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HOMOCLINIC ORBIT SOLUTIONS OF A ONE DIMENSIONAL
WILSON-COWAN TYPE MODEL

EDWARD P. KRISNER

Abstract. We analyze a time independent integral equation defined on a

spatially extended domain which arises in the modelling of neuronal networks.
In this paper, the coupling function is oscillatory and the firing rate is a smooth

“heaviside-like” function. We will derive an associated fourth order ODE and

establish that any bounded solution of the ODE is also a solution of the integral
equation. We will then apply shooting arguments to prove that the ODE has

N -bump homoclinic orbit solutions for any even-valued N > 0. homoclinic

orbit.

1. Introduction

In 1972, Wilson and Cowan [23] derived the partial integro-differential equation

ut = −u +
∫ ∞

−∞
w(x− y)f(u(y, t)− th)dy (1.1)

to describe the behavior of a single layer of neurons [23]. Here, u(x, t) and
f(u(x, t) − th) represent the level of excitation (e.g. voltage) and the firing rate,
respectively, of a neuron at position x and time t. The parameter th ≥ 0 denotes
the threshold of excitation. The term w(x − y) determines the coupling between
neurons at positions x and y.

In 1977, Amari [1] studied pattern formation in (1.1) for lateral inhibition type
couplings. That is, w is assumed to be continuous, integrable and even, with
w(0) > 0, and exactly one positive zero. Under the simplifying assumption that
the firing rate f is a Heaviside step function, he analyzed the existence, multiplicity
and stability of stationary one-bump solutions of the time independent equation

u =
∫ ∞

−∞
w(x− y)f(u(y)− th)dy. (1.2)

Equations (1.1) and (1.2) have been studied with respect to various combinations
of firing rate functions and coupling functions.

Other investigations of (1.1) for lateral inhibition type couplings include those
of Coombes et. al. [4] and Guo et. al. [9]. Coombes et. al. [4] obtain a closed form
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stable 1-bump homoclinic orbit solution of (1.2) with

f(u) = H(u),

w(x) = κ(1− |x|)e−|x|

and H(u) is the Heaviside step function.
Guo and Chow [9] state criteria that result in two 1-bump solutions of (1.2) with

f(u) = (αu + β)H(u) and

w(x) = Ae−α|x| − e−|x| where A, a > 1.

A wide range of techniques have been used to study (1.1) and (1.2). Owen
et. al. employ an Evans function approach to investigate instabilities of localized
solutions of (1.1) and (1.2). Kishimoto and Amari [11] assume that f has a sig-
moidal shape and use the Schauder Fixed Point Theorem [6] to prove the existence
of a single bump stationary solution of (1.2). Ermentrout and McLeod [8] inves-
tigate the existence of traveling waves when w is strictly positive and Gaussian
shaped, and f is a sigmoidal function. They use a homotopy argument based on
the contraction mapping theorem to prove the existence of monotonic wave fronts.
Subsequently, Pinto and Ermentrout [18] make use of the result in [8] and use sin-
gular perturbation methods to study wave front solutions in a related system of
equations. Ermentrout [7] and Coombes [3] give an extensive review of theoretical
methods and results.

In order to analyze more complicated solutions (e.g. multi-bump solutions),
Laing et. al. [14], Coombes et. al. [4], and Guo et. al. [9] derive associated fourth
order ODEs by applying Fourier Transform methods. In [14] and [4] conditions
are given which show that when the integral equation (1.2) has a homoclinic orbit
satisfying u(±∞) = 0 then that solution also satisfies an associated ODE of the
form

u′′′′ + q1u
′′ + h(u) = 0, (1.3)

where q1 is a real constant and h is a real-valued function.
In this paper we also derive a fourth order ODE associated with (1.2). This

affords us the opportunity to employ the method of topological shooting to prove
the existence of N -bump homoclinic orbit solutions. The method of topological
shooting is a well known technique, and has been employed to prove the existence
of a wide variety of solutions of two-point boundary value problems. For example,
Shangbing [21] applies a shooting method to prove the existence of traveling waves
of a bioremediation model. Peletier and Troy [17] derive a fourth order ODE by
scaling the Extended Fisher-Kolmogorov equation. Subsequently, they proved that
the fourth order ODE has two odd 1-bump periodic solutions.

In this paper we extend the results obtained in Krisner [13]. In [13], conditions
were given which guarantee that (1.2) has two 1-bump periodic solutions. The
primary goal in this paper is to develop techniques which allow us to prove the
existence of N -bump homoclinic orbit solutions of (1.2) for any even-valued N > 0.
In our survey the coupling function w is oscillatory shaped and the firing rate
function f is a smooth step-like function.

The outline of the paper is as follows. In Section 2, we define our coupling and
firing rate functions. These functions were originally introduced in Laing et al. [14].
In addition, we will state several previously established results including

(1) the link between (1.2) and a fourth order ODE,
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(2) the initial conditions of the ODE which yield even solutions,
(3) a parameter regime that gives rise to a tractable setting for our construction

of N -bump solutions,
(4) the existence of infinitely many critical values, and
(5) the existence of two 1-bump periodic solutions.

In Section 3, we will show that the critical numbers are continuous with respect to
the initial conditions. This analysis will lay the framework for the construction of
N -bump periodic solutions which is contained in Section 4.

2. Preliminary Results

In this section we will establish several results that are necessary for the con-
struction of N -bump homoclinic orbit solutions of the time independent integral
equation

u(x) =
∫ ∞

−∞
w(x− y)f(u(y)− th)dy. (2.1)

As in [13] the coupling and firing rate functions are defined by

w(x) = e−b|x|(b sin(|x|) + cos(x)), b > 0, and (2.2)

f(u− th) = 2e−r/(u−th)2H(u− th), r > 0, th > 0 (2.3)

respectively. Figure 1 depicts the essential characteristics of the functions w and f .
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Figure 1. Left panel, example of (2.2) with b = 1.1. Right panel,
example of (2.3) with r = 0.02, th = 1.75.

The Associated ODE. Here we state an important theorem which establishes a
crucial connection between the ODE

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u− th) (2.4)

and the integral equation (2.1) with w defined by (2.2) and f defined by (2.3).
Krisner [12] proves the following result.

Theorem 2.1. Suppose that u is a solution of (2.4), and that u(t) = o(eb|t|) as
t → ±∞. Then u is a solution of (2.1).

Hence, the goal of this paper will be fulfilled upon proving the existence of
N -bump homoclinic orbit solutions of the IVP

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u− th)

u(0) = α, u′(0) = 0, u′′(0) = β, u′′′(0) = 0.
(2.5)
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Even Solutions of the ODE. An immediate consequence of [13, Lemma 4.1] is
the following.

Lemma 2.2. Any solution u of (2.5) satisfies u(x) = u(−x) for all x in the domain
of existence.

Thus, we need only to consider the behavior of solutions on [0, ω) for some ω > 0
(possibly ω = ∞).

The First Integral Equation. We now derive an associated 3rd order equation.
By multiplying both sides of (2.4) by u′ and integrating over [0, x] we obtain

u′′′u′ − (u′′)2

2
− (b2 − 1)(u′)2 + (b2 + 1)2Q(u) = E (2.6)

for some constant E and

Q(u) =
∫ u

0

(
s− 4b

b2 + 1
f(s− th)

)
ds. (2.7)

Since we are interested in solutions that satisfy (u, u′, u′′, u′′′) → (0, 0, 0, 0) as
x →∞, then E = 0 in (2.6). Thus, we obtain

u′′′u′ − (u′′)2

2
− (b2 − 1)(u′)2 + (b2 + 1)2Q(u) = 0. (2.8)

The Initial Conditions. The conditions u(0) = α, u′(0) = 0, u′′(0) = β, and
u′′′(0) = 0 substituted into (2.8) yields

β2 = 2(b2 + 1)2Q(α) ⇐⇒ β = ±(b2 + 1)
√

2Q(α). (2.9)

In our construction of even bump solutions we consider α < 0 and β > 0. This
together with (2.9) and the fact that Q(u) = u2

2 yields

β = −(b2 + 1)α. (2.10)

This crucial result reduces our problem to that of one dimensional shooting. That
is, all solutions of (2.5) that we consider are uniquely determined by the value of
α. Furthermore, we occasionally use the notation u(·, α) whenever its necessary to
emphasize the solution’s dependence on α. Lastly, we will assume that (2.10) holds
throughout the remainder of this paper.

Range of Parameters. In Krisner [13] we defined a parameter regime that en-
sured the existence of 1-bump periodic solutions. These periodic solutions will be
used to construct the multi-bump homoclinic orbit solutions. Hence, the condi-
tions required to construct the periodic solutions of [13] will also be required for
the construction of the homoclinic orbit solutions.

We begin by defining the same parameter regime that guaranteed the existence
of periodic solutions. We will assume throughout the remainder of this paper that
(r, b, th) ∈ Λ where

Λ = {(r, b, th) ∈ X : Q(u) = 0 has a unique positive solution}, (2.11)

and X = {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, and x3 > 0}, (see Figure 2).
The following lemma is an immediate consequence of [13, Theorem 3.5]

Lemma 2.3. For each fixed th ∈ (0, 2) Λ contains a continuum provided that r > 0
is sufficiently small.

For a proof of the above lemma, see [13, Theorem 3.5].
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The Function Q. As noted above, the function Q defined by (2.7) plays a pivotal
role in determining the parameter regime that we consider. Figure 2 depicts a
rather typical qualitative picture of the function Q with (r, b, th) ∈ Λ. We see
that Q′(u), where ′ = d

du , has two positive roots, which we denote by us and uss.
Specifically, we define uss > 0 so that Q′(uss) = 0 < Q(uss) and us > uss so that
Q′(us) = Q(us) = 0.

The function Q with our choice of parameters given in (2.11) also determines
the constant solutions of (2.5). Note that u ≡ 0 and u ≡ us are the only constant
solutions of (2.5). This is easily seen by expressing the equation in (2.5) as

u′′′′ − 2(b2 − 1)u′′ = −(b2 + 1)2Q′(u).

We can also deduce from (2.8) that u ≡ uss is not a constant solution.

Q(u)

u
3.711.76

1.5

−1.5

Figure 2. The function Q when (r, br, th) ∈ Λ. Here the param-
eters are r = .05, br = 1.44, and th = 1.5. Also, uss ≈ 1.76 and
us ≈ 3.71.

