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EXISTENCE OF GLOBAL SOLUTIONS FOR A
PREDATOR-PREY MODEL WITH CROSS-DIFFUSION

SHENGHU XU

ABSTRACT. In this article, we prove the existence of global classical solutions
for a prey-predator model when the space dimension n < 10. Under certain
conditions on the coefficients of the reaction functions, the convergence of
solutions is established for the system with large diffusion by constructing a
Lyapunov function.

1. INTRODUCTION

To investigate the spatial segregation under the self and cross population pres-
sure, Shigesada, Kawasaki and Teramoto [I] proposed a competition model in 1979.
Then there have been established many results in the literatures; see for example
[2, Bl 4, 5, 6 [7, B, [@]. For the cross-diffusion systems with prey-predator type re-
action functions, there are a few results mainly on the steady-state problems with
the elliptic systems, see [10} [T} 12} 13}, [14].

In this paper, we study the following cross-diffusion system, with prey-predator
type reactions,

ur — A[(dy + a1u + aq2v)u] = u(a; — byu — c1v)  in Q x [0, 00),
vy — Al(de + ag1u + agev)v] = v(ag + bou — cov)  in Q X [0, 00),
Opu=0,v=0 on JQ x [0,00),

u(z,0) =up(x) >0, v(z,0)=v9(z) >0 inQ,

(1.1)

where Q@ C R (n > 1) is a bounded domain with smooth boundary 052, n is the
outward unit normal vector of the boundary 02, and 0, = 9/0,. «;; are given
nonnegative constants for 4,5 = 1,2. And d;,b;,c¢;(¢ = 1,2) and a; are positive
constants only as may be non-positive.

In system , u and v are nonnegative functions which represent the population
densities of the prey and predator species, respectively, d; and dy are the random
diffusion rates of the two species, a17 and awgy are self-diffusion rates, and aq2 and
a1 are the so-called cross-diffusion rates. When a;; = 0 (i,j = 1,2), the system
is the well-known Lotka-Volterra prey-predator model. For more details on the
biological background, see references [I, [I§].
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Local existence (in time) of solutions to (|l.1)) was established by Amann in a
series of important papers [15], [I6, [I7]. His result can be summarized as follows:

Theorem 1.1. Suppose that ug, vy are in WI} (Q) for some p > n. Then (1.1)) has
a unique non-negative smooth solution u(x,t),v(z,t) in

C([0,T), W, (2) [ C™((0,T),C™(%))
with mazimal existence time T. Moreover, if the solution (u,v) satisfies the estimate
sup [[u(.,t)lwi) <oo and  sup |v(.,t)[wie) < oo,
0<t<T 0<t<T

then T = co.

However, little is known about global existence of solutions to . In 2006,
Shim [I8] proved the existence of global solutions to in two cases: Case(A)
n=1d = dyand a;; = s = 0; Case(B) n = 1, 0 < as; < 8ay; and
0 < ag < 8ags.

In [I9] the author considered the case when i1, 2,22 > 0 and ag; = 0 for
the system , and established the existence of global solutions with n = 1.

We shall prove the existence of global solutions to the following system (namely,

the system for a2 = 0)
us — A[(dy + aj1w)u] = u(ag —bju — cjv)  in Q x [0, 00),
vy — A(d2 + az1u + agev)v] = v(ag + bou — cav)  in Q x [0, 00),
Opu=0,v =0 on 9N x [0,00),
u(z,0) =up(x) >0, wv(zr,0)=vo(z) >0 in Q.

(1.2)

This paper draws on ideas from two papers [6] and [9] which deal with cross-
diffusion system with competition type reactions. Duo to the difference in the
reaction functions. Therefore, in order to obtain the LP-estimate of v, we have
to estimate the term uv?. We also obtain result on the asymptotic stability of the
global solution to if the diffusion coeflicients are large enough by an important
Lemma 5.1 from [2I]. We summarize our results in the following theorems:

Theorem 1.2. Let ass > 0 and assume that ug > 0,v9 > 0 satisfy zero Neumann
boundary condition and belong to C**(Q) for some A > 0. Then (1.2) possesses
a unique non-negative solution u,v € CQJr)"%(ﬁ x [0,00)) if either (i) aq1 =0 or
(ii) 11 > 0 and n < 10.

