0,+∞), R+],
λ ∈ R+ = [0,+∞), f(x, u) may be singular not only at x = 0, x = 1 but also at
u = 0.

The existence of solutions for nonlinear singular multi-point boundary value
problems has been studied extensively in the literature (see [4, 6, 7] and references
therein). However, up to now, there are few papers consider the global structure
of solutions for singular m-point boundary-value problem. In this paper, we use
the topological method and the generalization of the well known Birkhoff-Kellogg
theorem to get the global structure of the closure of positive solution set of (1.1)
(denoted by L) when f(x, ϕ) satisfying superlinear condition at ∞ where

L := {(λ, ϕ) ∈ (0,+∞)× P \ {θ} : (λ, ϕ) satisfying (1.1)}. (1.2)

Under some suplinear conditions, we get that L possesses a maximal and unbounded
subcontinuum C (i.e., a maximal closed connected subsets of solution) which comes
from (0, θ) and tends to (0,+∞) eventually.
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The basic space used in this paper is E = R × C[I,R]. As is known, C[I,R] is
a Banach space with the norm ‖ϕ‖ = maxx∈I |ϕ(x)| for ϕ ∈ C[I,R]. Furthermore,
E is also a Banach space if we endowed a norm ‖(λ, ϕ)‖ = max{|λ|, ‖ϕ‖} for
(λ, ϕ) ∈ E. (λ, ϕ) is called a solution of (1.1), if λ > 0, ϕ ∈ C[I,R] ∩ C2[(0, 1), R]
satisfying (1.1), where I = [0, 1]. In addition, if λ > 0, ϕ(x) > 0 holds for any
x ∈ (0, 1), then (λ, ϕ) is called a positive solution of (1.1).

The rest of this paper is organized as follows. Section 2 gives some necessary
lemmas. Section 3 is devoted to the main result and its proof. An example is
worked out in Section 4 to indicate the application of our main result.

2. Preliminary Lemmas

Throughout this paper, we always suppose
(H1) p(x) ∈ C1[0, 1], p(x) > 0, q(x) ∈ C[0, 1], q(x) ≤ 0.

Lemma 2.1 ([7]). Assume that (H1) holds. Let φ1(x), φ2(x) be the solution of

(Lϕ)(x) = 0, 0 < x < 1,

ϕ(0) = 0, ϕ(1) = 1,
(2.1)

and
(Lϕ)(x) = 0, 0 < x < 1,

ϕ(0) = 1, ϕ(1) = 0,
(2.2)

respectively. Then
(i) φ1(x) is increasing on [0,1] and φ1(x) > 0, x ∈ (0, 1];
(ii) φ2(x) is decreasing on [0,1] and φ2(x) > 0, x ∈ [0, 1).

Let

k(x, y) =

{
1
ρφ1(x)φ2(y), 0 ≤ x ≤ y ≤ 1,
1
ρφ1(y)φ2(x), 0 ≤ y ≤ x ≤ 1,

(2.3)

where ρ = φ′1(0). By Lemma 2.1 we know that φ′1 > 0. Let

K(x, y) = k(x, y) +D−1φ1(x)
m−2∑
i=1

aik(ξi, y), 0 ≤ x, y ≤ 1 (2.4)

where D = 1−
∑m−2

i=1 aiφ1(ξi).

Lemma 2.2 ([7]). Assume (H1) holds. Then k(x, y) defined by (2.3) possesses the
following properties:

(i) k(x, y) is continuous and symmetrical over [0, 1]× [0, 1];
(ii) k(x, y) ≥ 0, and k(x, y) ≤ k(y, y), for all 0 ≤ x, y ≤ 1;
(iii) There exist constants k1, k2 > 0 such that

k1x(1− x) ≤ k(x, x) ≤ k2x(1− x), x ∈ [0, 1].

We make the following assumptions:
(H2)

∑m−2
i=1 aiφ1(ξi) < 1, where φ1(x) is the unique solution of (2.1).