Oscillatory Behavior of Solutions. Much of the work in this paper deals with
the behavior of solutions near critical points. Thus, it is necessary to guarantee
their existence. The following theorem, proved in [13], guarantees the existence of
infinitely many critical points.

Theorem 2.4. Suppose that (r, b, th) ∈ Λ with r ≤ th4

16 . Also, let u be a nontrivial
solution of (2.5) with interval of existence [0, ω). Then u′ changes sign on (X, ω),
for any X ∈ (0, ω).

For a proof of the above theorem, see [13, Theorem 5.1].

Limiting Values as r → 0. As stated in Lemma 2.3, “sufficiently small” r gave
rise to the existence of a continuum in Λ. In Theorem 2.4 it was seen that sufficiently
small r ensured the existence of infinitely many critical points. Our construction of
N -bump homoclinic orbit solutions will also rely on sufficiently small r as well as
precise limiting values of b, us and uss as r → 0. To emphasize their dependence
on r, we write br, us(r) and uss(r). In later sections we will omit the r and simply
write b, us and uss.

In the following lemma we begin by obtaining the limiting value of us(r) and br

as r → 0+.
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Lemma 2.5. Suppose that th ∈ (0, 2) is fixed and that (r, br, th) ∈ Λ. Then

us(r) → 2th+, and (2.12)

br →
2
th
±
√

4− th2

th
(2.13)

as r → 0+.

Proof. Equation (2.12) is proved in [13, Lemma 3.4]. We now prove (2.13). Since
us(r) satisfies Q′(us(r)) = 0, i.e.,

Q′(us(r)) = us(r)−
8br

b2
r + 1

e−r/(us(r)−th)2 = 0,

then it follows from (2.12) that
8br

b2
r + 1

= us(r)e−r/(us(r)−th)2 → 2th as r → 0+. (2.14)

Hence, (2.13) follows after a little algebra. �

Lemma 2.6. Let 0 < th < 2 be fixed, and for small r > 0 let (r, br, th) ∈ Λ. Then
there exists r∗ > 0 such that

0 < uss(r)− th ≤ r1/4 for all r ∈ (0, r∗), and (2.15)

Q(uss(r)) → Q(th) as r → 0+. (2.16)

Remarks: (i) The power r1/4 in (2.15) can be improved but for our purposes
this power will suffice. (ii) In our proofs of multi-bump solutions we will make use
of properties (2.15) and (2.16).

Proof of Lemma 2.6. We prove (2.15) by contradiction. That is, suppose that there
exists a sequence {rn}∞n=1 such that

rn → 0+ and uss(rn)− th > r1/4
n for all n ≥ 1. (2.17)

Throughout this proof we shall write bn instead of brn . To obtain a contradiction
we define

un = th + r1/4
n for each n ≥ 1. (2.18)

By (2.17) and (2.18) we obtain

th < un < uss(rn) for all n ≥ 1.

This means that 0 < Q′(un) for all n ≥ 1, or equivalently

0 < un −
8bn

b2
n + 1

e−rn/(un−th)2 = un −
8bn

b2
n + 1

e−r1/2
n ∀n ≥ 1. (2.19)

From (2.14) and (2.18) it follows that

un −
8bn

b2
n + 1

e−r1/2
n → −th < 0 as n →∞.

This contradicts (2.19) for large n > 1. Therefore, (2.15) must hold as claimed.
It remains to prove (2.16). By definition of Q it follows that

Q(uss(r))−Q(th) =
u2

ss(r)
2

− th2

2
− 8br

b2
r + 1

∫ uss(r)

th

e−r/(s−th)2ds

≤ (uss(r)− th)
(uss(r) + th

2
)
.

(2.20)
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Since Q(uss(r)) > Q(th), then (2.16) is a consequence of (2.15) and (2.20). This
concludes the proof. �

Periodic Solutions. An important prerequisite of our construction of N -bump
homoclinic solutions is the existence of periodic solutions. Next, we state Theorem
6.1 of [13].

Theorem 2.7. Suppose that (r, b, th) ∈ Λ with r ≤ th4

16 , and that α < 0 and
β = −(b2 + 1)α. Then, there exists α∗ < α∗ < 0 such that u(·, α∗) and u(·, α∗) are
1-bump periodic solutions of (2.5). Moreover, we can choose α∗ and α∗ so that

th < ||u(·, α∗)||∞ < us < ||u(·, α∗)||∞ (2.21)

where Q(us) = 0.

The existence of these periodic solutions provides a means of “controlling” the
bumps of the solution. For example, if u(·, α∗) is a periodic solution described in
Theorem 2.7, then N →∞ as α → α∗.

3. Continuity of Critical Values

In this subsection we will lay the foundation of the shooting method that we
use to prove the existence of N -bump homoclinic orbit solutions for any even N .
To accomplish this we must first assume that the conditions of Theorem 2.4 hold.
Recall that this theorem ensures the existence of infinitely many critical numbers
on the domain of existence. Also, recall that we will assume that u(0) = α < 0 and
u′′(0) = β = −(b2 + 1)α. Hence, solutions of (2.5) are uniquely determined by α.

In particular, critical numbers of solutions of (2.5) are uniquely determined by
α. The primary objective of this section is to prove that these critical numbers
continuously depend on α. Hence, it is necessary to develop a rigorous naming
scheme of the critical numbers in a way that emphasizes their dependence on α.
As in Theorem 2.4, we will assume that u is a nontrivial solution of (2.5), i.e.,
0 6= α 6= us. For notational convenience, we will define the critical numbers in
terms of the sets

Γ−(x0) = {x > x0 | u′(·, α) < 0 on (x0, x)}
Γ+(x0) = {x > x0 | u′(·, α) > 0 on (x0, x)}.

Since u′(0) = 0 and u′′(0) = β > 0, then u′(x, α) > 0 in a right neighborhood (0, δ).
Thus, for any u(0) = α < 0 we define

ξ1(α) = supΓ+(0), (3.1)

ηk(α) =

{
supΓ−(ξk(α)) if u′′(ξk(α), α) < 0 or u′′′(ξk(α), α) < 0
ξk(α) if u′′(ξk(α), α) = 0 and u′′′(ξk(α), α) > 0

(3.2)

for k ≥ 1, and

ξk(α) =

{
supΓ+(ηk−1(α)) if u′′(ηk−1(α), α) > 0 or u′′′(ηk−1(α), α) > 0
ηk−1(α) if u′′(ηk−1(α), α) = 0 and u′′′(ηk−1(α), α) < 0

(3.3)

for k ≥ 2.
Theorem 2.4 guarantees that ξk and ηk are well defined for all k ≥ 1 provided

that u′(x, α) > 0 on an interval of the form (0, δ). We will now show that the
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conditions in the piecewise defined functions given in (3.2) and (3.3) encompass all
possibilities. That is, for (3.2), we will show that the negation of the statement
u′′(ξk(α), α) < 0 or u′′′(ξk(α), α) < 0 is u′′(ξk(α), α) = 0 and u′′′(ξk(α), α) > 0. It
follows from (3.1) and (3.3) that u′′(ξk(α), α) ≤ 0 for all k ≥ 1. This reduces the
negation of the statement u′′(ξk(α), α) < 0 or u′′′(ξk(α), α) < 0 to u′′(ξk(α), α) = 0
and u′′′(ξk(α), α) ≥ 0. In the following lemma we will show that u′′′(ξk(α), α) > 0
if u′′(ξk(α), α) = 0.

Lemma 3.1. Suppose that u is a nontrivial solution of (2.5) with
u′(x0) = u′′(x0) = 0 for some x0 in the domain of existence. Then,

(i) u′(x) < 0 in a left neighborhood of x0 implies that u′′′(x0) < 0, and
(ii) u′(x) > 0 in a left neighborhood of x0 implies that u′′′(x0) > 0.

Proof. of (i): It follows from (2.8) that Q(u(x0)) = 0. That is, u(x0) is one of the
two roots of Q, namely 0 or us. Since u is assumed to be nontrivial, then uniqueness
of solutions, (Theorem 7.1 of [5]), guarantees that u′′′(x0) 6= 0. This together with
the assumption that u′(x) < 0 on (x0 − δ, x0) say, leads to u′′′(x0) < 0.

A similar argument can be used to prove (ii). �

Hence, the negation of u′′(ξk(α), α) < 0 or u′′′(ξk(α), α) < 0 is u′′(ξk(α), α) = 0
and u′′′(ξk(α), α) > 0.

Similarly, the negation of u′′(ηk−1(α), α) > 0 or u′′′(ηk−1(α), α) > 0 is
u′′(ηk−1(α), α) = 0 and u′′′(ηk−1(α), α) < 0. Thus, ξk(α) and ηk(α) are defined in
every possible case.

Another question that may arise in the above definitions concerns the need for the
sign of u′′′(ξk(α), α) in (3.2) and u′′′(ηk−1(α), α) in (3.3). Without addressing the
sign of the third derivative in these definitions it is possible that ξk(α) = ξk+1(α) =
ξk+2(α) . . . The following lemma ensures that this does not happen.

Lemma 3.2. For any α < 0 and any k ≥ 1 it follows that

ξk(α) ≤ ηk(α) ≤ ξk+1(α). (3.4)

Furthermore, if ξk(α) = ηk(α), then ηk(α) < ξk+1(α). Also, if ηk(α) = ξk+1(α),
then ξk(α) < ηk(α).

Proof. First, (3.4) is a direct consequence of (3.2) and (3.3). Assume that ξk(α) =
ηk(α). Then (3.2) implies that u′′(ξk(α), α) = 0 and u′′′(ξk(α), α) > 0. Thus,
u′′′(ηk(α), α) > 0 and (3.3) result in ξk+1(α) = supΓ+(ηk(α)) > ηk(α).

Using a similar argument we can show that ξk+1(α) = ηk(α) implies ξk(α) <
ηk(α). �

For a better understanding of (3.2) and (3.3) we apply these two definitions to
the illustration given in Figure 3.

We now prove that ξk and ηk are continuous functions of α for all k ≥ 1. We
will do this with the help of the following lemma.

Lemma 3.3. Suppose that u(x, α∗) is a nonconstant solution of (2.5) such that
u′(x∗, α∗) = u′′(x∗, α∗) = 0 6= u′′′(x∗, α∗) for some x∗ > 0 and some α∗ ∈ R. Then
for any ε > 0 such that

u′′′(x, α∗) 6= 0 on [x∗ − ε, x∗ + ε] (3.5)

it follows that
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Figure 3. An illustration of a function u such that u′′(ξk(α), α) =
0 for k = 2, 3, 4, u′′′(ηk(α), α) < 0 for k = 1, 2, and u′′′(ξ4(α), α) >
0. The above graph is not an actual solution of (2.5), but merely
an interpolating polynomial derived using Mathematica.