Theorem 1.3. Assume that all conditions in Theorem [I.3 are satisfied. Assume
further that

albg a9 aq

e 1.3

bica C2 C1 (1:3)

4puvdydy > m?(Tagy )?. (1.4)

Then (1.2) has the unique positive equilibrium point (@, v) which is global asymptotic
stable, where m is the positive constant in Lemma (independent of dy,ds),
p = (b2c1 + 2b102)b52 and

(@) = (

ai1Cy — a2C1 a2b1 + albg)
bica 4 bocy ” bica + bocy /-
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The paper is organized as follows. In section 2, we collect some well known
results and prove three new lemmas that are needed in section 3 and section 4. In
section 3, we establish L"-estimates of the solution v of (|1.2)) and in section 4 we
give a proof of Theorem In section 5, we give a proof of Theorem [1.3

2. PRELIMINARIES

We list here some notation.

QT =0 x [O,T)7

T g A\
lull r.a(@r) = (/0 (/Q |u(x,t)|Pdm)5dt) q)LP(QT) = LPP(Qr),

lullyyz gpy = lullir@r) + luello@ry + IVullLr@r) + VUl Lo@r)
lullva@r) = sup_u(., t)l[z2(0) + [Vulz, )2 (@r)-
0<t<T

Firstly, we present some useful lemmas.

Lemma 2.1. Let u,v be a solution of (1.2)) in [0,T). Then 0 <u <m and v >0
in Qr, where m = max{ >, |[uol| L~ (o) }-

Proof. The first equation in is expressed as
up = (d1 + 20110)Au + 2011 Vu - Vu + u(a; — byu — ¢1v), (2.1)
and the second equation is written as
v = (daFao1u+20920) Av+2( g Vutags Vo) Vo+o(as Autas+bau—cov). (2.2)

Then application of the maximum principle for (2.1)) and (2.2)) yields the nonnega-
tive of u and v. Applying the maximum principle to (2.1]) again one can also show
the boundedness of w. d

Lemma 2.2. There exists a positive Cy(T') such that

sup |[u(.,t)||1 ) < Ci(T), (Bl < Cu(T),
0<t<T

sup |lv
0<t<T
[ullz2(@ry < CL(T),  [[vllz2(@r) < CLT).
Proof. Integrating the first equation in (1.2)) over the domain 2, we have

d
— ud:c:alfudx—bl/uzdx—cl/uvda:
dt Jo Q Q Q
Sal/uda:fbl/uzdx (2.3)
Q Q

Sal/ﬂudx—(&(/gudx)z,

where we used Holder’s inequality. Then we have |[u(.,t)||1(q) < M, where M] =
max{|luoll L1 (), %|Q|} Furthermore,

sup |u(., 1)) < Ci(T). (2.4)
0<t<T

d
—/udwﬁal/udx—bl/Ude. (2.5)
dt Q [9) Q

Since
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Integrating ([2.5)) from 0 to 7', we have
ai
[ull72(gq) < EM{|QT| + [luoll (@)

Therefore,
lullL2(@ry < C1(T). (2.6)
Now, integrating the second equation in the system (|1.2) over the domain Q we

have J
—/ ’Ud.T:(lz/ Ud(E-‘er/ uvdw—cz/ vidx. (2.7)
dt Q Q Q

Multiplying (2.3]) by bf and adding it to (2.7]), we have

d b

— (—2u+ )dx <922 udx+|a2|/vdxf— 2d:c702/v2dx. (2.8)
dt cq Q
Then

min{l,i—?}% (utv)da
1 Q
a1y _ biby .
ax{77|a2|}/(u—i—v)dx—mm{—,cz}/(u +0?)dz
Q
1 b1b
e e o

Therefore, |[v(., )| 11 (o) < My, where Mj = max{ Huo +voll v}

A — max{aéf2 ,b|a2|}7 _ min{ béfz,cg}.
min{1, &} 2min{1, 22}
Then
S (D)l @) < CL(T). (2.9)