(H3) f : (0, 1)× (0,+∞) → R+ is continuous (it may be singular at x = 0, 1 and
ϕ = 0) and for any R > r > 0,

∫ 1

0
K1(y, y)fr,R(y)dy < +∞ where

K1(y, y) = y(1− y) +D−1
m−2∑
i=1

aik(ξi, y);
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fr,R(y) := sup{f(y, ϕ) : ϕ ∈ [ρk1y(1 − y)r,R], y ∈ (0, 1)}, k1 has the same
meaning as in Lemma 2.2.

(H4) For every R > 0, there exists ψR ∈ C[I,R+] (ψR 6≡ θ) such that

f(x, ϕ) ≥ ψR(x), for x ∈ (0, 1), ϕ ∈ (0, R].

(H5) There exists [a, b] ⊂ (0, 1) such that

lim
ϕ→+∞

f(x, ϕ)
ϕ

= +∞ uniformly for x ∈ [a, b].

Set

(Aϕ)(x) =
∫ 1

0

K(x, y)p̃(y)f(x, ϕ(y))dy, x ∈ [0, 1], (2.5)

where

p̃(y) =
1

p(y)
exp

( ∫ y

0

p′(s)
p(s)

ds
)
. (2.6)

Let

P = {ϕ ∈ C[0, 1] : ϕ(x) ≥ 0, ϕ(x) ≥ ‖ϕ‖ρk1x(1− x), ρk1 < 4, x ∈ [0, 1]}.

where k1 has the same meaning as in Lemma 2.2. It is easy to check that P is a
cone in C[0, 1].

The following theorem is the generalization of the well known Birkhoff-Kellogg.

Lemma 2.3 ([1, 5]). Let X be an infinite-dimensional Banach space, P a cone of
X, and A : P → P a completely continuous operator. Suppose that there exists a
bounded open set Ω in X, θ ∈ Ω such that

inf
x∈P∩∂Ω

‖Ax‖ > 0.

Then the closure of the set of nonzero solutions of the equation ϕ = λAϕ, i.e.,

Σ := {(λ, ϕ) : λ ∈ R+, ϕ ∈ P,ϕ 6= θ, ϕ = λAϕ}

possesses a maximal subcontinuum C (i.e., a maximal closed connected subsets
of

∑
), which is unbounded and there exists λ > 0 (for example we may choose

λ > supx∈P∩∂Ω ‖x‖/ infx∈P∩∂Ω ‖Ax‖) such that

(i) C ∩ ((0,+∞)× P \ ((λ,+∞)× Ω)) is unbounded;
(ii) C ∩ ([λ,+∞)× ∂Ω) = ∅, C ∩ ({0} × (P \ {θ})) = ∅; and either
(iii) C ∩ ([λ,+∞)× Ω) is unbounded, or

(iii)∗ C ∩ ([0,+∞)× {θ}) 6= ∅,
where θ denotes zero element of X.

3. Main Result

First, we consider the following approximating problem of BVP (1.1)

−(Lϕ)(x) = λfn(x, ϕ(x)), 0 < x < 1,

ϕ(0) = 0, ϕ(1) =
m−2∑
i=1

aiϕ(ξi),
(3.1)
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where fn(x, ϕ(x)) = f(x,max{ 1
n , ϕ(x)}). Obviously, fn(x, ϕ(x)) only has the sin-

gularity at x = 0, 1 and has no singularity at ϕ = 0 any more. Define an operator
An on the cone P by

(Anϕ)(x) =
∫ 1

0

K(x, y)p̃(y)fn(y, ϕ(y))dy for any ϕ ∈ P, (3.2)

where K(x, y) and p̃(y) are defined as in (2.4)(2.6) respectively. It follows from
(H3) and the definition of K(x, y) that An is well defined on P for each n ∈ N .

Lemma 3.1. Assume (H2), (H3) hold. Then for each n ≥ 1, (3.1) has a positive
solution belonging to C2[(0, 1), R] ∩ C[I,R] if and only λAn has a fixed point in
P \ {θ}.

