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MULTIPLE SOLUTIONS FOR A ELLIPTIC SYSTEM IN
EXTERIOR DOMAIN

HUIJUAN GU, JIANFU YANG, XIAOHUI YU

Abstract. In this paper, we study the existence of solutions for the nonlinear
elliptic system

−∆u + u = |u|p−1u + λv in Ω,

−∆v + v = |v|p−1v + λu in Ω,

u = v = 0 on ∂Ω,

where Ω is a exterior domain in RN , N ≥ 3. We show that the system possesses

at least one nontrivial positive solution.

1. Introduction

This article concerns the existence of solutions to the semilinear elliptic problem

−∆u+ u = |u|p−1u+ λv in Ω,

−∆v + v = |v|p−1v + λu in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 3, is an exterior domain, 0 < λ < 1 is a real parameter,
∂Ω 6= ∅ and 1 < p < N+2

N−2 . In general, in a unbounded domain Ω, the inclusion of
H1

0 (Ω) ↪→ Lp(Ω), 2 ≤ p < 2N
N−2 , is not compact, the (PS) condition in critical point

theory does not satisfy for related functionals. In some special cases, for instance,
if Ω = RN , H1

r (Ω) is compactly embedded in Lp(Ω), 2 ≤ p < 2N
N−2 . Using the fact,

it was proved in [4] that the problem

−∆u+ u = |u|p−1u in RN (1.2)

possesses a positive solution and infinitely many solutions respectively. The general
case was considered in [10]; i.e., problem

−∆u+ a(x)u = b(x)|u|p−1u in RN ,

u = 0 on ∂Ω.
(1.3)

Suppose a(x) ≥ 0, b(x) ≥ 0 and lim|x|→∞ a(x) = ā, lim|x|→∞ b(x) = b̄, let cΩ be
the mountain pass level of problem (1.3) and c∞ be the mountain pass level of the
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limiting problem
−∆u+ āu = b̄|u|p−1u in RN ,

u ∈ H1(RN ).
(1.4)

It was showed in [10] that the (PS)c condition holds for the associated functional
of (1.3) provided that c ∈ (0, c∞). However, for problems defined in an exterior
domain, it was proved in [2] that cΩ = c∞. One then has to look for solutions with
higher energy. Using barycenter function lifting critical values up, a solution of (1.2)
with the critical value belonging in (c∞, 2c∞) was found in [2]. The uniqueness of
positive solution, up to a translation, of problem (1.4) and the behavior of the
solution at infinity play crucial roles in insuring that there are no solutions with
energy in between c∞ and 2c∞.

In this paper, we are interested in finding solutions of problem (1.1). The limiting
problem of (1.1) is

−∆u+ u = |u|p−1u+ λv in RN ,

−∆v + v = |v|p−1v + λu in RN .

(1.5)

In a recent paper [1], Ambrosetti, Cerami and Ruiz showed that solutions of problem
(1.5) bifurcating from the semi-trivial solutions if λ is sufficiently small. We will
show that ground state solutions of problem (1.5) are obstacles preventing the
global compactness of the associated functional of problem (1.1), and furthermore,
problem (1.1) has no ground state solutions. So we have to find solutions at higher
energy levels. It is not known whether problem (1.5) has unique positive solution
or not. This brings difficulties in finding solutions. Fortunately, it was showed in
[1] that ground state levels of (1.5) are isolated if λ is sufficiently small or λ < 1
and sufficiently close to 1.

Our main result is the following.

Theorem 1.1. There exist δ > 0 and a constant ρ̄ = ρ̄(λ) such that if λ ∈ (0, δ)
and

RN \ Ω ⊂ Bρ̄(x0) = {x ∈ RN : |x− x0| ≤ ρ̄},
problem (1.1) has at least three pairs of nontrivial solutions.

Theorem 1.1 will be proved by finding critical points of the corresponding func-
tional of problem (1.1)

I(u, v) =
1
2

∫
Ω

|∇u|2 + u2 dx+
1
2

∫
Ω

|∇v|2 + v2 dx

− 1
p+ 1

∫
Ω

|u|p+1 + |v|p+1 dx− λ

∫
Ω

uv dx,

(1.6)

where (u, v) ∈ E = H1
0 (Ω)×H1

0 (Ω). In section 2, we show that ground state solu-
tions are exponentially decaying at infinity and that problem (1.1) has no ground
state solution. In final section, we prove Theorem 1.1.