Integrating (2.8) from 0 to T', we have

62/ v d$dt < 7/ Mldt+ |0,2|/ Mzdt+ —||u0||L1 Q) + ||1)OHL1(Q)3
T
which implies [[v| 72,y < C1(T). |

Lemma 2.3. Let wy = (dy+aq1u)u . Then there exists a constant Co(T), depending
on [luollwp () and |luol|L=(q) such that

leijl(QT) < C2(T)- (2.10)
Furthermore, Vwy € Vo(Qr).
Proof. Note that w, satisfies the equation
wyy = (d1 + 2a11u)Awy + 1y + nav, (2.11)

where n1 = u(dy + 2a11u)(a1 — byu),ny = —c1(dy + 2a11u)u depend on u and
are bounded functions because of Lemma [2.I] Multiplying the above equation by
wal and integration by parts over (2, we have

2d /|Vw1|2dac——/(d1+2a11u)(Aw1)2daj—/(n1—|—ngv)Aw1dx. (2.12)
t Q Q
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Integrating (2.12)) from 0 to ¢, we obtain

1 1

7/ |V, (z,t)2dx — 7/ |Vw, (,0)|?dx

2 Ja 2 Jo

— —/ (d1 +2a11u)(Aw1)2 dxdt—/ (n1 4+ nov)Aw, dx dt

t t

< —dl/ |Aw |? da dt —I—/Q (n1 + nov) - |Aw |dz dt .
¢ ¢
By Young’s inequality and Hélder’s inequality, we have
1/ |Vwy (z,t)2dx + dl/ |Aw; |? da dt
2 Jo -
< (Inllz2@r) + In2vli2 @) - 1AWl L2Qr) + %/Q [Vwy (z,0)|*dz
< mal1+ ollion) - IAuniear + 5 [ [Vun(a,0)de

1
<1+ (D)) - |Awr1aign) + 5 [ [Vun(,0)de
Q

m2(1+C(T))* 1

dy 9 )
< ?”Awl‘ILQ(QT) + %, + 5/9 |Vwi (z,0)|dz.

Therefore,
sup / |V, (2, t)dz + d1/ |Aw; | da dt < ma,
0<t<T J -
where mo depends on [luo||w;y(q) and [luol|L=(q). This implies Vwi € V2(Qr).
Since w; € L?(Qr) we have from the elliptic regularity estimate [2, Lemma 2.3

/ (W) gz, I?dxdt <mg ford,j=1,...,n.
T

From (2.11)), since n1,no and u are bounded and v € L?(Qr), we have wy; €
L2(Qr). Hence, wy € W2 (Qr). O

Let a(z,t,£) be continuous and (z,§)-differentiable for (z,t,£) € Qr x R. As-
sume also that a(x,t, ) satisfies the following conditions
(i) There is d > 0 such that a(x,t,€) > d and ag(z,¢,£) > 0 for all (x,t) € Qr
and ¢ in R.
(ii) There is a continuous function M on R such that a(z,t,&) < M(€) for all
(CU, t) € QT~
(iii) For any bounded measurable function g on Qr, |Vga(.,.,g(.,.))| is in the
space L?P(Qr).

Lemma 2.4. Assume that w € W2 (Qr) (N C*'(Q % [0,T)) is a bounded function
satisfying

wy < alx,t,w)Aw+ f(x,t) in Qr
with boundary condition g—’j < 0 on Og,, where f € LP(Qr). Then, Vw is in
L*(Qr).

The proof of the above lemma can be found in [9, Proposition 2.1].
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Lemma 2.5. Let ¢ > 1,4 =2+ ﬁ, B in (0,1) and let Cr > 0 be any number

which may depend on T. Then there is a constant My depending on q,n, {) 5 and
Cr such that for any g in C([0,T), W3 () with ([, |g(., |ﬁdx)1/5 < Cr for all
t € [0,T], we have the inequality

4q/n(q+1)qu ||2/q

9l Lacor) < My {1+ (ozltlgir ||9(-7t)|\1;2q/q+1(9)) QT)}

The proof of the above lemma can be found in [6, Lemmas 2.3, 2.4].