Proof. Sufficiency is obvious. Now we are in position to prove necessity.
Suppose (λ, ϕ) = (λ, ϕ(x)) is a positive solution of (3.1). Then, λ > 0, ϕ ∈

C2[(0, 1), R+] ∩ C[I,R+] and for any x ∈ (0, 1), ϕ(x) > 0. It is obvious, ϕ(x) =
λAnϕ(x). Take x0 ∈ [0, 1] such that ϕ(x0) = ‖ϕ‖. From [7], for any x, y ∈ [0, 1] we
have k(x, y) ≥ k(x0, y)φ1(x)φ2(x). So, we have

ϕ(x) = λ

∫ 1

0

k(x, y)p̃(y)fn(y, ϕ(y))dy

+ λD−1φ1(x)
m−2∑
i=1

ai

∫ 1

0

k(ξi, y)p̃(y)fn(y, ϕ(y))dy

≥ λφ1(x)φ2(x)
∫ 1

0

k(x0, y)p̃(y)fn(y, ϕ(y))dy

+ λD−1φ1(x)
m−2∑
i=1

ai

∫ 1

0

k(ξi, y)p̃(y)fn(y, ϕ(y))dy

≥ λφ1(x)φ2(x)
[ ∫ 1

0

k(x0, y)p̃(y)fn(y, ϕ(y))dy

+D−1
m−2∑
i=1

ai

∫ 1

0

k(ξi, y)p̃(y)fn(y, ϕ(y))dy
]

≥ λφ1(x)φ2(x)
[ ∫ 1

0

k(x0, y)p̃(y)fn(y, ϕ(y))dy

+D−1φ1(x0)
m−2∑
i=1

ai

∫ 1

0

k(ξi, y)p̃(y)fn(y, ϕ(y))dy
]

= ϕ(x0)φ1(x)φ2(x) = ‖ϕ‖ρk1x(1− x)

As a consequence, ϕ ∈ P \ {θ}. �

Lemma 3.2. Assume (H1)–(H3) hold. Then An : P → P is continuous for each
n ∈ N .

The proof of the above lemma is obvious, so we omit it. Let

Ln := {(λ, ϕ) ∈ R+ × P : ϕ = λAnϕ} for all n ≥ 1.
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Lemma 3.3. Suppose (H1)–(H4) hold. Then for each n,Ln is locally compact in
[0,+∞)× P and

Ln = {(λ, ϕ) ∈ R+ × P : ϕ = λAnϕ,ϕ 6= θ}.

Proof. For every R > 0, let LR
n := {(λ, ϕ) ∈ Ln : |λ| ≤ R, |ϕ| ≤ R}. If (λ, ϕ) ∈ Ln

and ϕ = θ, then by (H4) we get λ = 0. So, we need only to prove that LR
n is

relatively compact and closed.
In fact, for each (λ, ϕ) ∈ LR

n , from the construction of P we have

fn(x, ϕ(x)) ≤ f 1
n ,R(x) for all x ∈ (0, 1),

and

ϕ(x) = λ

∫ 1

0

K(x, y)p̃(y)fn(y, ϕ(y))dy, x ∈ [0, 1].

Combining with (H3), it is easy to know that {ϕ = ϕ(x) : (λ, ϕ) ∈ LR
n } are

equicontinuous on I. Thus, from Ascoli-Arzela theorem we get that LR
n is relatively

compact. On the other hand, (H3) and Lebesgue dominated convergence theorem
guarantee that LR

n is closed. �

The next theorem gives the global structure of Ln.