(i) u′′(x∗ − x, α∗)u′′(x∗ + x, α∗) < 0 on (0, ε].
In addition, assume that {αn} is a sequence such that

αn → α∗ as n →∞, (3.6)

and that u(x, αn) is a nonconstant solution of (2.5) for each n ≥ 1. Then there
exists N > 0 such that

(ii) u′′′(x, αn)u′′′(x, α∗) > 0 on [x∗ − ε, x∗ + ε],
(iii) u′′(x∗ − ε, αn)u′′(x∗ + ε, αn) < 0, and
(iv) there exists a unique τn ∈ (x∗ − ε, x∗ + ε) such that u′′(τn, αn) = 0

for all n ≥ N . Furthermore, it also follows that
(v) τn → x∗ as n →∞.

The above lemma is [13, Lemma 5.10].

Theorem 3.4. The function ξ1 as defined in (3.1) is a continuous function of α.

For a proof of the above theorem, see [13, Theorem 5.11].
Theorem 3.4 begins the inductive process that we use to prove continuity of ξk

and ηk. Proving continuity of ξ1 is sufficient to begin the inductive chain. That is,
we will assume that ξk is continuous to prove that ηk is continuous for arbitrary
k ≥ 1. To complete the induction process we will show that ξk+1 is continuous
under the assumption that ηk is continuous.

We now prove that ηk is continuous, given that ξk is continuous, by considering
three cases. Lemma 3.2 asserts that the three cases are

(1) ξk(α) < ηk(α) < ξk+1(α),
(2) ηk(α) = ξk+1(α), and
(3) ξk(α) = ηk(α).

We begin with the simplest case, given by (1), after the following lemma.

Lemma 3.5. If u′′(ηk(α∗), α∗) > 0, then ηk is continuous at α = α∗. Likewise, if
u′′(ξk(α∗), α∗) < 0, then ξk is continuous at α = α∗.
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Proof. Since d
dxu′(x, α∗)|x=ηk(α∗) 6= 0, then ηk is continuous by way of the Implicit

Function Theorem.
A similar argument holds for continuity of ξk. �

We now state conditions that yield u′′(ξk(α∗), α∗) < 0 < u′′(ηk(α∗), α∗).

Lemma 3.6. If ξk(α∗) < ηk(α∗) < ξk+1(α∗), then u′′(ηk(α∗), α∗) > 0, and ηk is
continuous at α = α∗. Moreover, if ηk−1(α∗) < ξk(α∗) < ηk(α∗), then
u′′(ξk(α∗), α∗) < 0, and ξk is continuous at α = α∗.

Proof. Suppose that ξk(α∗) < ηk(α∗) < ξk+1(α∗). By equation (3.2), it follows
that u′′(ηk(α∗), α∗) ≥ 0. For a contradiction, assume that u′′(ηk(α∗), α∗) = 0.
Since ξk+1(α∗) > ηk(α∗) and u′′(ηk(α∗), α∗) = 0, then u′′′(ηk(α∗), α∗) > 0 as
a consequence of (3.3). From this we infer that u′(x, α∗) > 0 on an interval of
the form (ηk(α∗) − δ, ηk(α∗)) for some δ > 0. But ξk(α∗) < ηk(α∗) implies that
u′(x, α∗) < 0 on (ξk(α∗), ηk(α∗)). Thus, we have obtained a contradiction. There-
fore, u′′(ηk(α∗), α∗) > 0, and continuity of ηk at α = α∗ follows from Lemma 3.5.

We can prove that u′′(ξk(α∗), α∗) < 0 and continuity of ξk at α = α∗ in a similar
manner. �

To finish proving continuity of ηk at α = α∗ we consider the cases where
ξk+1(α∗) = ηk(α∗), and ξk(α∗) = ηk(α∗). In the following lemma, we consider
the case where ξk+1(α∗) = ηk(α∗).

Lemma 3.7. Suppose that ξk is continuous. Then ηk is continuous at any α = α∗
such that that ξk+1(α∗) = ηk(α∗), (see Figure 4).

Proof. Let ε > 0 and suppose that {αn} is a sequence such that αn → α∗ as n →∞.
We must show that there exists N > 0 such that

(i) ηk(αn) < ηk(α∗) + ε
(ii) ηk(αn) > ηk(α∗)− ε

for all n ≥ N .
(i): For a contradiction, assume that there exists a sequence {αn} and ε > 0 such

that αn → α∗ as n → ∞ and that ηk(αn) ≥ ηk(α∗) + ε for all n ≥ 1. Lemma 3.2
and ξk+1(α∗) = ηk(α∗) guarantee that ξk(α∗) < ηk(α∗), and therefore u′(x, α∗) < 0
on (ξk(α∗), ηk(α∗)). Since ξk(α∗) < ηk(α∗), then (3.2) ensures that

u′′(ξk(α∗), α∗) < 0 or u′′′(ξk(α∗), α∗) < 0. (3.7)

We now show that there exists N > 0 such that ξk(αn) < ηk(αn) for all n ≥ N .
Otherwise, if there is a subsequence {αnj} such that ξk(αnj ) = ηk(αnj ) for each nj ,
then (3.2) asserts that u′′(ξk(αnj ), αnj ) = 0 and u′′′(ξk(αnj ), αnj ) > 0 for each nj .
By continuity of ξk in α and u′′ and u′′′ in (x, α), (Theorem 7.1 of [5]), it follows
that

0 = lim
nj→∞

u′′(ξk(αnj ), αnj ) = u′′(ξk(α∗), α∗) and

0 ≤ lim
nj→∞

u′′′(ξk(αnj
), αnj

) = u′′′(ξk(α∗), α∗).

But this contradicts (3.7) and proves our claim that N > 0 can be chosen such
that ξk(αn) < ηk(αn) for all n ≥ N . Without loss of generality, we can assume
that ξk(αn) < ηk(αn) for all n ≥ 1. Thus, u′(x, αn) < 0 on (ξk(αn), ηk(αn)) for all
n ≥ 1.
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Our assumption that ξk+1(α∗) = ηk(α∗) together with (3.3) imply that

u′′′(ηk(α∗), α∗) < 0 = u′(ηk(α∗), α∗) = u′′(ηk(α∗), α∗).

We can further restrict ε if necessary so that

u′′′(x, α∗) < 0 on [ηk(α∗)− ε, ηk(α∗) + ε].

By Lemma 3.3, there exists N1 > 0 and a sequence {τn} such that
(a1) u′′(τn, αn) = 0
(b1) ηk(α∗)− ε < τn < ηk(α∗) + ε
(c1) τn → ηk(α∗) as n →∞

whenever n ≥ N1. Throughout the remainder of this proof we denote

un = u(τn, αn), u′n = u′(τn, αn), u′′n = u′′(τn, αn), and u′′′n = u′′′(τn, αn).

It follows from continuity of u′ and u′′′ in (x, α) together with (c1) that
u′′′n → u′′′(ηk(α∗), α∗) < 0 and u′n → u′(ηk(α∗), α∗) = 0 as n →∞. Hence, we can
choose N2 ≥ N1 so that

(a2) ξk(αn) < ξk(α∗) + ε, (by continuity of ξk),
(b2) ξk(α∗) + ε < τn < ηk(α∗) + ε, and
(c2) u′′′n − (b2 − 1)u′n < 0

for all n ≥ N2. Now, (a2), (b2) and the contradiction hypothesis ηk(αn) ≥ ηk(α∗)+ε
ensure that ξk(αn) < τn < ηk(αn) for each n ≥ N2, and hence u′n < 0 for each
n ≥ N2. To obtain the desired contradiction, we consider Eq. (2.8) at x = τn which
can be written as

u′n(u′′′n − (b2 − 1)u′n) + (b2 + 1)2Q(un) = 0.

This is a contradiction since Q(un) ≥ 0 for any un, u′n < 0, and (c2) for all n ≥ N2.
This concludes the proof part (i).

(ii): Since ξk(α∗) < ηk(α∗) we can restrict ε so that ξk(α∗) + ε < ηk(α∗)− ε. By
continuity of ξk, we can choose N1 > 0 so that

ξk(α∗)− ε < ξk(αn) < ξk(α∗) + ε for all n ≥ N1. (3.8)

To complete the proof of (ii) we must prove that there exists N2 ≥ N1 so that
u′(x, αn) < 0 on (ξk(αn), ηk(α∗) − ε] whenever n ≥ N2. This will guarantee that
ηk(αn) > ηk(α∗) − ε for all n ≥ N2. We will do this in two steps. We will show
that there exists N2 ≥ N1 such that

(a) u′(x, αn) < 0 on (ξk(αn), ξk(α∗) + ε] and
(b) u′(x, αn) < 0 on [ξk(α∗) + ε, ηk(α∗)− ε]

provided that n ≥ N2.
We begin by proving (a). Recall from (3.3) that u′′(ξk(α∗), α∗) ≤ 0. First,

consider the simpler of the two cases where u′′(ξk(α∗), α∗) < 0. We can fur-
ther restrict ε if necessary to ensure that u′′(x, α∗) < 0 on the compact interval
[ξk(α∗) − ε, ξk(α∗) + ε]. By continuity of u′′ in (x, α) we can choose N2 ≥ N1 so
that u′′(x, αn) < 0 on [ξk(α∗)− ε, ξk(α∗) + ε] for n ≥ N2. It follows from (3.8) and
N2 ≥ N1 that

u′(x, αn) =
∫ x

ξk(αn)

u′′(t, αn)dt < 0 whenever n ≥ N2,

and ξk(αn) < x ≤ ξk(α∗)+ε. Hence, (a) holds for the case where u′′(ξk(α∗), α∗) < 0.
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Now assume that u′′(ξk(α∗), α∗) = 0. Thus, (3.2) and ξk(α∗) < ηk(α∗) imply
that u′′′(ξk(α∗), α∗) < 0. Again, we restrict ε so that u′′′(x, α∗) < 0 on the compact
interval [ξk(α∗)−ε, ξk(α∗)+ε]. Continuity of u′′′ in (x, α) ensures that we can choose
N2 ≥ N1 so that u′′′(x, αn) < 0 on [ξk(α∗)− ε, ξk(α∗) + ε] whenever n ≥ N2. Now,
if ξk(αn) < x ≤ ξk(αn) + ε and n ≥ N2, then

0 >

∫ x

ξk(αn)

∫ t

ξk(αn)

u′′′(s, αn) ds dt

= u′(x, αn)− u′′(ξk(αn), αn)(x− ξk(αn)).
(3.9)

Combining (3.9) with the fact that u′′(ξk(αn), αn) ≤ 0 we obtain
u′(x, αn) < u′′(ξk(αn), αn)(x− ξk(αn)) ≤ 0 whenever ξk(αn) < x ≤ ξk(αn) + ε and
n ≥ N2. This completes the proof of part (a).