2. Preliminaries

It was proved in [1] that problem (1.5) has a ground state solution (uλ, vλ) for
0 < λ < 1, which is positive and radially symmetric.
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Lemma 2.1. There exist δ = δ(λ) > 0 and C > 0 such that

|Dαuλ(x)| ≤ Ce−δ|x|, |Dαvλ(x)| ≤ Ce−δ|x| ∀x ∈ RN (2.1)

for |α| ≤ 2.

Proof. Let wλ = uλ + vλ, then wλ satisfies

−∆wλ + wλ = (up
λ + vp

λ) + λwλ, inRN . (2.2)

Since w = w(r) is radially symmetric, let φ(r) = r
N−1

2 wλ, then φ satisfies

φrr = [q(r) +
b

r2
]φ (2.3)

with q(r) = (1−λ)wλ−(up
λ+vp

λ)

wλ
and b = (N−1)(N−3)

4 . Since uλ and vλ are radially
symmetric, uλ(r), vλ(r) → 0 as |x| → ∞. There is r0 > 0 such that q(r) ≥ 1−λ

2 if
r ≥ r0. Set ψ = φ2, then ψ satisfies

1
2
ψrr = φ2

r + (q(r) +
b

r2
)ψ, (2.4)

this implies that ψrr ≥ (1 − λ)ψ for r ≥ r0. Let z = e−
√

1−λr[ψr +
√

1− λψ], we
have

zr = e−
√

1−λr[ψrr − (1− λ)ψ] ≥ 0 (2.5)

for r ≥ r0. So z is nondecreasing on (r0,+∞). If there exists r1 > r0 such that
z(r1) > 0, then z(r) ≥ z(r1) > 0 for r ≥ r1, that is

ψr +
√

1− λψ ≥ (z(r1))e
√

1−λr, (2.6)

implying that ψr +
√

1− λψ is not integrable, a contradiction to the fact that both
ψ and ψr are integrable. Hence, there holds

(e
√

1−λrψ)r = e
√

1−λrψr +
√

1− λe
√

1−λrψ = e2
√

1−λrz ≤ 0 (2.7)

for r ≥ r0. This implies

ψ(r) ≤ Ce−
√

1−λr; (2.8)

i.e.,

φ(r) ≤ Ce−
√

1−λ
2 r. (2.9)

By the definition of φ,w and the fact that uλ, vλ > 0 we have

uλ, vλ ≤ Cr−
N−1

2 e−
√

1−λ
2 r. (2.10)

This proves (2.1) with α = 0. Next we estimate the derivatives of uλ, vλ. Since

(rN−1(uλ)r)r = −rN−1[−uλ + up
λ + λvλ], (2.11)

we have ∫ R

s

|(rN−1(uλ)r)r| dr =
∫ R

s

rN−1[−uλ + up
λ + λvλ] dr

≤ C

∫ ∞

s

r
N−1

2 e−
√

1−λ
2 r dr

≤ Ce−
√

1−λ
4 s,

(2.12)
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this means that rN−1ur has a limit as r →∞ and this limit can only be 0 by (2.12).
Integrating (2.11) on (r,∞) we get

−rN−1(uλ)r ≤ Ce−
√

1−λ
4 r. (2.13)

Similarly, −rN−1(vλ)r ≤ Ce−
√

1−λ
4 r. Finally the exponential decay of (uλ)rr and

(vλ)rr follows from equation (1.5). This completes the proof. �

Now we consider the variational problem

mλ = inf
(u,v)∈N

I(u, v), (2.14)

where

N = {(u, v) ∈ E \ {(0, 0)} : 〈I ′(u, v), (u, v)〉 = 0} (2.15)

is the Nehari manifold related to I. Minimizers of mλ are ground state solutions
of (1.1). By a ground state solution of (1.1) we mean a nontrivial solution of (1.1)
with the least energy among all nontrivial solutions of (1.1). Correspondingly, for
the limiting problem (1.5), the associated functional