Theorem 3.4. Suppose that (H1)–(H5) hold. Then for each n ≥ 1, Ln possesses
a maximal and unbounded subcontinuum Cn, which comes from (0, θ) and tends to
(0,+∞) eventually satisfying

(1) (0, θ) ∈ Cn;
(2) There exists λ0

n ∈ (0,+∞) such that

Cn ⊂ [0, λ0
n]× P, Cn ∩ ({λ} × P ) 6= ∅, ∀ λ ∈ [0, λ0

n];

(3) Cn is unbounded in [0, λ0
n]× P ;

(4) λ = 0 is an unique asymptotic bifurcation point of An;
(5) There exists λ∗n ∈ (0, λ0

n] such that for each λ ∈ (0, λ∗n), (3.1) has at least
two positive solution ϕ∗nλ and ϕ∗∗nλ satisfying

‖ϕ∗nλ‖ ≤ ‖ϕ∗∗nλ‖, (λ, ϕ∗nλ), (λ, ϕ∗∗nλ) ∈ Cn;

(6)

lim
λ→0+, (λ,ϕ∗

nλ)∈Cn

‖ϕ∗nλ‖ = 0, lim
λ→0+, (λ,ϕ∗∗

nλ)∈Cn

‖ϕ∗∗nλ‖ = +∞.

Proof. First we prove that for every λ > 0, there exists R > 0 such that

Ln ∩ ([λ,+∞)× (P \ PR)) = ∅, n = 1, 2, . . . , (3.3)

where PR = {ϕ ∈ P : ‖ϕ‖ < R}.
In fact, take a positive number l satisfying

l >
(
ρk1λmax

x∈I

∫ b

a

K(x, y)p̃(y)y(1− y)dy
)−1

> 0, (3.4)

where a, b are as the same as in (H5). Then there exists R′ > 1 such that

f(x, u) ≥ lu for all x ∈ [a, b], u > R′. (3.5)

Choose a number R with R > R′

ρk1a(1−b) . It follows from the definition of cone P
that

ϕ(y) ≥ ‖ϕ‖ρk1y(1− y) ≥ ρk1a(1− b)R > R′ for all y ∈ [a, b], ϕ ∈ P \ PR. (3.6)
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Therefore, by (3.5) and (3.6) for λ ≥ λ and ϕ ∈ P \ PR

λAnϕ(x) = λ

∫ 1

0

K(x, y)p̃(y)fn(y, ϕ(y))dy

≥ λ

∫ b

a

K(x, y)p̃(y)f(y, ϕ(y))dy

≥ lλ

∫ b

a

K(x, y)p̃(y)ϕ(y)dy

≥ ρk1lλ‖ϕ‖
∫ b

a

K(x, y)p̃(y)y(1− y)dy

Combining with (3.4), we have

‖λAnϕ‖ ≥ ρk1lλ‖ϕ‖max
x∈I

∫ b

a

K(x, y)p̃(y)y(1− y)dy > ‖ϕ‖, (3.7)

for all λ ≥ λ, ϕ ∈ P \ PR, which implies that (3.3) holds.
On the other hand, from the definition of fn(x, ϕ(x)), for fixed n ≥ 1 we have

0 < ϕ(y) ≤ R, for all ϕ ∈ PR. Consequently, by (H4) we know

Anϕ(x) =
∫ 1

0

K(x, y)p̃(y)fn(x, ϕ(y))dy ≥
∫ 1

0

K(x, y)p̃(y)ψR(y)dy,∀ ϕ ∈ PR.

(3.8)
Let r < min

{
R, λmaxx∈I

∫ 1

0
K(x, y)p̃(y)ψR(y)dy

}
. This together with (3.8) im-

plies that for any ϕ ∈ P r, λ > λ

‖λAnϕ‖ = λmax
x∈I

∫ 1

0

K(x, y)p̃(y)fn(y, ϕ(y))dy

> λmax
x∈I

∫ 1

0

K(x, y)p̃(y)fn(y, ϕ(y))dy ≥ r = ‖ϕ‖,
(3.9)

which yields
Ln ∩ ((λ,+∞)× Pr) = ∅. (3.10)

Note that (3.7) implies

inf
ϕ∈∂PR

‖Anϕ‖ ≥ ρk1lRmax
x∈I

∫ b

a

K(x, y)p̃(y)y(1− y)dy > 0,

λ > sup
ϕ∈∂PR

‖ϕ‖/ inf
ϕ∈∂PR

‖Anϕ‖.