To prove (b) note that u′(x, α∗) < 0 on [ξk(α∗) + ε, ηk(α∗) − ε]. Since u′ is
continuous in (x, α), we can choose N > 0 so that u′(x, αn) < 0 on the interval
[ξk(α∗)+ ε, ηk(α∗)− ε] for each n ≥ N . This completes the proof of part (b) as well
as the proof of the lemma. �

x

u

u = us

-2 Ξ1 Ξ2 � Η1

-4

Α*

2

4

6

8

Figure 4. The case where ξk(α∗) = ηk−1(α∗) for k = 2.

In the following lemma, we prove continuity of ηk at α = α∗ for ξk(α∗) = ηk(α∗).

Lemma 3.8. Assume that ξk is continuous. Then ηk is continuous at any α∗ such
that ξk(α∗) = ηk(α∗).

Proof. Let ε > 0 and suppose that {αn} is a sequence such that αn → α∗ as n →∞.
We must show that there exists N > 0 so that

(i) ηk(αn) > ηk(α∗)− ε and
(ii) ηk(αn) < ηk(α∗) + ε

for all n ≥ N . To prove (i) we use continuity of ξk and the fact that
ηk(αn) ≥ ξk(αn) for any αn. Hence,

ηk(αn) ≥ ξk(αn) → ξk(α∗) = ηk(α∗).

This proves (i).
(ii): We proceed by contradiction and assume that

ηk(αn) ≥ ηk(α∗) + ε. (3.10)
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By continuity of ξk, there exists N > 0 so that ξk(αn) < ξk(α∗) + ε/2 whenever
n ≥ N . Combining this estimate with (3.10) yields

ξk(αn) < ξk(α∗) + ε/2 = ηk(α∗) + ε/2 < ηk(αn) whenever n ≥ N. (3.11)

Therefore, u′(x, αn) < 0 on (ξk(αn), ηk(αn)). In particular, u′(ξk(α∗)+ε/2, αn) < 0
for all n ≥ N as a consequence of (3.11). Now by Lemma 3.2 and the assumption
that ξk(α∗) = ηk(α∗) it follows that ξk+1(α∗) > ηk(α∗). If necessary, we restrict ε
so that ξk(α∗)+ε/2 < ξk+1(α∗). Doing so guarantees that u′(ξk(α∗)+ε/2, α∗) > 0.
This and continuity of u′ in (x, α) contradicts that u′(ξk(α∗)+ε/2, αn) < 0 for each
n ≥ N . That is,

0 < u′(ξk(α∗) + ε/2, α∗) = lim
n→∞

u′(ξk(α∗) + ε/2, αn) ≤ 0.

�

We now summarize Lemmas 3.6, 3.7, and 3.8 with the following theorem.

Theorem 3.9. If ξk is continuous, then ηk is continuous.

We now prove that ξk+1 is continuous given that ηk is continuous. As we did in
proving continuity of ηk, we will consider three separate cases. The case in which
ηk(α) < ξk+1(α) < ηk+1(α) follows from Lemma 3.6. Thus, all that remains are
the cases where ηk(α) = ξk+1(α) and ξk+1(α) = ηk+1(α). The proofs that follow
are very similar to those in Lemmas 3.7 and 3.8. For this reason we will merely
sketch the proofs of continuity of ξk+1.

Lemma 3.10. Suppose that ηk is continuous. Then ξk+1 is continuous at any
α = α∗ such that ηk(α∗) = ξk+1(α∗).

Proof. Let ε > 0 and {αn} be a sequence such that αn → α∗ as n →∞. We must
show that there exists N > 0 such that

(i) ξk+1(αn) > ξk+1(α∗)− ε
(ii) ξk+1(αn) < ξk+1(α∗) + ε

whenever n ≥ N .
(i): Note that ξk+1(αn) ≥ ηk(αn) for any αn. This together with our assumption

that ηk is continuous yield

ξk+1(αn) ≥ ηk(αn) → ηk(α∗) = ξk+1(α∗) as n →∞.

This completes the proof of (i).
(ii): To obtain a contradiction, assume that ξk+1(αn) ≥ ξk+1(α∗) + ε. It fol-

lows from Lemma 3.2 and ηk(α∗) = ξk+1(α∗) that ξk+1(α∗) < ηk+1(α∗), and
hence u′(x, α∗) < 0 on (ξk+1(α∗), ηk+1(α∗)). We will restrict ε if necessary so
that ξk+1(α∗) + ε/2 < ηk+1(α∗). This guarantees that u′(ξk+1(α∗) + ε/2, α∗) < 0.
Now choose N > 0 so that ηk(αn) < ηk(α∗) + ε/2 = ξk+1(α∗) + ε/2 for n ≥ N .
Hence, ηk(αn) < ξk+1(α∗) + ε/2 < ξk+1(αn) for each n ≥ N . But this implies that
u′(ξk+1(α∗) + ε/2, αn) > 0 for each n ≥ N . This and u′(ξk+1(α∗) + ε/2, α∗) < 0
lead to a contradiction. This completes the proof of (ii) as well as the lemma. �

All that remains is the case where ηk+1(α∗) = ξk+1(α∗).

Lemma 3.11. Suppose that ηk is continuous. Then ξk+1 is continuous at any
α = α∗ such that ηk+1(α∗) = ξk+1(α∗).
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Proof. Let ε > 0 and {αn} be a sequence such that αn → α∗ as n →∞. We must
show that there exists N > 0 such that

(i) ξk+1(αn) > ξk+1(α∗)− ε
(ii) ξk+1(αn) < ξk+1(α∗) + ε

whenever n ≥ N .
(i): We first show that there exists N > 0 so that ηk(αn) < ξk+1(αn) for all n ≥

N . Since ξk+1(α∗) = ηk+1(α∗), then Lemma 3.2 implies that ηk(α∗) < ξk+1(α∗).
Hence, by (3.3), it follows that either u′′(ηk(α∗), α∗) > 0 or u′′′(ηk(α∗), α∗) > 0. It
now follows from continuity of ηk in α and u′′ and u′′′ in (x, α) that there exists
N > 0 so that either u′′(ηk(αn), αn) > 0 or u′′′(ηk(αn), αn) > 0 for all n ≥ N .
Thus, ηk(αn) < ξk+1(αn) for all n ≥ N , and u′(x, αn) > 0 on (ηk(αn), ξk+1(αn))
for all n ≥ N . Without loss of generality, assume that ηk(αn) < ξk+1(αn) for all
n ≥ 1.

Our goal now is to show that there exists N > 0 so that u′(x, αn) > 0 on
(ηk(αn), ξk+1(α∗) − ε] for all n ≥ N . This will be done in two steps. That is, we
will show that there exists N > 0 so that

(a) u′(x, αn) > 0 on (ηk(αn), ηk(α∗) + ε], and
(b) u′(x, αn) > 0 on [ηk(α∗) + ε, ξk+1(α∗)− ε]

for each n ≥ N . For technical purposes we restrict ε so that ηk(α∗)+ε < ξk+1(α∗)−
ε. By continuity of ηk there exists N1 > 0 so that ηk(α∗)− ε < ηk(αn) < ηk(α∗)+ ε
for all n ≥ N1.

By (3.2) it follows that u′′(ηk(α∗), α∗) ≥ 0. We begin proving (a) by assuming
that u′′(ηk(α∗), α∗) > 0. We further restrict ε so that u′′(x, α∗) > 0 on the interval
[ηk(α∗)−ε, ηk(α∗)+ε]. By continuity of u′′ there exists N2 ≥ N1 so that u′′(x, αn) >
0 on [ηk(α∗)− ε, ηk(α∗) + ε] whenever n ≥ N2. Hence,

u′(x, αn) =
∫ x

ηk(αn)

u′′(t, αn)dt > 0

whenever ηk(αn) < x ≤ ηk(α∗) + ε and n ≥ N2. This proves (a) for the case
u′′(ηk(α∗), α∗) > 0.

Now assume that u′′(ηk(α∗), α∗) = 0. Then u′′′(ηk(α∗), α∗) > 0 as a consequence
of ξk+1(α∗) > ηk(α∗) and (3.3). Again we restrict ε to ensure that u′′′(x, α∗) > 0
on [ηk(α∗)− ε, ηk(α∗) + ε]. If follows by continuity of u′′′ in (x, α) that there exists
N2 ≥ N1 so that u′′′(x, αn) > 0 on [ηk(α∗)− ε, ηk(α∗)+ ε] whenever n ≥ N2. Thus,

0 <

∫ x

ηk(αn)

∫ t

ηk(αn)

u′′′(s, αn) ds dt

= u′(x, αn)− u′′(ηk(αn), αn)(x− ηk(αn))
(3.12)

whenever ηk(αn) < x ≤ ηk(α∗) + ε and n ≥ N2. Since u′′(ηk(αn), αn) ≥ 0, then
u′(x, αn) > 0 on (ηk(αn), ηk(α∗) + ε] follows from (3.12). This completes (a).

To prove (b), note that u′(x, α∗) > 0 on [ηk(α∗)+ε, ξk+1(α∗)−ε]. Then continuity
of u′ in (x, α) ensures that there exists N > 0 so that u′(x, αn) > 0 on [ηk(α∗) +
ε, ξk+1(α∗)− ε] whenever n ≥ N . This completes the proof of part (i).

(ii): For a contradiction, assume that ξk+1(αn) ≥ ξk+1(α∗)+ε for all n ≥ 1. Our
premise that ηk+1(α∗) = ξk+1(α∗) and Lemma 3.2 imply that ηk(α∗) < ξk+1(α∗).
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For technical purposes we restrict ε so that

ηk(α∗) + ε < ξk+1(α∗)− ε. (3.13)

Since ηk is continuous, there exists N1 > 0 so that

ηk(αn) < ηk(α∗) + ε for all n ≥ N1. (3.14)

This together with our contradiction premise, ξk+1(αn) ≥ ξk+1(α∗) + ε, yield that
ηk(αn) < ξk+1(αn) for all n ≥ N1, and therefore u′(x, α) > 0 on (ηk(αn), ξk+1(αn))
for all n ≥ N1.