I∞(u, v) =
1
2

∫
RN

|∇u|2 + u2 dx+
1
2

∫
RN

|∇v|2 + v2 dx

− 1
p+ 1

∫
RN

|u|p+1 + |v|p+1 dx− λ

∫
RN

uv dx

(2.16)

is well defined in H1(RN )×H1(RN ). We define

mλ
∞ = inf

(u,v)∈N∞
I∞(u, v), (2.17)

where

N∞ = {(u, v) ∈ H1(RN )×H1(RN ) \ {(0, 0)} : 〈I ′∞(u, v), (u, v)〉 = 0} (2.18)

is the Nehari manifold for I∞.

Lemma 2.2. Problem (1.1) has no ground state solution.

Proof. First we show that mλ = mλ
∞. The fact H1

0 (Ω) ⊂ H1(RN ) implies mλ ≥
mλ
∞. Let ξ̄ be a cutoff function such that 0 ≤ ξ̄(t) ≤ 1, ξ̄(t) = 0 for t ≤ 1, ξ̄(t) = 1

for t ≥ 2 and |ξ̄′(t)| ≤ 2. Set ξ(x) = ξ̄( |x|ρ ), where ρ is the smallest positive number
such that RN \ Ω ⊂ Bρ(0). Consider the sequence {(φn, ψn)} ⊂ E defined by

(φn, ψn) = (ξ(x)uλ(x− yn), ξ(x)vλ(x− yn)), (2.19)

where {yn} ⊂ Ω is a sequence of points such that |yn| → ∞. We may verify that
there exists a sequence {tn} ∈ R+ such that tn(ξ(x)uλ(x−yn), ξ(x)vλ(x−yn)) ∈ N .
In fact, we may choose tn so that

tp−1
n =

∫
Ω
|∇φn|2 + φ2

n + |∇ψn|2 + ψ2
n − λφnψn dx∫

Ω
|φn|p+1 + |ψn|p+1 dx

. (2.20)
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Hence, for 2 ≤ q < 2N
N−2 ,

‖φn(x)− uλ(x− yn)‖q
Lq ≤ 2

∫
Bρ

|uλ(x− yn)|q dx→ 0,

‖ψn(x)− vλ(x− yn)‖q
Lq ≤ 2

∫
Bρ

|vλ(x− yn)|q dx→ 0,

‖∇φn(x)−∇uλ(x− yn)‖2
L2 ≤ C

∫
Bρ

|∇uλ(x− yn)|2 dx→ 0,

‖∇ψn(x)−∇vλ(x− yn)‖2
L2 ≤ C

∫
Bρ

|∇vλ(x− yn)|2 dx→ 0

and ∫
RN

φ(x)ψ(x)− uλ(x− yn)vλ(x− yn) dx→ 0

as n→∞. It follows that tn → 1 as n→∞ since (uλ, vλ) ∈ N . By the definition
of mλ, we have

mλ ≤ I(tn(φn, ψn)) = mλ
∞ + o(1) (2.21)

as n→∞, which implies mλ = mλ
∞.

Suppose now that mλ is achieved by (ū, v̄). Extending (ū, v̄) to RN by setting
(ū, v̄) = (0, 0) outside Ω, we see that (ū, v̄) is a minimizer of m∞. Since we may
assume that ū ≥ 0, v̄ ≥ 0, we obtain a contradiction by the strong maximum
principle. This completes the proof. �

3. Proof of Theorem 1.1

Problem (1.1) is setting in a unbounded, in general, (PS) condition does not
hold for I. In spirit of [2, Lemma 3.1] and [1, Lemma 4.1], we have the following
global compact result.