As a consequence, by (3.3) (3.10) and Lemma 2.3 we get that Ln possesses a
maximal and unbounded subcontinuum Cn satisfying that

Cn ∩ ((0,+∞)× P ) \ ((λ,+∞)× PR) is unbounded and

Cn ∩ ((λ,+∞)× {Pr ∪ (P \ PR)}) = ∅.
(3.11)

Next, for (λ, ϕ) ∈ Ln ∩ ([λ,+∞) × (PR \ Pr)), noticing that ρk1rx(1 − x) ≤
ϕ(x) ≤ R for x ∈ I, by (H4) we can get

ϕ(x) = λ(Anϕ)(x) = λ

∫ 1

0

K(x, y)p̃(y)fn(x, ϕ(y))dy ≥ λ

∫ 1

0

K(x, y)p̃(y)ψR(y)dy
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This means

λ ≤ R
(

max
x∈I

∫ b

a

K(x, y)p̃(y)ψR(y)dy
)−1

, (3.12)

which implies Ln ∩ ([λ,+∞)× (PR \Pr)) is bounded. This together with (3.3) and
(3.10) guarantees that

Ln ∩ ([λ,+∞)× P ) is bounded ,∀ λ > 0. (3.13)

Thus, by (3.11)(3.13) we know that Cn ∩ ((0, λ]× P ) is unbounded. Furthermore,
by virtue of (iii) and (iii)∗ of Lemma 2.3 and (3.11) (3.12) one can get

Cn ∩ ([0,+∞)× {θ}) 6= ∅.

Now we show that
Cn ∩ ([0,+∞)× {θ}) = {(0, θ)}.

Suppose (λ0, θ) ∈ Cn ∩ ([0,+∞) × {θ}), then there exist λm ∈ R+ and ϕm ∈
P \ {θ},m = 1, 2, . . . such that

ϕm(x) = λm(Anϕm)(x), λm → λ0, ϕm → θ (m→ +∞).

Without loss of generality, assume ϕm ∈ PR \ {θ}. Then

(Anϕm)(x) ≥
∫ 1

0

K(x, y)p̃(y)ψR(y)dy.

Therefore,

|λm| ≤
‖ϕm‖

maxx∈I

∫ 1

0
K(x, y)p̃(y)ψR(y)dy

→ 0 (m→ +∞).

So, λ0 = 0, i.e., Cn ∩ ([0,+∞)× {θ}) = {(0, θ)}. As a consequence, (1) holds. By
Lemma 2.3 we know Cn is a maximal and unbounded subcontinuum which comes
from (0, θ).

On the other hand, suppose λ0 ∈ (0, λ] is an asymptotic bifurcation point of the
operator An. Then there exist λm ∈ R+ and ϕm ∈ P \PR such that ϕm = λmAnϕm

and λm → λ0, ‖ϕm‖ → +∞ as m→ +∞.
From (H5), as in the proof of (3.7), one obtain

1
λm

=
‖Anϕm‖
‖ϕm‖

→ +∞ (‖ϕm‖ → +∞).

This means that λ0 = 0 is the unique asymptotic bifurcation point. Therefore, Cn

tends to (0,+∞); i.e., (4) holds.
Let L := {λ : there exists ϕ ∈ P \ {θ} such that ϕ = λAnϕ}. Obviously,

L 6= ∅. Let λ0
n := sup{λ : λ ∈ L}. By virtue of (3.11) (3.12) we know λ0

n ∈
(0,+∞). Suppose (λm, ϕm) ∈ Ln satisfying λm → λ0

n, m → ∞. It follows from
(3.13) that {ϕm} is bounded. By Lemma 3.3 there exists ϕ ∈ P \ {θ} such that
(λ0

n, ϕ) ∈ Ln. Consequently, noticing Cn is unbounded, by virtue of the connection
of subcontinuum one can get (2) holds. Consequently, we have