3. L"-ESTIMATES FOR v
Lemma 3.1. There exists a constant C3(T') such that ||Vu| psg.) < C3(T).

Proof. Let § = ay1/dy, w1 = (14 du)u. By Lemma u is bounded. Therefore,
wy is also bounded. By Lemma we have wq € W22 (Qr). Moreover, w; satisfies

wyp < dp (1 + 20u)Aw + aju(l + 26u)

= Md% + 40dq w1 Awq + alu(l + 2(5u)

By Lemma [2.4] with p = 2, a(x,t,§) = +/d? +40d:&, f(z,t) = aju(z,t)(1 +

20u(x,t)), we obtaln the desired result. O

Lemma 3.2. Let r > 2 and p, = ;=5 be two positive numbers. Assume that
g > 0 and assume also that there is a constant M, > 0 depending only on
r, T, and the coefficients of (1.2) such that

IVl

Lr(Qr) = M.
Then for any q > 1, there exists a constant C(r,q,T) > 0 such that

HU(‘vt)”%q(Q + ||V(UQ/2)||%2(Qt) + ||V(U(q+1)/2)||%2(Qt)

3.1
S C(raqu)(l + ||U||q Pr(‘] 1) © )) ( )

Proof. For any constant ¢ > 1, multiplying the second equation of (1.2) by quv?~!
and using the integration by parts, we obtain

0
9 q
8t/Qv dx

= q/Q Nl vl [(d2 + a21u + 2a290) VU + ag1vVu|dz + q/Q v9(as + bou — cyv)dz
= /Q VT2 (da + a1 + 2000) [V *de — e (g — 1) /Q V(v?) - Vudz
+q /Q v?(ag + bou — cov)dz
—q(q — 1)dz /Q 0172 Vo|?dx — 2092q(q — 1) /Q v? Y Vo|?dx

*azl(qfl)/v( ) Vude+q | e+ by = )
= d2/|v g |2dx—8a22q /|v ) 2da
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—ag(qg—1) /Q V(v?) - Vudzx + q/ﬂvq(ag + bou — cov)d.

Integrating the above inequality from 0 to ¢, we have

4((] — 1)d2 / q 80522(]((] — 1) / atly o
vz, t)de + ——————= 2)|*dx dt + ————— V(v2 dx dt
R 2 wehr P [ vt

< / v1(z,0)dr — a1 (g — 1) V(v?) - Vudzdt + q/ vI(ag + bau — cov) dx dt.
Q

Qt t
(3.2)
By Holder’s inequality, we have
q/ vi(az + bau — cov) dx dt
t
= agq/ vidxdt — CQq/ vIT dadt + qu/ uvldadt
_1
< —eaalolEt s ) + la2lal@r TN 1 g, + boa /Q wdadt (33)

_ _a_
< _CQ‘IHUHE_L(QO =+ |a2|Q[5”UH%—E}—1(Qt) +e q|QT|q+1] + b2q/Q wvldxdt
t

< B+ bgq/ wvldzxdt,

t

where ¢ = \%\7 B; depends on T, ¢, |2 and the coefficients of (|1.2)).
On the other hand, since that % + % + pi = 1, using the Holder’s inequality and
Poincaré inequality, we have

/uquxdt:/ u-v%l~vqTdedt
t t

g=1 g+1
< [0 T llpor @y - 10"F llz2(00) -Hunmt
1 2
<0m||v\|<q )/ va ) lz20)-

pr(q 1)

(3.4)

The substitution (3.4]) into ) leads to

q+1
q/ v¥(ag + bou — cov)drdt < By + C5||vH(qu1(q/21) o0 AV =)z @0
t 2 t

(3.5)
Since that % + % + p% =1 and Vu is in L"(Qr), using the Holder’s inequality, we
have

| —/ V(v?) - Vu da:dt| = | v(qgl)) . Vuda:dt|
. q+1

2q at1

< o . .

