
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 12, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-POSITONE
SYSTEMS
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Dedicated to Professor Claude Lobry on the occasion of his 60-th birthday

Abstract. This paper studies semi-positone systems of equations by using
phase plane analysis and fixed point theory.

1. Introduction

This paper concerns the existence of positive solutions for the system

−u′′ = λf(u, v)

−v′′ = µ g(u, v)

u(0) = u(1) = 0 = v(0) = v(1).

(1.1)

where λ, µ > 0 are positive parameters and the nonlinear functions f, g : [0,∞) →
R are continuous and satisfy the assumptions:

(A1) For v fixed,

f(s, v) < 0, for 0 < s < s0 or s > s1

f(s, v) > 0, for s0 < s < s1,∫ s1

0

f(s, v)ds > 0 ;

(A2) For u fixed, g satisfies hypotheses similar to those of f in (A1);
(A3) (i) f (resp. g) is monotone increasing in v (resp. in u) or f (resp. g) is

monotone decreasing in v (resp. in u) or
(ii)

∫ s1

s0
min0≤v≤s1 f(u, v)du > −

∫ s0

0
min0≤v≤s1 f(u, v)du (resp. g).

We point out that assumptions (A1) and (A2) on the nonlinearities f and g are
natural and necessary for existence of positive solutions when f(., v) and g(u, .)
are negative at zero, as shown by the results of [9] and [6] in the case of a single
equation.

Systems of type (1.1) are referred to as semi-positone systems. Such problems
arise in many situations, for instance, in steady state problems of population models
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with nonlinear sources. In section 4 we provide an application to a model leading
to a system of type (1.1). We refer the reader to [5], where Castro and Shivaji
initially called such problems (with f(0) < 0) non-positone problems, in contrast
with the terminology positone problems, coined by Cohen and Keller in [7], when
the nonlinearity f was positive and monotone. In fact, P. L. Lions provided in
[12] an extensive review on positive solutions of scalar positone equations and al-
ready remarked that the case when the nonlinearity is negative near the origin was
mathematically challenging and important for applications.

Semipositone problems with scalar equations have motivated many researchers
in the last fifteen years. We refer the reader to the survey paper by Castro-Maya-
Shivaji [4] and references therein for a review. On the other hand, semi-positone
systems have been studied in [1], [11] and [3], where the authors used the method
of sub- and super-solutions. However, in their results the nonlinear functions f
and g are usually monotonic in both variables u and v. In [3], the construction
of sub- and super-solutions was based on the structure f = f1(u, v) − h1(x) and
g = g1(u, v)− h2(x) of the nonlinear functions f and g, with the functions f1 and
g1 having nonnegative partial derivative in the variables u and v. Also, in [9] and
[6], semi-positone problems for a scalar equation have been studied under general
assumptions on the nonlinearity f . As mentioned earlier, it was shown (among other
things) that if f(0) < 0, then the condition

∫ s1

0
f(s)ds > 0 is a necessary condition

for existence of positive solutions (sufficiency was also shown in [6]). More recently,
the authors in [8] studied semi-positone problems in the ODE case under very weak
conditions on f by using phase plane analysis for conservative systems.

In the present paper, we prove existence of positive solutions for semi-positone
systems under general conditions on the nonlinearities. We prove that the condition
given in [9] and [6] is a sufficient condition in the case of systems, and we extend
one of the results of [8] to systems of equations. Our approach combines the theory
of conservative systems and tools of functional analysis, like fixed point theory.

For the rest of this article, we let C0[0, 1] denote the space of continuous functions
v on [0, 1] satisfying the boundary conditions v(0) = v(1) = 0, and endowed with the
sup norm. Also, we let K denote the closed, convex cone of nonnegative functions
in C0[0, 1], namely, K = {v ∈ C0[0, 1 : v ≥ 0}. In addition, for a given v in K, we
define the continuous function

fv(s, u) = f(u, v(s)), for 0 ≤ s ≤ 1, u ≥ 0,

and consider the auxiliary problem

−u′′ = λfv(s, u)

u(0) = u(1) = 0
(1.2)

2. Existence result for (1.2)

The proof of existence of positive solutions for (1.2) is based on the method of
sub and super-solutions. From the function fv we construct the functions Fv and
Gv below, where we shall omit the subscript v in the latter functions for simplicity
of notation:

F (u) = min
0≤s≤1

fv(s, u) and G(u) = max
0≤s≤1

fv(s, u).