Ln ∩ ((λ0
n,+∞)× P ) = ∅. (3.14)

Considering Cn is unbounded and 0 is the unique asymptotic bifurcation point, it
is not difficult to know from (3.14) that (3) also holds.
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To get (5) and (6), noticing that for (λ, ϕ) ∈ Ln ∩ ((0,+∞) × (PR \ Pr)) (R >
1 > r > 0), we have

ϕ(x) = λ(Anϕ)(x) = λ

∫ 1

0

K(x, y)p̃(y)fn(y, ϕ(y))dy

≤ λ

∫ 1

0

K(x, y)p̃(y)fr,R(y)dy,

This together with (3.12), we get

λ′ := r
(

max
x∈I

∫ 1

0

K(x, y)p̃(y)fr,R(y)dy
)−1

≤ λ

≤ R
(

max
x∈I

∫ 1

0

K(x, y)p̃(y)ψR(y)dy
)−1

:= λ′′.

(3.15)

Thus
Cn ∩ ((0,+∞)× (PR \ Pr)) ⊂ [λ′, λ′′]× PR \ Pr. (3.16)

Since Cn is a maximal and unbounded subcontinuum which comes from (0, θ)
and tends to (0,+∞) eventually, for any λ ∈ (0, λ′) from (3.15) and (3.16) one
can get that there exist at least two points ϕ∗nλ and ϕ∗∗nλ ∈ P \ {θ} such that
(λ, ϕ∗nλ), (λ, ϕ∗∗nλ) ∈ Cn with ‖ϕ∗∗nλ‖ > R > r > ‖ϕ∗nλ‖ > 0. Notice that R and
r satisfying R > 1 > r > 0 are arbitrary. Thus, it is easy to know (5) and (6)
hold. �

From (3.3) (3.10) and (3.12) in above Theorem 3.4, one can obtain the following
corollary.

Corollary 3.5. Assume (H1)–(H5) hold. Then for every ε > 0, there exist positive
number Rε > 1 > rε > 0, λε > 0 such that

Ln ∩ ([ε,+∞)× P ) ⊂ [ε, λε]× (PRε
\ Prε

),∀ n ≥ 1, (3.17)

where Rε and λε are nonincreasing and rε is nondecreasing with respect to ε ∈
(0,+∞).

The next theorem gives a result for L and (1.1).

Theorem 3.6. Let (H1)–(H5) be satisfied. Then L possesses a maximal and un-
bounded subcontinuum C, which comes from (0, θ) and tends to (0,+∞) eventually
such that

(i) There exists λ0 > 0 satisfying L ∩ ([λ0,+∞)× P ) = ∅;
(ii) For each λ > 0, C ∩ ([0, λ]× P ) is unbounded;
(iii) There exist λ∗ ∈ (0, λ0) such that for all λ ∈ (0, λ∗), (1.1) has at least two

positive solution ϕ1
λ and ϕ2

λ satisfying

(λ, ϕ1
λ), (λ, ϕ2

λ) ∈ C, ‖ϕ2
λ‖ > ‖ϕ1

λ‖;
(iv)

lim
λ→0+, (λ,ϕ1

λ)∈C
‖ϕ1

λ‖ = 0, lim
λ→0+, (λ,ϕ2

λ)∈C
‖ϕ2

λ‖ = +∞.

Proof. Firstly, we prove that L 6= ∅. By Theorem 3.4 and (3.15), we know that
there exists λ0 > 0 such that for each n,Ln possesses a maximal and unbounded
subcontinuum Cn containing (0, θ), which satisfies

Cn ∩ ({λ0} × P ) 6= ∅, ∀ n ≥ 1. (3.18)
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On the other hand, from Corollary 3.5, one can get that there exist R > 1 > r > 0
such that

Ln ∩ ({λ0} × P ) ⊂ {λ0} × (PR \ Pr) for all n ≥ 1. (3.19)