By (3.2), ηk+1(α∗) = ξk+1(α∗) guarantees that u′′′(ξk+1(α∗), α∗) > 0. We can
further restrict ε so that u′′′(x, α∗) > 0 on [ξk+1(α∗) − ε, ξk+1(α∗) + ε]. It now
follows from Lemma 3.3 that there exists N2 ≥ N1, and a sequence {τn} so that

(a) u′′(τn, αn) = 0,
(b) ξk+1(α∗)− ε < τn < ξk+1(α∗) + ε, and
(c) τn → ξk+1(α∗) as n →∞

for all n ≥ N2.
Combining the contradiction premise with (3.13), (3.14), and (b) yield that

ηk(αn) < τn < ξk+1(αn) for each n ≥ N2. Using the notation

un = u(τn, αn), u′n = u′(τn, αn), u′′n = u′′(τn, αn), and u′′′n = u′′′(τn, αn),

we obtain u′n > 0 for each n ≥ N2.
Combining (c) with continuity of u′, u′′′ results in u′n → u′(ξk+1(α∗), α∗) = 0

and u′′′n → u′′′(ξk+1(α∗), α∗) > 0. Thus, we can choose N3 ≥ N2 so that
u′′′n − (b2 − 1)u′n > 0 for all n ≥ N3. Now Eq. (2.8) can be written as

u′n(u′′′n − (b2 − 1)u′n) + (b2 + 1)2Q(un) = 0.

But the left side of the above equation is strictly positive for all n ≥ N3. This is
the desired contradiction. This concludes the proof of the lemma. �

We now summarize Lemmas 3.6, 3.10, and 3.11 in the following theorem.

Theorem 3.12. If ηk is continuous, then ξk+1 is continuous.

Theorems 3.4, 3.9 and 3.12 show that ξk and ηk are continuous for all k ≥ 1.

4. N-Bump Solutions

In this section we prove the existence of N -bump solutions of (2.5) for any even
valued N > 0. Recall that a solution is an N -bump solution if there are exactly N
disjoint intervals in which u > th, i.e., u exceeds threshold, and u must also satisfy
the limiting property (u, u′, u′′, u′′′) → (0, 0, 0, 0). We will continue to assume that
the initial values of (2.5) are α < 0 and β = −(b2 + 1)α > 0. In addition, we will
assume that the conditions of Theorem 2.4 hold. This guarantees that the functions
ηk and ξk in (3.1), (3.2), and (3.3) are well defined.

We now proceed to develop a shooting method to prove the existence of multi-
bump homoclinic solutions. This shooting method requires that we precisely de-
termine the behavior of u(x, α) at (or near) the parameter value α = α′ where

(a) u(ξk(α′), α′) = us, (or u(ξk(α′), α′) = 0), for some k ≥ 1,
(b) u(a0, α

′) = th, where a0 = ±ξk(α′).
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Solutions with the critical values u = 0 or u = us. Recall that when (r, b, th) ∈
Λ, then (2.5) has exactly two constant solutions, namely u ≡ 0 and u ≡ us > 0.
Recall also that these constant solutions correspond to the only two roots of the
function Q defined by (2.7). That is, Q(0) = Q(us) = 0, (see Figure 2).

In Lemma 4.1 we let u∗ denote one of the two roots of the function Q, i.e., either
u∗ = 0 or u∗ = us. It will be shown that if u(ξk(α), α) crosses the line u = u∗
from below at some α = α′ < 0 and k ≥ 1, then u(ηk(α), α) also crosses the line
u = u∗ from below. In other words, if u(ξk(α′), α′) = u∗ with u′′′(ξk(α′), α′) > 0,
(see Figure 5), then ξk(α′) = ηk(α′) and u(ξk(α), α) − u∗ has the same sign as
u(ηk(α), α)−u∗ on an interval of the form (α′−δ, α′) for some δ > 0. Using similar
arguments we can show that u(ξk(α), α)−u∗ has the same sign as u(ηk(α), α)−u∗
on an interval of the form (α′, α′ + δ). There are other cases which occur. There
is the case where u(ξk(α), α) crosses the line u = u∗ at α = α′ from above. That
is, u(ξk(α′), α′) = u∗ with u′′′(ξk(α′), α′) < 0, and hence ξk(α′) = ηk−1(α′). In this
case, we can apply similar arguments to show that u(ηk−1(α), α) must also cross
u = u∗ from above. The method employed in the following lemma can be easily
modified to prove the other cases.

u

x

2.1

ξ1 η1

u

x
ξ1=η1

2.1

u

x

2.1

ξ1 η1

Figure 5. See text

Lemma 4.1. Suppose that (r, b, th) ∈ Λ, (recall Eq. (2.11)), and that Q(u∗) = 0,
(that is, u∗ = 0 or u∗ = us). Also, assume that α′ < 0 and β′ = −(b2 +1)α′ > 0
determine a solution u(·, α′) of (2.5) such that

u(ξk(α′), α′) = u∗ for some k ≥ 1.
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If there exists δ > 0 such that

u(ξk(α), α) > u∗ for α′ − δ < α < α′, (4.1)

then there exists ε > 0 so that
(i) u(ξk(α), α) > u(ηk(α), α) > u∗ for α′ − ε < α < α′

given that u′′′(ξk(α′), α′) > 0, and
(ii) u(ξk(α), α) > u(ηk−1(α), α) > u∗, (provided that k ≥ 2), for α′ −

ε < α < α′

given that u′′′(ξk(α′), α′) < 0.

Proof. (i): Assume that u′′′(ξk(α′), α′) > 0. Since u(ξk(α′), α′) = u∗,
Q(u∗) = 0, and u′(ξk(α′), α′) = 0, then Eq. (2.8) shows that u′′(ξk(α′), α′) = 0.
Hence, ξk(α′) = ηk(α′) as a consequence of (3.2).

The proof of (i) is by contradiction, i.e., assume that there is an increasing
sequence αn such that

(a) αn → α′ as n →∞,
(b) α′ − δ < αn < α′, and
(c) u(ηk(αn), αn) ≤ u∗ for all n ≥ 1.

Our first task is to show that u(ηk(αn), αn) = u∗ is impossible whenever n is
sufficiently large. For a contradiction assume that there is a subsequence αni such
that u(ηk(αni), αni) = u∗ for each i ≥ 1. At x = ηk(αni) Eq. (2.8) gives

u′′(ηk(αni
), αni

) = 0 for each i ≥ 1. (4.2)

Since (b) holds, then (4.1) ensures that u(ξk(αni
), αni

) > u∗ for each i ≥ 1. Hence,
u′(x, αni

) < 0 on (ξk(αni
), ηk(αni

)). By combining this result with Lemma 3.1 and
(4.2) we see that u′′′(ηk(αni), αni) < 0 for each i ≥ 1. Continuity of u′′′ in (x, α)
and ηk in α yields

lim
i→∞

u′′′(ηk(αni
), αni

) = u′′′(ηk(α′), α′) ≤ 0. (4.3)

But this is impossible since u′′′(ηk(α′), α′) = u′′′(ξk(α′), α′) > 0. Therefore, we
may assume that

u(ηk(αn), αn) < u∗ for all n ≥ 1. (4.4)
Next we show that

Q(u(ηk(αn), αn)) > 0 and Q(u(ξk(αn), αn)) > 0 for all n ≥ 1. (4.5)

Recall that u∗ denotes one of the two roots of Q, namely u∗ = 0 or u∗ = us.
First assume that u∗ = us. Then Q(u(ξk(αn), αn)) > 0 follows from (4.1) and (b).
Continuity of ηk in α and u in (x, α), gives

lim
n→∞

u(ηk(αn), αn) = u(ηk(α′), α′) = u(ξk(α′), α′) = us > 0.

This and (4.4) show that there exists N > 0 so that us > u(ηk(αn), αn) > 0
for all n ≥ N . Thus, Q(u(ηk(αn), αn)) > 0 for all n ≥ N . If u∗ = 0, then a
similar argument shows that N > 0 exists so that us > u(ξk(αn), αn) > 0 whenever
n ≥ N . This guarantees that Q(u(ξk(αn), αn)) > 0 whenever n ≥ N . Without loss
of generality, we assume that (4.5) holds for all n ≥ 1.

We now show that there exists xn ∈ (ξk(αn), ηk(αn)) at which

− (u′′(xn, αn))2

2
+ (b2 + 1)2Q(u(xn, αn)) = 0 (4.6)
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for all n ≥ 1. An immediate consequence of (4.5) and (2.8) at x = ξk(αn) is that
u′′(ξk(αn), αn) < 0 for each n ≥ 1. Likewise, it follows that u′′(ηk(αn), αn) >
0 for each n ≥ 1. Thus, there exists a value yn ∈ (ξk(αn), ηk(αn)) such that
u′′(yn, αn) = 0. Note that u(ξk(αn), αn) > u∗ > u(ηk(αn), αn) implies the existence
of zn ∈ (ξk(αn), ηk(αn)) such that u(zn, α) = u∗, hence Q(u(zn, αn)) = 0 for each
n ≥ 1. Thus, we have

− (u′′(x, αn))2

2
+ (b2 + 1)2Q(u(x, αn))

{
≤ 0 at x = zn

≥ 0 at x = yn.
(4.7)

This ensures the existence of a value xn between yn, zn for which (4.6) holds. Also,
ξk(αn) < xn < ηk(αn) implies that u′(xn, αn) < 0 for each n ≥ 1. This fact
together with (2.8) yields

u′′′(xn, αn)− (b2 − 1)u′(xn, αn) = 0 for each n ≥ 1. (4.8)

Since ξk(αn) → ξk(α′) and ηk(αn) → ηk(α′) = ξk(α′) as n → ∞, then ξk(αn) <
xn < ηk(αn) implies that xn → ξk(α′) as n →∞. Therefore,

u′(xn, αn) → u′(ξk(α′), α′) = 0 as n →∞

by continuity of u′ in (x, α). This and (4.8) imply that

u′′′(xn, αn) → 0 as n →∞. (4.9)

But this contradicts u′′′(xn, αn) → u′′′(ξk(α′), α′) > 0 as n → ∞. This concludes
the proof of (i).