Lemma 3.1. Let {(un, vn)} ⊂ E be a sequence such that I(un, vn) → c and
I ′(un, vn) → 0 as n → ∞. Then there are a number K ∈ N, K sequences of
points {yj

n} such that |yj
n| → ∞ as n → ∞, 1 ≤ j ≤ K, K + 1 sequences of

functions (uj
n, v

j
n) ⊂ H1(RN )×H1(RN ), 0 ≤ j ≤ K such that up to a subsequence,

(i) un(x) = u0
n(x) +

∑K
j=1 u

j
n(x− yj

n), vn(x) = v0
n(x) +

∑K
j=1 v

j
n(x− yj

n).
(ii) u0

n(x) → u0(x), v0
n(x) → v0(x) as n→∞ strongly in H1

0 (Ω).
(iii) uj

n(x) → uj(x), vj
n(x) → vj(x) as n → ∞ strongly in H1(RN ), where

1 ≤ j ≤ K.
(iv) (u0, v0) is a solution of (1.1) and (uj , vj) is a solution of (1.5) for 1 ≤ j ≤

K. Moreover, when n→∞

‖un‖2 → ‖u0‖2 +
K∑

j=1

‖uj‖2, ‖vn‖2 → ‖v0‖2 +
K∑

j=1

‖vj‖2, (3.1)

I(un, vn) → I(u0, v0) +
K∑

j=1

I∞(uj , vj). (3.2)

Proof. We sketch the proof for reader’s convenience. We may verify that (un, vn)
is bounded. Suppose that un ⇀ u0, vn ⇀ v0 in H1

0 (Ω) and un → u0, vn → v0 a.e in
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Ω. Then, (u0, v0) solves (1.1). If (un, vn) → (u0, v0), then we are done. Otherwise,
let

z1
n(x) =

{
un − u0(x), x ∈ Ω,
0, x ∈ RN \ Ω,

w1
n(x) =

{
vn − v0(x), x ∈ Ω,
0, x ∈ RN \ Ω,

then
‖un‖2 = ‖u0‖2 + ‖z1

n‖2 + o(1), ‖vn‖2 = ‖v0‖2 + ‖w1
n‖2 + o(1).

By Brezis-Lieb’s Lemma [9], we deduce

‖un‖p+1
Lp+1 = ‖u0‖p+1

Lp+1 + ‖z1
n‖

p+1
Lp+1 + o(1), ‖vn‖p+1

Lp+1 = ‖v0‖p+1
Lp+1 + ‖w1

n‖
p+1
Lp+1 + o(1).

Thus,

I(z1
n, w

1
n) = I(un, vn)− I(u0, v0) + o(1),

I ′(z1
n, w

1
n) = I ′(un, vn)− I ′(u0, v0) + o(1) = o(1).

Suppose now that (z1
n, w

1
n) 6→ (0, 0) in H1(RN )×H1(RN ), we define

δz = lim sup
n→∞

sup
y∈RN

∫
B1(y)

|z1
n|p+1 dx, δw = lim sup

n→∞
sup

y∈RN

∫
B1(y)

|w1
n|p+1 dx.

We may verify that δz + δw > 0 since (z1
n, w

1
n) 6→ (0, 0). We may suppose δz > 0,

then there is a sequence {y1
n} ⊂ RN such that

∫
B1(y1

n)
|z1

n|p+1 ≥ δz

2 . Let us consider
now the sequence (z1

n(x + y1
n), w1

n(x + y1
n)). We assume that (z1

n(x + y1
n), w1

n(x +
y1

n)) ⇀ (u1, v1), then (u1, v1) is a nontrivial solution of (1.5). By the fact that
z1
n ⇀ 0 we see that |y1

n| → ∞. Set

z2
n(x) = z1

n(x)− u1(x− y1
n), w2

n(x) = w1
n(x)− v1(x− y1

n),

and repeat above procedure, it will stop at finite steps. The lemma follows. �

By [1, Lemmas 7.8 and 7.9], there exist 0 < λ1 ≤ λ2 < 1 such that m∞ is an
isolated critical value of I∞ for λ ∈ (0, λ1) ∪ (λ2, 1). Denote m0 = inf{α > mλ

∞ :
α is a critical value of I∞} and m̄ = min{m0, 2mλ}, then we have the following
result.

Corollary 3.2. The functional I satisfies the (PS)c condition for c ∈ (mλ, m̄).