For every n, by (3.18) one can take ϕn ∈ Cn ∩ ({λ0} × P ). Then it follows from
(3.19) that ϕn ∈ PR \ Pr. By (H3) we know

fn(x, ϕn(x)) ≤ fr,R(x) for all x ∈ (0, 1), n ≥ 1. (3.20)

Similar to the proof of Lemma 3.3, it is easy to know that {ϕn} is uniformly
bounded and equicontinuous on I = [0, 1]. As a consequence, Ascoli-Arzela theorem
generates the compactness of {ϕn}. So there exists a subsequence (without loss of
generality, we may assume this sequence is {ϕn} as well) and ϕ∗ ∈ PR \ Pr such
that ϕn → ϕ∗ as n → +∞. (3.2) and Lebesgue dominated convergence theorem
guarantee (λ0, ϕ

∗) ∈ L, that is, L 6= ∅.
Secondly, define an operator A on P \ {θ} as follows:

(Aϕ)(x) =
∫ 1

0

K(x, y)p̃(y)f(y, ϕ(y))dy for all x ∈ I, ϕ ∈ P \ {θ}. (3.21)

By (H3), A is well defined on P \ {θ}. It is easy to see that to seek a positive
solution of (1.1) is equivalent to find a fixed point of λA on P \ {θ}. Similar to
Theorem 3.4, one can get (i) holds.

To obtain (ii), noticing that for any ε ∈ (0, λ0), it follows from Corollary 3.5 that
there exist Rε, λε, and rε such that

Ln ∩ ([ε,+∞)× P ) ⊂ Qε for all n ≥ 1.

where Rε, λε are nonincreasing and rε is nondecreasing functions with respect to ε,
Qε := (ε, λε]× PRε

.
On the other hand,( +∞⋃

n=1

Ln

) ⋂
Qε ⊂

( +∞⋃
n=1

Ln

) ⋂
([ε, λε]× (PRε

\ Prε
)).

This together with Lemma 3.3 and its proof implies that( +∞⋃
n=1

Ln

) ⋂
Qε are relatively compact. (3.22)

Recall that a maximal subcontinuum is a maximal, closed and connected set. In
what follows, we denote by Cε

n the subcontinuum of Cn ∩ Qε containing (λ0, ϕn).
Let

Fε :=
{
y : there exist the subsequence {nk} of {n}

and ynk
∈ Cε

nk
satisfying lim

k→+∞
ynk

= y
}
.

(3.23)

Combining with (3.22) and Lebesgue dominated convergence theorem one can get

Fε ⊂ L and (λ0, ϕ
∗) ∈ Fε. (3.24)

Now we prove that Fε is connected. Otherwise, there exist subsets V1 and V2 such
that V 1 ∩ V2 = ∅, V1 ∩ V 2 = ∅ and Fε = V1 ∪ V2. Since Fε is closed, Fε = V1 ∪ V 2,
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and consequently, V2 = V 2. Similarly, V1 = V 1. Therefore, V1 and V2 are compact.
Noticing V1 ∩ V2 = ∅, there exists δ > 0, such that ρ(V1, V2) = δ. Let

U(V1,
δ

3
) := {(λ, ϕ) ∈ R+ × C[I, P ] : d((λ, ϕ);V1) <

δ

3
};

U(V2,
δ

3
) := {(λ, ϕ) ∈ R+ × C[I, P ] : d((λ, ϕ);V2) <

δ

3
};

where d(·, ·) denotes the distance between two sets in E = R× C[I, P ].
Without loss of generality, suppose P1 = (λ0, ϕ

∗) ∈ V1, and choose P2 ∈ V2.
Obviously, P1n := (λ0, ϕn) → P1 as n→ +∞ and there exists a subsequence {nk}
of {n} and P2,nk

∈ Cε
nk

such that limk→+∞ P2,nk
= P2. As a consequence, there

exists N > 0 such that P1,nk
∈ U(V1,

δ
3 ), P2,nk

∈ U(V2,
δ
3 ) for nk ≥ N . Notice

that Cε
nk

is connected. Then there exists Pnk
∈ Cε

nk
∩ ∂U(V1,

δ
3 ) for each nk ≥ n.