Since f is continuous in (u, v) and v is in K, the functions F and G are well-defined,
continuous, and satisfy the following properties:
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(i)

F (s), G(s) < 0, for 0 ≤ s < s0, or s > s1

F (s), G(s) > 0, for s0 < s < s1∫ s1

0

F (s)ds > 0,
∫ s1

0

G(s)ds > 0

(ii) F (u) ≤ fv(s, u) ≤ G(u), for 0 ≤ s ≤ 1, and u ≥ 0.
Note that solutions of the problems

−u′′ = λF (u)

u(0) = u(1) = 0
(2.1)

and
−u′′ = λG(u)

u(0) = u(1) = 0
(2.2)

are, respectively, sub-solutions and super-solutions of (1.2).

Existence of a sub-solution for (1.2). We are interested in the existence of a
positive solution for problem (2.1). We have the following result.

Lemma 2.1. Assume that f satisfies assumptions (A1) and (A3). Then, there
exists Λ1 > 0 such that the problem (2.1) has a positive solution if and only if
λ ≥ Λ1.

Proof. We prove this lemma by using phase-plane analysis on the conservative
system associated to (2.1). Let us introduce the parameter L =

√
λ, and the new

function w(Lt) = u(t). Then problem (2.1) becomes

−w′′ = F (w)

w(0) = w(L) = 0 .

Next, by defining u1 = w and u2 = u′1, the above problem is equivalent to the
system

u′1 = u2

u′2 = −F (u1)

u1(0) = u1(L) = 0 .

(2.3)

Therefore, we study the solutions of the conservative system (2.3). It is known that
the energy is constant along the trajectories of (2.3) in the phase plane (u1, u2);
i. e., we have

E =
u2

2

2
+ U(u1) = constant , (2.4)

where U is the potential energy function given by

U(x) =
∫ x

0

F (ξ)dξ .

We represent in Figure 1 and 2, respectively, the potential energy function U and
the phase-portrait of the system (2.3).

From equation (2.4), we define the time map T : [0, k0) → (0,∞),

T (k) =
∫ u(k)

0

dξ√
2(E(k)− U(ξ))
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Figure 1. Potential energy function U
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Figure 2. Phase-portrait of system (2.3)

for initial conditions u1(0) = 0 and u2(0) = k, where u(k) is the distance reached by
u1(t), from the origin, the first time when u2(t) = 0 in the u1u2-plane. Therefore,
problem (2.3) has a positive solution if and only if there is k ≥ 0 such that L =
2T (k).

Let a be the first zero of U in (0, s1) (see figure 1), M = U(s1) > 0, m = U(s0),
and k0 =

√
2M . Then we have a ≤ u(k) for all 0 ≤ k < k0 and limk→k−0

u(k) = ∞.

Also note that U is increasing in (s0, s1) and E = U(u(k)) = k2

2 for all k ≥ 0.



EJDE-2008/12 EXISTENCE OF POSITIVE SOLUTIONS 5

Therefore, for all 0 ≤ k < k0, we have E − U(s) ≤ k2
0
2 − U(s0) = k2

0
2 −m and

T (k) =
∫ u(k)

0

dξ√
2(E − U(ξ))

≥
∫ u(k)

0

dξ√
2(k2

0
2 −m)

=
u(k)√
k2
0 − 2m

for all 0 ≤ k < k0. Hence, limk→k0 T (k) = ∞ and T (k) has the form displayed in
figure 3.

k

T(k)

T(0)

k0

Figure 3. Time map T (k)

Now, if we denote by T1 = min0≤k<k−0
T (k) the minimum of the time map T on

[0, k0), then the system (2.3) has a positive solution if and only if L ≥ 2T1. So,
letting Λ1 = 4T 2

1 , problem (2.1) has a positive solution if and only if λ ≥ Λ1. �

Existence of a super-solution for (1.2). We have a similar result on existence
of a positive solution for (2.2). Recall that solutions of (2.2) are super-solutions of
(1.2).

Lemma 2.2. Assume that f satisfies assumptions (A1) and (A3). Then, there
exists Λ2 > 0 such that (2.2) has a positive solution if and only if λ ≥ Λ2.