Proof. Let {(un, vn)} ⊂ E be such that I(un, vn) → c and I ′(un, vn) → 0 with
c ∈ (mλ, m̄). Since {(un, vn)} is bounded, we may assume that un ⇀ u and
vn ⇀ v. By Lemma 3.1,

(un, vn)−
K∑

j=1

(uj(x− yj
n), vj(x− yj

n)) → (u, v),

where (u, v) is a solution of (1.1) and (uj , vj) is a solution of (1.5), {yj
n}(1 ≤ j ≤ K)

are K sequences of points in RN . Moreover,

I(un, vn) = I(u, v) +
K∑

j=1

I∞(uj , vj) + o(1).

To prove that un → u, vn → v in H1
0 (Ω), we need only to show K = 0. Since

c < 2mλ, we have K < 2. We claim that K = 0. Indeed, if K = 1, we have either
(u, v) 6= (0, 0) or (u, v) = (0, 0). If (u, v) 6= (0, 0), then I(un, vn) ≥ 2mλ + o(1),
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which contradicts to the fact that c < 2mλ; if (u, v) = (0, 0), then I∞(u1, v1) = c,
which contradicts the definition of m̄. The assertion follows. �

Now we introduce a function Φρ : RN → H1(RN )×H1(RN ) defined by

Φρ(y) = tρ(ξ(
|x|
ρ

)uλ(x− y), ξ(
|x|
ρ

)vλ(x− y)), (3.3)

where (uλ, vλ) is a ground state solution of equation (1.5), tρ is chosen such that
tρ(ξ(

|x|
ρ )uλ(x− y), ξ( |x|ρ )vλ(x− y)) ∈ N .

Lemma 3.3. (i) Φρ(y) is continuous in y for every ρ > 0.
(ii) Φρ(y) → (uλ(x − y), vλ(x − y)) strongly in H1(RN ) × H1(RN ) uniformly

in y as ρ→ 0.
(iii) I(Φρ(y)) → mλ as |y| → ∞ uniformly for every ρ.

Proof. (i) is obvious since Φρ(·) is the composition of continuous functions. (iii)
follows from the same argument of Lemma 2.2. It remains to prove (ii). We claim
that

‖ξ( |x|
ρ

)uλ(x− y)‖Lp+1 → ‖uλ(x)‖Lp+1 , ‖ξ( |x|
ρ

)vλ(x− y)‖Lp+1 → ‖vλ(x)‖Lp+1 ,

‖ξ( |x|
ρ

)uλ(x− y)‖ → ‖uλ(x)‖, ‖ξ( |x|
ρ

)vλ(x− y)‖ → ‖uλ(x)‖,∫
RN

ξ(
|x|
ρ

)uλ(x− y)ξ(
|x|
ρ

)vλ(x− y) dx→
∫

RN

uλ(x− y)vλ(x− y) dx.

Indeed,

‖ξ( |x|
ρ

)uλ(x− y)− uλ(x− y)‖p+1
Lp+1 ≤ 2p+1

∫
B2ρ

|uλ(x− y)|p+1 dx

≤ 2p+1|maxuλ|p+1 meas(B2ρ) → 0.
(3.4)

Similarly, we have

‖ξ( |x|
ρ

)vλ(x− y)− vλ(x− y)‖Lp+1 → 0 (3.5)

and

‖ξ( |x|
ρ

)uλ(x− y)− uλ(x− y)‖2

=
∫

RN

|1
ρ
∇ξ( |x|

ρ
)uλ(x− y)− ξ(

|x|
ρ

)∇uλ(x− y)−∇uλ(x− y)|2 dx+ k2 meas(B2ρ)

≤ 2
∫

ρ≤|x|≤2ρ

|∇ξ( |x|
ρ

)uλ(x− y)|2 dx

+ 2
∫

ρ≤|x|≤2ρ

|ξ( |x|
ρ

)∇uλ(x− y)−∇uλ(x− y)|2 dx+ k2 meas(B2ρ)

≤ k3ρ
N−2 + k4ρ

N → 0
(3.6)
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as well as

|
∫

RN

ξ(
|x|
ρ

)uλ(x− y)ξ(
|x|
ρ

)vλ(x− y)− uλ(x− y)vλ(x− y) dx|

≤
∫

RN

|ξ( |x|
ρ

)uλ(x− y)ξ(
|x|
ρ

)vλ(x− y)− uλ(x− y)vλ(x− y)| dx

≤ k5ρ
N → 0.