< qul|| ™ oo - IV @ ) 2000 - 1Vl e

q+1
< AV(vz NVul| -
< qul|| ol 2, pelgen) IV =)Lz - IVullLr@n

\ /\

2(] g-1 q+1
——M,. 2 V(v Tz .
q+1 T||/U||Lpr(lé 1) @) || (’U )HLz(Qt)
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The substitution (3.5) and the above inequality into (3.2 leads to

/uq(x,t)dwi‘“q*l)dz/ V(v?)de dt+780[22q(q;1)/ V(0 ) du dt
Q q . (q+1) Q:

< By + Cllv]| 2, LB V(o )HL2(Q,

q+1
< By + —n 1 g oy T CEEIV( Wiz

t

(3.6)
where By > 0 depending on ¢, T, €2 coefficients of (|1.2]) and initial datal vy. For any
e > 0, from (3.6 and by choosing a sufficiently small e, such that Cge < &"(2(1217(1‘;1),
we get ([3.1). This completes the proof of the lemma.

For any number a, we denote a4 = max{a,0}.

Proposition 3.3. Let agy > 0.
(1) If a11 > 0, then there is a constant C7z(T) > 0 such that

HU”VQ(QT) < 07(T)

Moreover, for any constant r < (4 ("+)1 ) there exists a positive constant Cp

such that

[l @r) < Cr-
(ii) If ou1 =0, then

[l

Lr(Qr) < Cr  forany r>1.

Proof. (i) Set w = v(@+1)/2 50 that v? = w29/ (9t and v9+! = w?. Then

E= sup /vq(x,t)dx+/ |V (09 D/2)12 dg: dt
o<t<T Jo T
= sup /qu/quz—&—/ |Vw|? da dt.
o<t<T Jo T
Let 7o = 4, po = Ti% By Lemma we see that Vu is in L™(Qr). So, from
Lemma [3:2] we have
q 2(g—1)
E+ IVl < Cona D)1+l 3 ) (3.7)
P (Or

where C(rg,q,T) > 0 depending only T, €2, initial data wug,vo and the coefficients
of (1.2). Since g > 1, if we restrict our ¢ so that

(npo — 2n —4)q < 2n + npo. (3.8)

Then, po;i_ll) < ¢, where ¢ =2 + n(q+l) Therefore, by Holder’s inequality
) < Cs(q. T o, 3.9
full gz < Cala Dlllscan (39)

where Cs(q,T) = |QT|POQ<£1>7%. Setting 3 = 2/(¢+ 1) € (0,1), by Lemma we

have
1

lw(s )l sy = 0Dl < (CHTNF, Vee0,T).  (3.10)
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Hence, by Lemma 2.5 and the definition of E, (3.10] yields
g1
1wl Lrota—1/at1(Qpy < Csla, T)llwllpaqry < Cslg, T)Mi{1 + E*mMps}. (3.11)

Then (3.7)) together with the above inequality, we can find a constant Co(q,T) > 0
such that

E < Cy(q,T)(1 + EFE") (3.12)
with
_ 4g-1 _2(¢—1)
ng(q+1)’ qlq+1)
Since

2(g—1) 2 1 4

20q—-1) [241) < [—2
qg+1)"n q'n(q+2)
it is easy to see from (3.12)) that E is bounded. Therefore, from (3.11)) and (3.12)

we get w € L9(Qr) which in turn implies that v € L™(Q7) with r = <7qu for any
q satistying (3.8). Now, looking at (3.8)), if n < 2, we have

npy —2n —4 =2(n — 2) <0, (3.13)

n+v= +2]:1,

then (3.8) holds for all ¢. so for n < 2, v € L"(Qr) for all » > 1. Now, suppose
that n > 2, we see (]3.8]) is equivalent to
2n 4+ npg 3n

1< < = = .
7= (npp—2n—4) n—2

Then, we have

qlq+1)
2

So, we see that v is in L"(Qr) for all 1 < r < 7;. Since (3.8)) holds true for g = 2.
So when ¢ = 2, we have FE is finite. Therefore, from (3.7) and (3.11)), we see that

lv]lvy (@) is bounded for any n, this completes the proof of Proposition when

a1; >0and r < E%T;)?