Since {Pnk
} are relatively compact, without loss of generality, we may assume

limk→+∞ Pnk
= P ∗ as well. Then P ∗ ∈ ∂U(V1,

δ
3 ) and P ∗ ∈ Fε, which contradicts

Fε ∩ ∂U(V1,
δ
3 ) = ∅. Consequently, Fε is connected .

Let
C :=

⋃
0<ε<λ0

Fε.

Now we are in position to show that C meets our requirements. Noticing that Fε

is connected, it follows from (3.24) that (λ0, ϕ
∗) ∈ Fε for any ε ∈ (0, λ0). Thus, C

is connected.
For every pair of positive numbers R > r > 0, λ ∈ (0, λ′)(λ′ is the same as in

(3.15), n ≥ 1, by virtue of (3.15) and the connectivity of Cn there exist ϕ1n, ϕ2n ∈
P \ {θ} such that

(λ, ϕ1n), (λ, ϕ2n) ∈ Cn, ‖ϕ1n‖ ≤ r with ‖ϕ2n‖ ≥ R for each n ≥ 1.

Using Corollary 3.5, we know that {ϕ2n} is bounded. Moreover, notice that⋃+∞
n=1 Ln

⋂
({λ} × P ) are relatively compact. This together with (3.23) guarantees

that there exist ϕ∗1 and ϕ∗2 such that

(λ, ϕ∗1), (λ, ϕ
∗
2) ∈ C, ‖ϕ∗1‖ ≤ r, ‖ϕ∗2‖ ≥ R.

Since R and r are arbitrary, we can easily know that C is an unbounded subcon-
tinuum. Consequently, (ii) holds.

On the other hand, similar to the proof of Theorem 3.4, it is not difficult to
see that C comes from (0, θ) and tends to (0,+∞) eventually. Thus, (iii) and (iv)
hold. �

Example. Consider the singular m-point boundary-value problem

ϕ′′(x) + λf(x, ϕ) =
1√

x(1− x)
(1 + ϕ

3
2 +

1
3
√
ϕ

), 0 < x < 1,

ϕ(0) = 0, ϕ(1) =
1
2
ϕ
(1

2

)
.

(3.25)

Note that Theorem 3.6 applies to this problem, with f(x, ϕ) = 1√
x(1−x)

(1 + ϕ
3
2 +

1
3√ϕ ), a1 = ξ1 = 1

2 , φ1(x) = x, ϕ2(x) = 1 − x, ρ = ϕ′(0) = 1, D = 3
4 . Certainly,

(H1) holds with p(x) ≡ 1, q(x) ≡ 0. Also (H2) is obviously satisfied.
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→

↑

λ0 R1

E

Figure 1. Graph of continuum C

To show that (H3) holds, we take k1 = 1, then

fr,R(y) =
1√

y(1− y)

(
1 +R

3
2 +

1
3
√
y(1− y)r

)
.

Thus, we can easily get∫ 1

0

K1(y, y)fr,R(y)dy

=
∫ 1

0

y(1− y)
1√

y(1− y)

(
1 +R

3
2 +

1
3
√
y(1− y)r

)
dy

+
4
3

∫ 1
2

0

1
2
y

1√
y(1− y)

(
1 +R

3
2 +

1
3
√
y(1− y)r

)
dy

+
4
3

∫ 1

1
2

1
2
(1− y)

1√
y(1− y)

(
1 +R

3
2 +

1
3
√
y(1− y)r

)
dy < +∞.

It is clear, (H4) holds with ψR(x) = 1√
x(1−x)

. Also (H5) is satisfied. So, that

Theorem 3.6 guarantees that the closure of positive solution set for (3.25) possesses
a maximal and unbounded subcontinuum C, which comes from (0, θ) and tends to
(0,+∞) eventually and meets (i)-(iv) in Theorem 3.6.
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