We can prove (ii) in a similar fashion. �

Solutions with a local maximum at u = th. A solution that plays a crucial
role in our shooting argument is one that satisfies

u(a0, α
′) = th, where a0 = ±ξk(α′) (4.10)

for some k ≥ 1 (see Figure 6). The object of Lemmas 4.2-4.3 is to show that
|u(ζ)| > th for every ζ > a0 such that u′(ζ) = 0. More precisely, Lemma 4.2 is used
in the proof of Lemma 4.3 to establish the sharper estimate u(b0) ≤ −uss(r) < −th
where

b0 = sup{x > a0 | u′(x) < 0 on (a0, x)}.
Throughout Lemmas 4.2-4.4 it is not necessary to continually refer to the initial

condition parameter α. Hence, we omit the initial condition parameter and write
u(x) instead of u(x, α).

The following lemma relies on several preliminary results established in Section 2.
First, Lemma 2.5 states that for any fixed 0 < th < 2 there exists br > 1 such that
(r, br, th) ∈ Λ whenever r > 0 is sufficiently small. and

br →
2
th

+
√

4− th2

th
as r → 0+.

The fact that
2
th

+
√

4− th2

th
> 1

for any fixed 0 < th < 2 implies that br is bounded away from 1 as r → 0+. In
particular, there exists a value R > 0 such that

br ≥ 1 + m for all r ∈ (0, R) (4.11)
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where

m =
1
2

( 2
th

+
√

4− th2

th
− 1

)
. (4.12)

In addition, Lemma 4.2 relies on the fact that

uss(r)− th → 0+ as r → 0+, (4.13)

which follows immediately from Lemma 2.6.

Lemma 4.2. Suppose that u is a nontrivial solution of (2.5) where 0 < th < 2 is
fixed. Choose R > 0 so that (4.11) holds, and that

uss(r)− th ≤ 2(b2
r − 1)th
b2
r + 1

for all r ∈ (0, R). (4.14)

Assume that (−ω, ω) is the maximal interval in R on which u exists and that a0 ∈
(−ω, ω) satisfies

u(a0) = th, u′(a0) = 0, u′′(a0) = −(b2
r + 1)th and u′′′(a0) ≤ 0. (4.15)

Then there exists x̄ > a0 such that
(i) u′(x) < 0 on (a0, x̄],
(ii) u(x) > 0 on (a0, x̄), and u(x̄) = 0, and

(iii) u′′(x̄) ≤ −(b2
r + 1)uss(r).

Remark: Throughout the proof, we shall write b and uss instead of br and
uss(r).

Proof of Lemma 4.2. By (2.5), u′′′′(a0) < 0, thus u′′′, u′′ , u′ , u are decreasing in a
right neighborhood of x = a0. Note that (2.5) also implies that u′′′′ < 0 as long as
0 < u ≤ th, and u′′ < 0. Hence, there exists x̄ > a0 such that (i) and (ii) hold.

We prove (iii) by contradiction. That is, assume that

u′′(x) > −(b2 + 1)uss on (a0, x̄]. (4.16)

By (2.5) it follows that

u′′′′ = 2(b2 − 1)u′′ − (b2 + 1)2u < 2(b2 − 1)u′′ on (a0, x̄). (4.17)

Recalling that u(a0) = th, u′′(a0) = −(b2 + 1)th and u′′′(a0) ≤ 0 we obtain

u′′(x) ≤ (1− 3b2)th + 2(b2 − 1)u (4.18)

upon two integrations of (4.17) over (a0, x) ⊂ (a0, x̄). Combining (4.16) with (4.18)
yields

−(b2 + 1)uss < (1− 3b2)th + 2(b2 − 1)u on (a0, x̄),

and
−(b2 + 1)uss < (1− 3b2)th at x = x̄. (4.19)

Denoting m = uss − th (4.19) is equivalent to

−(b2 + 1)(th + m) + (3b2 − 1)th < 0

which results in
2(b2 − 1)th

b2 + 1
< m = uss − th.

This contradicts (4.14), hence the proof is complete. �
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In the following lemma, we consider a solution u of (2.5) that has a critical point
(a0, th), i.e., u′(a0) = 0 and u(a0) = th. Estimates of u at subsequent critical
numbers are given.

Lemma 4.3. Suppose that u is a nontrivial solution of (2.5) with 0 < th < 2.
Choose R > 0 so that for all r < R, b ≥ 1 + m where m is defined by (4.12) and

uss − th ≤ 2(b2 − 1)th
b2 + 1

.

Assume that (−ω, ω) is the maximal interval in R on which u exists and that a0 ∈
(−ω, ω) satisfies

u(a0) = th, u′(a0) = 0, u′′(a0) ≤ 0 and u′′′(a0) ≤ 0. (4.20)

Then, u(b0) < −uss and u(a1) > us where

b0 = sup{x > a0 | u′(t) 6= 0 on (a0, x)}, and (4.21)

a1 = sup{x > b0 | u′(t) 6= 0 on (b0, x)}. (4.22)

Furthermore, for any ζ > a0 where u′(ζ) = 0 we have

|u| > th, sgn u′′ = −sgn u, and sgn u′′′ = −sgn u at x = ζ. (4.23)

In particular, if a local maximum occurs at the critical number x = ζ, then
u(ζ) > us.

x

u

α

ξ1=π η1=2π

th

th

Figure 6. A solution with critical value u = th.

Proof. To prove this lemma we invoke an iterative procedure to which we apply
Induction.

To start, we determine the exact value of u′′(a0). By substituting u(a0) = th
and u′(a0) = 0 into (2.8) we find that u′′(a0) = ±(b2 + 1)th. Specifically, the
assumption u′′(a0) ≤ 0 implies that u′′(a0) = −(b2 + 1)th. Thus, u′(x) < 0 on
(a0, b0) and u′(b0) = 0. The fact that u′′′′(a0) < 0 implies that u′′′(x) < 0 in a
right-neighborhood of x = a0, and hence

y0 = sup{x > a0 | u′′′(t) < 0 on (a0, x)} (4.24)

is well defined and y0 ∈ (a0, b0).
We now show that u(b0) < −uss and that (4.23) holds at x = b0.
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The fact that u′′′′(a0) < 0 implies that u′′′′ vanishes on the interval (a0, y0).
By (2.5) and the fact that u < th on (a0, b0) it follows that u(x̄) = 0 for some
a0 < x̄ < y0. Since u′′′(y0) = 0 the first integral equation (2.8) leads to

− (u′′)2

2
− (b2 − 1)(u′)2 + (b2 + 1)2Q(u) ≥ 0 at x = y0,

or since b > 1,
2(b2 + 1)2Q(u(y0)) ≥ (u′′(y0))2. (4.25)

Furthermore, u′′′(x) < 0 on (a0, y0) yields 0 > u′′(a0) > u′′(x̄) > u′′(y0), hence

(u′′(y0))2 > (u′′(x̄))2.

This fact together with Lemma 4.2 and (4.25) give

2(b2 + 1)2Q(u(y0)) > (b2 + 1)2u2
ss.

The fact that

Q(u) =
u2

2
on (−∞, th]

leads to u(y0) < −uss. Since u decreases further until it reaches the next critical
number, x = b0, we must have

u(b0) < u(y0) < −uss. (4.26)

It remains to show that u′′(b0) > 0 and u′′′(b0) > 0. The fact that u′(b0) = 0
and u′(x) < 0 in a left-neighborhood of x = b0 implies that u′′(b0) ≥ 0. Also, since
u(b0) < −uss it follows from (2.8) that

(u′′(b0))2

2
= (b2 + 1)2Q(u(b0)) 6= 0,

thus u′′(b0) > 0.
To show that u′′′(b0) > 0 first note that u′′(y0) < 0 < u′′(b0). Thus a value

x0 ∈ (y0, b0) exists such that u′′(x0) = 0 and u′′′(x0) ≥ 0. Also, u′(x) < 0 on
(a0, b0) and x̄ < y0 < x0, imply that u(x) < 0 on (x0, b0). An integration of (2.5)
over (x0, b0) results in

u′′′(b0) = −(b2 + 1)
∫ b0

x0

udx− 2(b2 − 1)u′(x0) + u′′′(x0) > 0

as desired.
In a similar fashion, we shall show that u(a1) > us and (4.23) at x = a1 where a1

is defined by (4.22). First, recall that u′′(b0) > 0 and u′′′(b0) > 0 so that u′(x) > 0
on (b0, a1). Also, note that u′(x) > 0 holds so long as u′′′(x) > 0. Thus,

y1 = sup{x > b0 | u′′′(t) > 0 on (b0, x)} (4.27)

is well defined and y1 ∈ (b0, a1). Since b > 1 and u′′′(y1) = 0, then

− (u′′)2

2
+ (b2 + 1)2Q(u) > 0 at x = y1 (4.28)

follows from (2.8). Because u′′(b0) > 0 and u′′′(x) > 0 on (b0, y1), it follows that

(u′′(y1))2 > (u′′(b0))2. (4.29)

Combining (4.28) with (4.29) yields

Q(u(y1)) >
(u′′(y1))2

2(b2 + 1)2
>

(u′′(b0))2

2(b2 + 1)2
= Q(u(b0)). (4.30)
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Now recall from (4.26) that u(b0) < −uss, thus

Q(u(b0)) > Q(−uss). (4.31)

Since

Q(u) =
u2

2
− 8b

b2 + 1

∫ u

0

e−r/(s−th)2H(s− th)ds,

then Q(−u) > Q(u) for all u > th. Specifically, Q(−uss) > Q(uss) and by (4.31)
we obtain

Q(u(b0)) > Q(uss).
This and (4.30) yield

Q(u(y1)) > Q(uss). (4.32)
The fact that u′(x) > 0 on (b0, a1) together with (4.30) and (4.32) yield

u(a1) > u(y1) > us. (4.33)

It remains to show that u′′(a1) < 0 and u′′′(a1) < 0. We start by showing that
u′′(a1) < 0. The fact that u′(x) > 0 on (b0, a1) with u′(a1) = 0 guarantees that
u′′(a1) ≤ 0. Eq. (2.8) along with u(a1) > us leads to

(u′′)2

2
= (b2 + 1)2Q(u) > 0 at x = a1.

Therefore, u′′(a1) < 0 as desired.
We proceed to show that u′′′(a1) < 0. First, note that u′′(b0) > 0 > u′′(a1),

hence there exists a value x1 ∈ (y1, a1) such that u′′(x1) = 0 and u′′′(x1) ≤ 0. Here
we use the fact that

Q′(u) = u− 4b

b2 + 1
f(u− th) > 0 for all u > us.