(3.7)

This proves the claim. The definition of tρ and the claim yield that tρ → 1 as
ρ→ 0. This together with equation (3.6) imply (ii). �

Since Iλ
∞(uλ(x−y), vλ(x−y)) = mλ, the following result is a consequence of (ii)

in Lemma 3.3.

Corollary 3.4. For 0 < λ < λ1 or λ2 < λ < 1, there exists a ρ̄ = ρ̄(λ) such that
for ρ ≤ ρ̄, there holds

sup
y∈RN

I(Φρ(y)) < m̄. (3.8)

From now on we will suppose that Ω is fixed in such a way that ρ < ρ̄. Now we
define a function β : H1(RN ) → RN as follows

β(u) =
∫

RN

u(x)χ(|x|)x dx,

where

χ(t) =

{
1 if 0 ≤ t ≤ R,

R/tt if t > R

and R is chosen such that RN \ Ω ⊂ BR.
Let B0 := {(u, v) ∈ N : β(u) = 0 or β(v) = 0} and let c0 = inf(u,v)∈B0 I(u, v).

Lemma 3.5. There holds c0 > mλ, and there is an R0 > ρ such that

(a) if |y| ≥ R0, then I(Φρ(y)) ∈ (mλ,
mλ+c0

2 );
(b) if |y| = R0, then 〈β ◦ P1 ◦ Φρ(y), y〉 > 0 or 〈β ◦ P2 ◦ Φρ(y), y〉 > 0, where

Pi(u, v) is the projection of (u, v) on the ith coordinate.

Proof. It is obvious that c0 ≥ mλ. Now suppose that c0 = mλ, then there exists
a sequence (un, vn) ∈ N with β(un) = 0 or β(vn) = 0 such that I(un, vn) → mλ.
We may assume that β(un) = 0. By Lemma 3.1, un(x) = u0(x − yn) + o(1), vn =
v0(x−yn)+o(1) with |yn| → ∞. Denote (RN )+n = {x ∈ RN : 〈x, yn〉 > 0}, (RN )−n =
RN \ (RN )+n , then for n large we have Br̂(yn) := {x : |x − yn| < r̂} ⊂ (RN )+n for
some fixed r̂ > 0 and u0(x− yn) ≥ δ0 > 0, v0(x− yn) ≥ δ0 > 0 for x ∈ Br̂(yn) and
some δ0 > 0. Lemma 2.1 implies

u0(x− yn) ≤ K

eδ|x−yn||x− yn|
N−1

2

, v0(x− yn) ≤ K

eδ|x−yn||x− yn|
N−1

2
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for x ∈ Br̂(yn). So we have

〈β(u0(x− yn)), yn〉

=
∫

(RN )+n

u0(x− yn)χ(|x|)〈x, yn〉 dx+
∫

(RN )−n

u0(x− yn)χ(|x|)〈x, yn〉 dx

≥
∫

Br̂(yn)

δ0χ(|x|)〈x, yn〉 dx−
∫

(RN )−n

KR|yn|
eδ|x−yn||x− yn|

N−1
2

dx

≥ α− o(
1
|yn|

) > 0,

(3.9)

where α > 0 is a constant. Since β is continuous, we have β(un) 6= 0. This
contradicts to the fact that β(un) = 0.

(a) can be proved in the same way as the proof of Lemma 2.2 and (b) can be
proved as (3.9). �

Now let us consider the set Σ given by

Σ := {tρΦρ(y) : |y| ≤ R0},

where tρ is chosen such that tρΦρ(y) ∈ N . We define

H = {h ∈ C(N ,N ) : h(u, v) = (u, v) for ∀(u, v) ∈ N with I(u, v) ≤ c0 +m

2
}

and Γ = {A ⊂ N , A = h(Σ)}.

Lemma 3.6. If A ∈ Γ, then A ∩ B0 6= ∅.