Next, we consider the case a1 = 0. By Hélder’s inequality, we have

2q0 _ 4(n+1)

2
=g+l D <T =g 1+ TR
n n n—2

q/ vI(ag + bau — cov) dx dt

= agq/ quxdt—CQq/ vq+1dxdt—|—b2q/ wvddzdt
t t t

1 1
< _CZ‘IHUHqLJgﬂ(Qt) + |azlq|Qr[7 ||U||qu+1(Qt) (3.14)

+ 02410117041 gy - lull 2o (Q0)

+1 =
< —eadlloll%ihs g, + 1a2lgl Q| T [0]1811 g, + b2amlIol|uin o,

A

+1 +1
< _CQq”UH%qul(Qt) + qEHUHqL‘I“(Qt) + Bs
< BB,

where € = ¢ and B3z > 0 which depends only on T,q,[Q|, |lug||r~(n) and the

coefficients of (1.2).
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We can integrate by parts once to obtain from Lemma [2.1] and analogue of [20,
Theorem 9.1, p. 341-342] for Neumann boundary condition [20, p.351]

|— V(v?) - Vu d di|

= ‘ —/ viAu da:dt’

<ol s o * 18Ul et @) (3.15)
scmwwhﬂwﬂOMwlfMufcmeﬂ@ﬂ+wWﬂwtﬁﬂm)
q
< Cu (14 ol g )-
The substitution of (3.14) and (3.15) into (3.2) leads to
sup [[09(6)]11c) + IV @) |72 <012( +olle o) (3.16)
0<t<T
We introduce w = v™=" | then (13.16) leads to
E= sup |lw(t ‘” + [|[Vw]||?., < Cho(1 + [Jw])?2 ) 3.17
OSthII ( )HL 2 o) IVwlZz(gr) < Cr2(l + lwllZ2g,)) (3.17)
Recall that Lemma implies v € L?(Qr), so ||w||L Hom = < (43. Since m <
2 < ¢. Then we see from Holder’s inequality
2(1—X (1-X
lellZain < Il el o < CRIwlagy), (3.18)

where \ = (%—5)/(‘#1 ) Setting 3 = 2/(g+1) € (0,1), we have |Jw(., t)||L5(Q) =

1
||v( )”Ll(Q < Ci(T )5 for allt € [0,T) by Lemma Then it follow from (3.17)),

and Lemma E o[ that
B < Cu(l+E°) (3.19)

with
Thus (3.19) implies

with some Cy5 > 0, let r = ¢ > 1, so that supy<,<7 [[v(t)[| (@) < Cr and the proof
is complete. ([
4. PROOF OF THEOREM
The first step of the proof is to show v is in L"(Qr) for any r > 1.

Lemma 4.1. Let ay; > 0 and suppose that there are rqy > max{” ,3} and a
positive constant Cy., v such that

10l (@r) < Cry -
Then, v is in L"(Qr) for any r > 1.
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Proof. The proof is almost identical to [9, Lemma 4.1], but for completeness we
repeat it here. First, the equation for u can be written in the divergence form as

w =V - [(d1 + 2001u)Vu] + u(a; — biu — c1v), (4.1)
where d; + 2aq1u is bounded in Q1 by Lemma and u(a; — bju — ¢qv) is in L™
with r; > %2 Application of the Hélder continuity result in [20, Theorem 10.1,
p. 204] to (4.1)) yields

u € Cﬁ’%(@T) with some 8 > 0. (4.2)

Moreover, we have

wy = (di + 2aq11u)Awy + f1, (4.3)
where wy = (di + aq1u)u is as in the proof of Lemma f1 = (d1 +2a11w)u(a; —
biu—c1v). Since u is bounded and by the assumption of this Lemma, we see that f;

is in L™ (Qr). From (4.2), Lemma and Proposition applying [20, Theorem
9.1, pp. 341-342] and its remark [20], P. 351], we have

w; € W2HQr). (4.4)
This implies Vu = MVUH in L™ (Qr). Now, following the proof of Proposi-
tion with r; instead of ry and p; = % instead of py, we see that either v is
in L"(Qr) for any r > 1 or else v is in L™ (Qr) with
(n+1)rq
rg im ————.
n+2—-r

The later case happens if and only if n +2 —r; > 0.