By (4.30) and (4.32) it follows that u(y1) > us. Since u′(x) > 0 on (b0, a1) and
x1 > y1, then u(x) > us on (x1, a1). Thus, Q′(u(x)) > 0 on (x1, a1). An integration
of (2.5) over (x1, a1) gives

u′′′(a1) = u′′′(x1)− 2(b2 − 1)u′(x1)− (b2 + 1)2
∫ a1

x1

Q′(u(s))ds < 0

as desired.
In a similar fashion, one can show that (4.23) holds at x = b1 where

b1 = sup{x > a1 | u′(t) < 0 on (a1, x)}.

In general, this procedure can be continued inductively to show that (4.23) holds
for all ζ > a0 for which u′(ζ) = 0. �

Lemma 4.3 addresses the behavior of a solution u that satisfies

u(a0) = th, u′(a0) = 0, u′′(a0) ≤ 0, and u′′′(a0) ≤ 0.

In the following lemma we show that there is no loss in generality in assuming that
u′′′(a0) ≤ 0 if a0 > 0.

Lemma 4.4. Suppose that u is a non-constant solution of (2.5) with 0 < th < 2.
Choose R > 0 so that for all r < R, b ≥ 1 + δ for some δ > 0, and

uss − th ≤ 2(b2 − 1)th
b2 + 1

.
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Assume that (−ω, ω) is the maximal interval in R on which u exists and that a0 ∈
(0, ω) satisfies

u(a0) = th, u′(a0) = 0, and u′′(a0) ≤ 0. (4.34)
Then u′′′(a0) ≤ 0.

Proof. Assume on the other hand that u′′′(a0) > 0. Define v(x) = u(−x). By
symmetry of u, (see Lemma 2.2), v(x) = u(x), and hence v is a non-constant
solution of (2.5). Furthermore,

v(−a0) = th, v′(−a0) = 0, v′′(−a0) ≤ 0, and v′′′(−a0) ≤ 0.

That is, v satisfies the condition of Lemma 4.3. Thus, we conclude from Lemma 4.3
that for any ζ > −a0 where v′(ζ) = 0 we have that |v(ζ)| > th. Particularly, for
ζ = a0, we have th = u(a0) = v(a0) > th a contradiction. Therefore, u′′′(a0) ≤ 0
and the lemma is proved. �

Construction of N-Bump Homoclinic Solutions. We now proceed in proving
the existence of N -bump homoclinic orbit solutions for any even N . As usual, we
consider α < 0 and β = −(b2 + 1)α > 0. This choice of initial conditions ensures
that α = u(0, α) < 0 and that u(t, α) increases on (0, ξ1(α)).

The shooting argument we use to construct N -bump solutions for even N is
based on the periodic solution proved in Theorem 2.7 of Section 2. This theorem
guarantees the existence of a one bump periodic solution u(·, α∗) such that

α∗ = u(0, α∗) = u(ηk(α∗), α∗) < 0, and

u(ξ1(α∗), α∗) = u(ξk(α∗), α∗) > us for all k ≥ 1

Our construction of even bump solutions by shooting methods will make use of
the following technical lemma.

Lemma 4.5. If u(·, α) is a solution of (2.5), then

u(ξ1(α), α) → 0+ as α → 0−.

Proof. Since α < 0, then the equation in (2.5) is linear so long as u ≤ th. Hence,
we find that

u(x, α) = α(cosh(bx) cos(x)− b sinh(bx) sin(x)), and (4.35)

u′(x, α) = −α(b2 + 1) cosh(bx) sin(x) (4.36)

so long as u(x, α) ≤ th. By (4.35) we obtain that u(x, α) ≤ th on [0, π] whenever
|α| is sufficiently small. Therefore, ξ1(α) = π is an immediate consequence of
(4.36). �

Lemmas 4.7 and 4.8 below will be used to generate the induction process. These
lemmas make repeated use of Lemma 4.1. Before stating and proving Lemmas 4.7
and 4.8, we will prove the following lemma which yields an equivalent condition of
Lemma 4.1.

Lemma 4.6. Suppose that Q(u(ηk(α), α)) = 0 for some α < 0 and k ≥ 1. That
is, either u(ηk(α), α) = 0, or us. Then, either ηk(α) = ξk(α) or ηk(α) = ξk+1(α).
In particular,

(i) ηk(α) = ξk+1(α) if and only if u′′′(ηk(α), α) < 0, and
(ii) ηk(α) = ξk(α) if and only if u′′′(ηk(α), α) > 0.
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Proof. The condition Q(u(ηk(α), α)) = 0 and (2.8) imply that u′′(ηk(α), α) = 0. By
Lemma 3.1 it follows that u′′′(ηk(α), α) 6= 0. Now, (3.2) leads to ηk(α) = ξk+1(α)
if and only if u′′′(ηk(α), α) < 0, and (3.3) yields that ηk(α) = ξk(α) if and only if
u′′′(ηk(α), α) > 0. �

Lemma 4.6 implies that if u(ηk−1(α0), α0) < 0, for example, and
u(ξk(α0), α0) = 0, then u′′′(ξk(α0), α0) > 0 and ξk(α0) = ηk(α0). We now prove
the following two induction lemmas.

Lemma 4.7. Let k ≥ 2. Suppose that [c, d] ⊂ (α∗, 0) is an interval such that

th = u(ξk(c), c) > u(ξk(α), α) > u(ξk(d), d) = 0 for all α ∈ (c, d),

and
u(ηk−1(α), α) < 0 for all α ∈ [c, d].

Then there exists an interval [ĉ, d̂] ⊂ (c, d) such that

th = u(ξk+1(ĉ), ĉ) > u(ξk+1(α), α) > u(ξk+1(d̂), d̂) = 0 for all α ∈ (ĉ, d̂),

and
u(ηk(α), α) < 0 for all α ∈ [ĉ, d̂].

Remark: See the left panel of Figure 7 for an illustration of the main ideas of
the following proof.

Proof of 4.7. Since u(ηk−1(d), d) < 0 = u(ξk(d), d), then we deduce from Lemma 4.6
that ηk(d) = ξk(d) and u′′′(ξk(d), d) > 0. Hence, Lemma 4.1 and our assumption
that u(ξk(α), α) > 0 for each α ∈ (c, d) imply that u(ηk(α), α) > 0 whenever
d − α > 0 is sufficiently small. Furthermore, the assumption that u(ξk(c), c) = th
and Lemma 4.3 lead to u(ηk(c), c) < 0. It now follows by continuity of u(ηk(α), α)
in α that

b = sup{α̂ > c | u(ηk(α), α) < 0 on (c, α̂)}
is well defined, u(ηk(b), b) = 0, and c < b < d. This result together with Lemma 4.6
and the assumption that u(ξk(α), α) > 0 for each α ∈ (c, d) all lead to ξk+1(b) =
ηk(b) and u′′′(ξk+1(b), b) < 0. Another application of Lemma 4.1 yields that
u(ξk+1(α), α) < 0 whenever b − α > 0 is sufficiently small. Once again we in-
voke Lemma 4.3 to obtain u(ξk+1(c), c) > th. Thus, it follows from continuity of
u(ξk+1(α), α) in α that

d̂ = sup{α̂ > c | u(ξk+1(α), α) > 0 on (c, α̂)}
and

ĉ = inf{α̂ < d̂ | u(ξk+1(α), α) < th on (α̂, d̂)}
are well defined, th = u(ξk+1(ĉ), ĉ) > u(ξk+1(α), α) > u(ξk+1(d̂), d̂) = 0, for all
α ∈ (ĉ, d̂). Also note that d̂ < b, and therefore, u(ηk(α), α) < 0 for all α ∈ [ĉ, d̂].
This concludes the proof of the lemma. �

Lemma 4.8. Assume that α∗ < 0 denotes the initial value that gave rise to the
one bump periodic solution of Theorem 2.7. That is,

u(0, α∗) = u(ηk(α∗), α∗) < 0 and

us < u(ξ1(α∗), α∗) = u(ξk(α∗), α∗)

for all k ≥ 1. Suppose that there exists Ak ∈ (α∗, 0) and bk ∈ (α∗, Ak) such that
(i) u(ξk(α), α) > us on [α∗, Ak) and u(ξk(Ak), Ak) = us, and
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(ii) u(ηk(α), α) < 0 on [α∗, bk) and u(ηk(bk), bk) = 0.
Then there exists Ak+1 ∈ (α∗, bk) and bk+1 ∈ (α∗, Ak+1) such that

(i) u(ξk+1(α), α) > us on [α∗, Ak+1) and u(ξk+1(Ak+1), Ak+1) = us, and
(ii) u(ηk+1(α), α) < 0 on [α∗, bk+1) and u(ηk+1(bk+1), bk+1) = 0.

Remark: See the right panel of Figure 7 for an illustration of the main ideas of
the following proof.

Proof of Lemma 4.8. Since u(ηk(bk), bk) = 0 < us < u(ξk(bk), bk), then ηk(bk) =
ξk+1(bk) and u′′′(ξk+1(bk), bk) < 0 as a result of Lemma 4.6. Thus, it follows
from Lemma 4.1 that u(ξk+1(α), α) < 0 whenever bk − α > 0 is sufficiently small.
Further, since u(ξk+1(α∗), α∗) > us, then continuity of u(ξk+1(α), α) in α implies
that

Ak+1 = sup{α̂ > α∗ | u(ξk+1(α), α) > us on (α∗, α̂)}
is well defined and u(ξk+1(Ak+1), Ak+1) = us. Our definition of Ak+1 together with
the fact that u(ξk+1(α), α) < 0 whenever bk − α > 0 is sufficiently small ensures
that α∗ < Ak+1 < bk < Ak.

Since u(ηk(Ak+1), Ak+1) < 0, then Lemma 4.6 implies that ηk+1(Ak+1) =
ξk+1(Ak+1) and u′′′(ξk+1(Ak+1), Ak+1) > 0. We once again apply Lemma 4.1
which guarantees that u(ηk+1(α), α) > us for sufficiently small Ak+1 − α > 0.
Since u(ηk+1(α∗), α∗) < 0, then continuity of u(ηk+1(α), α) in α guarantees that

bk+1 = sup{α̂ > α∗ | u(ηk+1(α), α) < 0 on (α∗, α̂)}
is well defined and u(ηk+1(bk+1), bk+1) = 0. The fact that
u(ηk+1(α), α) > us > 0 for sufficiently small Ak+1−α > 0 implies that bk+1 < Ak+1

concluding the proof of the lemma. �
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Figure 7. An illustration of the behavior of the critical values
u(ηk−1(α)), u(ηk(α)), u(ξk(α)), and u(ξk+1(α)). The left panel cor-
responds to Lemma 4.7, and the right panel corresponds to
Lemma 4.8.