Proof. The proof of the lemma is equivalent to prove that for ∀h ∈ H, there is
ȳ ∈ RN with |ȳ| ≤ R0 such that β ◦ h ◦P1 ◦Φρ(y) = 0 or β ◦ h ◦P2 ◦Φρ(y) = 0. By
Lemma 3.5, we have 〈β ◦ P1 ◦ Φρ(y), y〉 > 0 or 〈β ◦ P2 ◦ Φρ(y), y〉 > 0 for |y| = R0.
Assume that 〈β ◦ P1 ◦ Φρ(y), y〉 > 0 without of loss generality and define

f(y) = β ◦ h ◦ P1 ◦ Φρ(y),

F (t, y) = tf(y) + (1− t)id.

(b) of Lemma 3.5 implies 0 6∈ F (t, ∂BR0), hence, deg(F,BR0 , 0) = deg(id,BR0 , 0) =
1. This yields that there exists ȳ ∈ BR0 such that β ◦ h ◦ P1 ◦ Φρ(y) = 0.

If 〈β ◦ P2 ◦ Φρ(y), y〉 > 0, we may show that there exists a ȳ ∈ BR0 such that
β ◦ h ◦ P2 ◦ Φρ(y) = 0 in the same way. This proves the Lemma. �

Proof of Theorem 1.1. For λ ∈ (0, δ), obviously, problem (1.1) has two pair of posi-
tive solutions (U1−λ, U1−λ) and (±U1+λ,∓U1+λ), where U1−λ and U1+λ are positive
solutions of

−∆u+ (1− λ)u = |u|p−1u in Ω,
u = 0 on ∂Ω,

(3.10)

and
−∆u+ (1 + λ)u = |u|p−1u in Ω,

u = 0 on ∂Ω,
(3.11)

respectively. It is proved in [2] that problem (3.10) and problem (3.11) have non-
trivial solutions. Define

cλ = inf
A∈Γ

sup
(u,v)∈A

I(u, v), (3.12)
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then we have m̄ > cλ ≥ c0 > mλ since id ∈ H and A ∩ B0 6= ∅. A standard
deformation argument implies that cλ is a critical value of I. Now, we claim that
cλ < I(U1−λ, U1−λ) < I(±U1+λ,∓U1+λ) for ρ̄ small sufficiently. Then the critical
points corresponding to cλ are different from trivial solutions (U1−λ, U1−λ) and
(±U1+λ,∓U1+λ). In fact, we note that U0(x) = (1 − λ)−

1
p−1U1−λ( x√

1−λ
) is a

solution of
−∆u+ u = |u|p−1u in Ω√1−λ,

u ∈ H1
0 (Ω√1−λ)

(3.13)

and extend U1−λ to RN by setting U1−λ = 0 outside Ω. Denote by Jλ(u) the func-
tional corresponding to problem (3.10) and let (uλ, vλ) be a ground state solution
of (1.5), since (U0, 0) ∈ N is not a ground state solution of (1.5), for λ small, we
have

I∞(uλ, vλ) ≤ I∞(U0, 0) = J0(U0)

< 2(1− λ)
p+1
p−1−

N
2 J0(U0)

= 2Jλ(U1−λ)

= I(U1−λ, U1−λ).

By (ii) of Lemma 3.3, cλ → I∞(uλ, vλ) as ρ→ 0, for fixed λ0 > 0 small, there exists
ρ̄ = ρ̄(λ0) such that cλ0 < I(U1−λ0 , U1−λ0). Noticing that cλ and I(U1−λ, U1−λ)
are continuous in λ, applying compact argument to [0, λ0], we may find ρ̄1 ≤ ρ̄ such
that for λ ∈ [0, λ0] we have cλ < I(U1−λ, U1−λ) if 0 < ρ ≤ ρ̄1. On the other hand,
by [1] we have I(U1−λ, U1−λ) < I(±U1+λ,∓U1+λ), the proof is completed. �

Remark 3.7. For λ close to 1, we may also obtain a critical value cλ of I as the
proof of Theorem 1.1. However, cλ and I(U1−λ, U1−λ) are close to each other if
ρ→ 0. Hence, we may not obtain nontrivial solutions in this way.
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