Proof. The proof is similar to that of Lemma 2.1. We recall the problem (2.2) is

−u′′ = λG(u)

u(0) = u(1) = 0

Similarly, the potential energy function V and the time map S are defined by

V (x) =
∫ x

0

G(ξ)dξ, S(k) =
∫ u(k)

0

dξ√
2(E(k)− V (ξ))

and the associated conservative system is

x′1 = x2

x′2 = −G(x1)

x1(0) = x2(L) = 0 .

(2.5)
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The time map S(k) has the same shape of the time map T (k) in the proof of Lemma
2.1. Also, by using arguments similar to those in Lemma 2.1, we conclude that (2.2)
has a positive solution if and only if λ ≥ Λ2, where Λ2 = 4(min0≤k<k1 S(k))2 and
k1 =

√
2V (s1). �

Existence of a positive solution for (1.2). Before giving the main result in this
section, we prove, in the next lemma, existence of a particular ordered pair (w1, w2)
formed by a positive solution of (2.1) and a positive solution of (2.2).

Lemma 2.3. Assume that f satisfies assumptions (A1) and (A3). Then, there
exists λ0 > 0 such that for any λ ≥ λ0, there exists a positive solution w1 of (2.1)
and a positive solution w2 of (2.2) with

w1 ≤ w2 everywhere in [0, 1].

Proof. Let λ0 = max(Λ1, Λ2), where Λ1 and Λ2 are given in Lemmas 2.1 and 2.2,
and let us consider the potential energy functions U and V corresponding for the
systems (2.3) and (2.5). These can be represented together in the same figure as
follows (see figure 4).

s a0

aG

F
s1 b F

b G

U

V
x

Figure 4. Potential energy functions for (2.3) and (2.5)

Let aF and aG be, respectively, the first zero of U and V in (0, s1) (cf. figure 4).
Then

T (0) =
∫ aF

0

dξ√
−2U(ξ)

, S(0) =
∫ aG

0

dξ√
−2V (ξ)

, and aG ≤ aF < s1.

Since U(aF ) = 0 and V (aF ) > 0, we define k̄ =
√

2V (aF ) > 0, and denote by
(u1, u2) the solution of (2.3) corresponding to T (0) and by (x1, x2) the solution of
(2.5) corresponding to S(k̄). Clearly, T (0) = S(k̄) and u1(T (0)) = aF = x1(S(k̄)).
The solutions (u1, u2) and (x1, x2) are represented together in figure 5.
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(x 1 , x2 )

k
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Figure 5. Special solutions of (2.3) and (2.5)

Now, we claim that u1(t) ≤ x1(t) for all 0 ≤ t ≤ L. The proof of this claim
will be done by integrating backward the systems (2.3) and (2.5). Indeed, we first
introduce the functions ϕ1(t) = u1(L

2 − t) and ϕ2(t) = u2(L
2 − t), so that we have

ϕ′1 = −ϕ2

ϕ′2 = F (ϕ1)

ϕ1(0) = aF , ϕ2(0) = 0 .

(2.6)

Similarly, by introducing ψ1(t) = x1(L
2 − t) and ψ2(t) = x2(L

2 − t), we have

ψ′1 = −ψ2

ψ′2 = F (ψ1)

ψ1(0) = aF , ψ2(0) = 0 .

(2.7)

Now, assume that there exists t0 ∈ (0, L
2 ) such that ϕ1(t0) = ψ1(t0) and ϕ2(t0) =

ψ2(t0) (equivalently, u1(L
2 − t0) = x1(L

2 − t0) and u2(L
2 − t0) = x2(L

2 − t0), or in
other words the solution’s curves in the phase plane touch each other). Then, we
have

ϕ′2(t0) = F (ϕ1(t0)) ≤ G(ϕ1(t0)) = G(ϕ1(t0)) = ψ′2(t0).
Therefore, as t increases from t0, ϕ′1(t) will remain greater than ψ′1(t), that is
u′1(

L
2 − t) remains less than x′1(

L
2 − t) for all t in [t0, t0 + ε] and for small ε > 0.

