Ekaterina T. Kolkovska, Jose Alfredo Lopez-Mimbela, Aroldo Perez
Abstract:
We consider the nonlinear equation
where
denotes the fractional power of the Laplacian;
,
,
are
constants;
is bounded, continuous, nonnegative function
that does not vanish identically; and
is a locally integrable function.
We prove that any combination of positive parameters
, obeying
, yields
finite time blow up of any nontrivial positive solution.
Also we obtain upper and lower bounds for the life span
of the solution, and show that the life span satisfies
near
.
Submitted August 24, 2007. Published January 21, 2008.
Math Subject Classifications: 60H30, 35K55, 35K57, 35B35.
Key Words: Semilinear evolution equations; Feynman-Kac representation;
critical exponent; finite time blowup; nonglobal solution; life span.
Show me the PDF file (305 KB), TEX file, and other files for this article.
Ekaterina T. Kolkovska Centro de Investigación en Matemáticas Apartado Postal 402, 36000 Guanajuato, Mexico email: todorova@cimat.mx | |
José Alfredo López-Mimbela Centro de Investigación en Matemáticas Apartado Postal 402, 36000 Guanajuato, Mexico email: jalfredo@cimat.mx | |
Aroldo Pérez Pérez Universidad Juárez Autónoma de Tabasco División Académica de Ciencias Básicas Km. 1 Carretera Cunduacán-Jalpa de Méndez C.P. 86690 A.P. 24, Cunduacán, Tabasco, Mexico email: aroldo.perez@dacb.ujat.mx |
Return to the EJDE web page