We proceed by proving the existence of A1 ∈ (α∗, 0) and b1 ∈ (α∗, A1) that
satisfy the hypotheses (i), (ii) of Lemma 4.8. First, it follows from Lemma 4.5 that
u(ξ1(α), α) < th < us for sufficiently small −α > 0. Since u(ξ1(α∗), α∗) > us, then
continuity of u(ξ1(α), α) in α ensures that

A1 = sup{α̂ > α∗ | u(ξ1(α), α) > us on (α∗, α̂)} (4.37)

is well defined and u(ξ1(A1), A1) = us. Furthermore, A1 < 0 follows from the fact
that u(ξ1(α), α) < th < us for sufficiently small −α > 0.
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To construct b1 we note that η1(A1) = ξ1(A1), and u′′′(ξ1(A1), A1) > 0. Thus,
u(η1(α), α) > us whenever A1 − α > 0 is sufficiently small as a consequence of
Lemma 4.1. Continuity of u(η1(α), α) in α and the fact that u(η1(α∗), α∗) < 0
implies that

b1 = sup{α̂ > α∗ | u(η1(α), α) < 0 on (α∗, α̂)} (4.38)

is well defined and u(η1(b1), b1) = 0. The fact that u(η1(α), α) > us for sufficiently
small A1 − α > 0 gives α∗ < b1 < A1 as desired.

We have now shown that the hypothesis of Lemma 4.8 for j = 1, i.e., A1 and
b1 exist as required. Proceeding inductively, it follows that the entire sequence
{Aj}∞j=1 and {bj}∞j=1 exist and satisfy Lemma 4.8.

Throughout the remainder of this paper we define k ∈ Z+ by 2k = N . To obtain
an N -bump homoclinic orbit solution we must ensure that αN = u(0, αN ) < 0
exists such that u(ξj(αN ), αN ) > th for j = 1, . . . , k and that u(ξj(αN ), αN ) < th
for all j > k. In particular, the N -bump solution that we construct will have the
properties

u(ξj(αN ), αN ) > us > th for j = 1, . . . , k, (4.39)

0 < u(ξj(αN ), αN ) < th for j > k, and (4.40)

u(ηj(αN ), αN ) < 0 for all j ≥ 1. (4.41)

We will implement a topological shooting method that generates a nested sequence
{Ij}∞j=1 of non-empty compact intervals which possess the following properties:

(P1) Ij+1 ⊂ I0
j for all j ≥ 1, (I0

j denotes the interior of Ij),
(P2) for each α ∈ I1 and j = 1, . . . , k, u(ξj(α), α) > us and u(ηj(α), α) ≤ 0.

Moreover, u(ηj(α), α) < 0 for all α ∈ I0
1 and j = 1, . . . , k,

(P3) for each j > k, 0 < u(ξj(α), α) < th for all α ∈ I0
j and u(ηj−1(α), α) < 0

for all α ∈ Ij .
We proceed by constructing the first interval, I1. First, recall from (4.37) that

u(ξ1(α), α) > us for all α ∈ [α∗, A1) and u(ξ1(A1), A1) = us. Furthermore,
u(η1(α), α) < 0 for α ∈ [α∗, b1) and u(η1(b1), b1) = 0 where b1 ∈ (α∗, A1) is defined
by (4.38). By Lemma 4.8, there exists A2 ∈ (α∗, b1) and b2 ∈ (α∗, A2) such that

(i) u(ξj(α), α) > us on [α∗, A2) and u(ξ2(A2), A2) = us,
(ii) u(ηj(α), α) ≤ 0 on [α∗, b2) and u(η2(b2), b2) = 0

for j = 1, 2. An inductive application of Lemma 4.8 yields the following lemma.

Lemma 4.9. For 2k ≡ N and j = 1, 2, . . . , k it follows that

u(ξj(α), α) > us for α ∈ [α∗, Ak), and u(ξk(Ak), Ak) = us,

u(ηj(α), α) ≤ 0 for α ∈ [α∗, bk), and u(ηk(bk), bk) = 0.

An immediate consequence of Lemma 4.9 and the fact that [α∗, bk] ⊂ [α∗, Ak),
is that property (P2) holds for

I1 ≡ [α∗, bk]. (4.42)

The aim of the following lemma is to construct the second interval, I2. Subse-
quently, we will inductively employ Lemma 4.7 to define I3, I4, . . .

Lemma 4.10. Let d2 = Ak+1 where Ak+1 is defined by Lemma 4.8 and define

c2 = inf{α̂ < d2 | u(ξk+1(α), α) < th on (α̂, d2)}.
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Also, define I2 = [c2, d2]. Then I2 ⊂ I0
1 ,

0 = u(ξk+1(d2), d2) < u(ξk+1(α), α) < u(ξk+1(c2), c2) = th for all α ∈ I0
2 ,

u(ηk(α), α) < 0 for all α ∈ I0
2 .

Proof. It follows from Lemma 4.8 that d2 = Ak+1 < bk. Also, α∗ < c2 is a
consequence of u(ξk+1(α∗), α∗) > us > th, u(ξk+1(Ak+1), Ak+1) = 0, and the fact
that u(ξk+1(α), α) is continuous with respect to α. Thus, I2 ⊂ I0

1 .
Now,

0 = u(ξk+1(d2), d2) < u(ξk+1(α), α) < u(ξk+1(c2), c2) = th for all α ∈ I0
2

follows immediately from the definitions of c2 and d2, and

u(ηk(α), α) < 0 for all α ∈ I2

follows by Lemma 4.9 and the fact that I1 ⊂ I0
2 . This concludes the proof of the

lemma. �

In Lemma 4.10 we defined I2 = [c2, d2] and described the properties of solutions
u(·, α) with α ∈ I2. Lemma 4.7 guarantees the existence of I3 = [c3, d3] ⊂ I0

2 such
that

0 = u(ξk+2(d3), d3) < u(ξk+2(α), α) < u(ξk+2(c3), c3) = th

for all α ∈ I0
3 , and u(ηk+1(α), α) < 0 for all α ∈ [c3, d3].

An inductive application of Lemma 4.7 yields Ij = [cj , dj ] for j ≥ 2 such that

0 = u(ξk+j−1(dj), dj) < u(ξk+j−1(α), α) < u(ξk+j−1(cj), cj) = th

for all α ∈ (cj , dj), and

u(ηk+j−2(α), α) < 0 for all α ∈ [cj , dj ].

Hence, to construct our N -bump solution, we let αN ∈
⋂∞

j=1 Ij and consider
u(·, αN ). We have just shown that the nested sequence of intervals Ij exists which
satisfies properties (P1)− (P3) described above. In particular, u(ξj(αN ), αN ) > us

for j = 1, 2, . . . , k, u(x, αN ) < th on [ηk(αN ),∞), and u(x, αN ) satisfies the linear
equation with constant coefficients

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 0 on [ηk(αN ),∞).

The general solution of this linear equation is

u(x, αN ) = c1e
−bx cos(x)+c2e

−bx sin(x)+c3e
bx cos(x)+c4e

bx sin(x) on [ηk(α),∞)

for some constants c1 − c4. The only way u can remain below th on [ηk(αN ),∞) is
that c3 = c4 = 0. From this we conclude that

u(x, αN ) → 0 as x →∞.

This completes the proof of existence of a N-bump solution.
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Numerical Solutions

The solutions in Figure 8 were obtained by using Mathematica. Our choice
of parameters are r = 0.02, th = 1.75 and b = 1.095669029014. Furthermore,
Mathematica was used to verify that (r, b, th) ∈ Λ (see (2.11)) for this choice of
parameters. The solution in the left panel was obtained by manually applying
the shooting method as described in this paper. Special thanks to the referee
for computing the solution in the right panel. These numerics suggest that both
solutions are highly sensitive to the initial conditions as indicated by the large
number of decimal places that are required for the value α. For this reason, we
predict that the N -bump solutions are unstable.
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Figure 8. Two 2-bump solutions with r = 0.02, th = 1.75, and
b = 1.095669029014. The initial conditions in the left panel are
α = −0.192218655, and β = 0.422975. In the right panel the
initial conditions are α = −0.166290142, and β = 0.36592.

Lastly, as mentioned in the previous section, the solution is of the form

u(x, α2) = c1e
−bx cos(x)+c2e

−bx sin(x)+c3e
bx cos(x)+c4e

bx sin(x) on [η1(α),∞)

since u < th on [η1(α),∞). This is only possible if c3 = c4 = 0. Specifically, our
computations estimate that c3 = c4 = 0, c1 ≈ 2729.389291, and c2 ≈ 4900.231464
for the solution shown in the left panel and c3 = c4 = 0, c1 ≈ −41.07182903, and
c2 = −217.0976993 for the solution on the right.

Conclusion

In this paper we have analyzed a subclass of stationary solutions of (1.1). In
previous studies, (see [4, 14]), the Fourier transform was applied to both sides of
(1.2) to obtain a fourth order ODE. Then ODE methods were implemented to ob-
tain a thorough numerical investigation of homoclinic orbit solutions. For technical
reasons, the Fourier transform does not give rise to other types of interesting solu-
tions such as periodic, heteroclinic, or chaotic solutions. The fundamental aim of
this paper was to use the results of Krisner [12, 13] to prove that (1.1) does have
N -bump homoclinic orbit solutions. In fact, under the parameter regime derived
in Section 2, it was shown in Section 4 that (1.1) has N -bump homoclinic orbit
solutions for any positive even-valued integer N .

A natural extension of this result would be to prove that N -bump solutions
exist for a larger parameter regime. In particular, Lemma 4.3 was proved under
the assumption that b > 1. It still remains to prove that N -bump homoclinic orbit
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solutions exist for 0 < b < 1 either by modifying the proof of Lemma 4.3 or by
adopting an entirely different approach.

Another extension is to incorporate “noise” into the Wilson-Cowan model (1.1)
to account for random fluctuations. It would be interesting to investigate the
existence of special solutions, such as periodic and/or homoclinic orbit solutions,
with the presence of noise.

Acknowledgements. We thank the referee for providing several very helpful sug-
gestions which greatly helped the presentation of this paper.
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