Hence, u1(L
2 − t) ≤ x1(L

2 − t), for all t ∈ [t0, t0 + ε]. And repeating this reasoning
from t0 + ε, we finally get u1(t) ≤ x1(t) for all 0 ≤ t ≤ L

2 . By symmetry of
the periodic solutions (u1, u2) and (x1, x2) about the horizontal axis in the phase
plane, we have u1(t) ≤ x1(t) for all L

2 ≤ t ≤ L. To complete the proof, we let
w1(t) = u1(Lt) and w2(t) = x1(Lt). �
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Based on the above lemmas, we state and prove the main result of this section.

Theorem 2.4. Assume that f satisfies assumptions (A1) and (A3). Then, for any
λ ≥ λ0, problem (1.2) has a positive solution u satisfying

0 ≤ w1 ≤ u ≤ w2 ≤ aF

where λ0, w1 and w2 are given in Lemma 2.3. Moreover, u is uniquely defined by
the conditions u( 1

2 ) = aF and u′( 1
2 ) = 0. We denote the mapping v 7→ u by F1.

Proof. The existence of u is guaranteed by the existence of the particular sub- and
super-solutions w1 and w2 given in Lemma 2.3. Therefore, we have to prove that
u is uniquely defined by the conditions stated above.

Indeed, since w1 ≤ u ≤ w2 and w1( 1
2 ) = w2( 1

2 ) = aF , it follows that u satisfies
the Cauchy Problem

−u′′ = F (u)

u(
1
2
) = aF , u′(

1
2
) = 0

(2.8)

Therefore, by integrating equation (2.8) forward and backward, we see that u is
uniquely defined on both intervals [ 12 , 1] and [0, 1

2 ]. This complete the proof. �

3. Existence of a positive solution for (1.1)

Let us consider the solution u of (1.2) given in Theorem 2.4. Observing that u
belongs to K, we consider (by symmetry) the problem

−v′′ = µgu(s, v)

v(0) = v(1) = 0
(3.1)

where gu(s, v) = g(u(s), v) for all 0 ≤ s ≤ 1 and v ≥ 0. Then, similarly to problem
(1.2), we obtain the following result on existence of a positive solution for (3.1).

Corollary 3.1. Assume that g satisfies assumptions (A2)–(A3). Then, there exists
µ0 > 0 such that, for any µ ≥ µ0, problem (3.1) has a positive solution v uniquely
defined by v( 1

2 ) = aG and v′( 1
2 ) = 0 and such that

0 ≤ v ≤ s1.

We denote the mapping u 7→ v by F2.

We shall use Schauder’s Fixed Point Theorem [13, p 126] to prove existence of a
positive solution for (1.1). For that, we define the mapping

F = F2 ◦ F1 : K → K
where F1 and F2 are given by Theorem 2.4 and Corollary 3.1, respectively. Then,
we have the following result.

Theorem 3.2. Assume assumptions (A1)–(A3). Then, there exist λ0 > 0, µ0 > 0
such that for any pair (λ, µ) with λ ≥ λ0, µ ≥ µ0, problem (1.1) has a positive
solution (u, v). Furthermore, v is a fixed point of the mapping F .

Proof. Let K0 be the bounded, closed, convex subset of C0[0, 1] consisting of those
functions v ∈ K satisfying 0 ≤ v ≤ s1; i. e.,

K0 = {v ∈ K : 0 ≤ v ≤ s1} .
On the other hand, by Theorem 2.4 and Corollary 3.1, we note that F : K → K is
well-defined and continuous (by continuous dependence of solutions of differential
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equations on parameters) and, furthermore, F maps K0 into K0. Also, by stan-
dard regularity, we have that F(v) ∈ C2[0, 1], so that F is completely continuous.
Therefore, by Schauder’s Fixed Point Theorem, F has a fixed point v ∈ K0. And, if
we denote by u the solution of problem (1.2) given in Theorem 2.4 with v being the
fixed point of F , then u ∈ K0 and the pair (u, v) is a positive solution of (1.1). �

4. An example

We shall consider the following reaction-diffusion system that describes the dy-
namics of two competing species in an environment Ω that we assume to be one-
dimensional. Let u(t, x) and v(t, x) represent the concentrations or population
densities of the two species. With the standard non-dimensionalization process,
we may assume the diffusion coefficient equal to 1, and Ω = (0, 1). The bound-
ary of the environment is considered to be hostile to the species (so, one has zero
Dirichlet boundary conditions) and we assume that the reproduction or growth
of the species follows the law ρ1(u, v) = λ mu

K+u+ u2
α

(v + 1) for the species u and

ρ2(u, v) = µ mv

K+v+ v2
α

(u + 1) for the species v. Then, the dynamics of the two

species is described by

∂u

∂t
=
∂2u

∂x2
+ λ(

mu

K + u+ u2

α

− α)(v + 1)

∂v

∂t
=
∂2v

∂x2
+ µ(

mv

K + v + v2

α

− α)(u+ 1)

u(0) = u(1) = 0, v(0) = v(1) = 0 .

(4.1)

In the above system the the constants K, α, λ and µ are positive and the terms
−λ(v+1) and −µ(u+1) represent a mortality or harvesting of the species occurring
in the interior of the environment. The steady state problem associated with (4.1)
is given by

−u′′ = λf(u, v)

−v′′ = µg(u, v)

u(0) = u(1) = 0 = v(0) = v(1) ,

(4.2)

where

f(u, v) =
( mu

K + u+ u2

α

− α
)
(v + 1) ,

g(u, v) =
( mv

K + v + v2

α

− α
)
(u+ 1)

In what follows, we show that our assumptions (A1)–(A3) are satisfied for this
system. We only check the assumptions for the function f since the situation for g
is similar.
(A1) is satisfied: Let α0 := m + 2K − 2

√
K(m+K). Then, for any 0 < α < α0,

we have (m − α)2 > 4αK and the function f satisfies f(s0, v) = f(s1, v) = 0 for
any v ≥ 0, where

s0 =
m− α−

√
(m− α)2 − 4αK

2
, s1 =

m− α+
√

(m− α)2 − 4αK
2

.
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In addition, f(s, v) < 0 for 0 < s < s0 or s > s1, and f(s, v) > 0 for s0 < s < s1.
On the other hand, for any v ≥ 0 fixed, we have∫ s1

0

f(u, v)du = (v + 1)
[
m

∫ s1

0

u

K + u+ u2

α

du− αs1

]
:= (v + 1)ϕ(α) ,

where

ϕ(α) := m

∫ s1

0

u

K + u+ u2

α

du − αs1

is such that

ϕ′(α) = m

∫ s1

0

u3

(α(K + u) + u2)2
du − s1 .

From these, it clearly follows that limα→0+ ϕ(α) = 0 and limα→0+ ϕ′(α) = +∞.
Then, there exists α1 > 0 such that ϕ(α) > 0 for all α ≤ α1, hence

∫ s1

0
f(u, v)du > 0

for all 0 < α ≤ α1. This shows that assumption (A1) is satisfied. Similarly, we see
that assumption (A2) is satisfied.
(A3) part (ii) is satisfied: Let us consider the integral

I =
∫ s0

0

min
0≤v≤s1

f(u, v)du+
∫ s1

s0

min
0≤v≤s1

f(u, v)du

=
∫ s0

0

min
0≤v≤s1

( mu

K + u+ u2

α

− α
)
(v + 1)du

+
∫ s1

s0

min
0≤v≤s1

( mu

K + u+ u2

α

− α
)
(v + 1)du .

Since
mu

K + u+ u2

α

− α ≤ 0 for all u ∈ [0, s0]

and
mu

K + u+ u2

α

− α ≥ 0 for all u ∈ [s0, s1] ,

we have

I =
∫ s0

0

( mu

K + u+ u2

α

− α
)
(s1 + 1)du+

∫ s1

s0

( mu

K + u+ u2

α

− α
)
du

= s1

∫ s0

0

( mu

K + u+ u2

α

− α
)
du+

∫ s1

0

( mu

K + u+ u2

α

− α
)
du .

Therefore, as in the case of ϕ(α) above, there exists α2 > 0 such that I > 0 for
0 < α < α2.

Conclusion. For any α satisfying 0 < α ≤ min(α0, α1, α2), the functions f and g
satisfy the assumptions (A1)–(A3).

Remark 4.1. The existence result given in this paper is valid for a system of n
equations (with n > 2), the proof being similar to the one presented here. Moreover,
this idea can be extended to handle systems of semi-positone PDEs.
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