If visin L™ (Qr), we see that f1 isin L™ (Qr). Therefore, applying [20, Theorem
9.1, p. 341-342] and its remark [20, p. 351] again, we have Vu in L™ (Qr). Then
we go back and do the same argument again. Keep doing likes this we will get a
sequence of numbers

(n+ 1)rg
= 4.5
"k n+2—rg (45)
We stop and get the conclusion that v is in L (Qr) for any r > 1 when
n+2—r, <0. (4.6)

Since r; > 3, from (4.5 we can prove by induction that rp > 3,k =1,2,.... Then,

we have
meer o _ntl ondlo (4.7)
Tk n+2—-—r, n-1
Thus, the sequence ry is strictly increasing. Therefore, there must be some k such
that holds. we stop at this k& and conclude that v is in L"(Qr) for any r > 1,
namely, there is a positive constant Cyg such that ||v||mg < Cig, where Cig > 0

depending on ¢, T, 2 and the coefficients of the system ([1.2)) but not on r. O

So, from Proposition [3.3] and Lemma we have the following lemma.

Lemma 4.2. Let ass > 0 and suppose (i) aq; = 0 or (ii) a1 > 0 and n < 10.
Then there exists Moy such that

o]

Lr(Qr) < My for any r > 1.

Moreover, for any r > 1, v is in Va(Qr).



12 S. XU EJDE-2008/06

Proof of Theorem[1.4 We give the proof only in case a;; > 0 because the proof for
aq1 = 0 is essentially the same. By Lemma v is bounded in Q. From (4.3)),

we have

wy = (di + 2001u)Awy + fi1,
where fi; = (di + 2aq1u)u(a; — biu — c1v) is bounded in @, by Lemma and
Lemma (d1 4+ 2a11u) € Cﬁ’g(QT) by (4.2). By [20, Theorem 9.1, p.341-342],

we have ( )
n+2 4n+1
||’LU]_||W3,1(QT> < M3 fOI' 2 r < m
Hence it follows from [20, Lemma 3.3, p.80] that
wy € CHEEE(@,), Vo< B < 1. (4.8)
Since y = —ATV dtdwion W, it follow from (4.8) that
Q11
we CWEEER (@), Vo< Bt < L (4.9)

Next, we rewrite the equation for v in divergence form as
UV = V- [(dz + ao1u + ZQQQU)V’U + OLQl’UVU] + f2(17, t),

where fo(x,t) = v(ag + bau — cv), u, v and Vu are all bounded functions because
of Lemma Lemma and (4.9). By [20, Theorem 10.1, p.204], we have

v e C?2(Qp)with somel < o < 1. (4.10)
Now, we then return to the equation for v and write it as
up = (dy + 2011u)Au + f3(z,t), (4.11)

where fy(e,t) = 200 |Vul? + u(as — by — e10) € €75 (@) by (19) and (ET0).
Then the Schuader estimate in [20, Theorem 5.3, p.320-321] applied to (4.11]) yields

we o FF (@) with o* = min{\, o). (4.12)
Let we = (da + agiu + agov)v. Then wy satisfies
wat = (dg + 21U + 202v) Aws + fa(z, 1), (4.13)

where fy(x,t) = (d2 + ag1u + 2a920)v(ag + bau — cav) + agrvus € C’”*’g(@T) by

[@13) and (£12), d2 + ag1u + 20090 € C2 (Qp) by (L.9) and (£.10), by applying
the Schuader estimate to the equation (4.13)), we have

wy € C’2+‘7*’#(@T)~ (4.14)
Then
_ 214 T
Y (da + an1u) + 1/ (ds + az1u)? + dwyans € O HE Q). (4.15)

20[22

Now repeat the procedure by making use of (4.12)) and (4.15) in place of (4.9 and
(4.10), we have

u,v € 02“"%(@:&. (4.16)
Finally, the estimates (4.12)) and (4.15) imply that the hypotheses of Theore
=

are satisfied. So that (u,v) exists globally in time. The proof of Theorem
now complete. (I
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5. STABILITY

In this section, we discuss global asymptotic stability of positive equilibrium
point (@, v) for (L.2)), namely to prove Theorem [1.3]

Proof of Theorem[I.3 Define the Lyapunov function:
u v
H = — 4 —Uln— —v—0vln-)|d
(u,v) /Q[(u a unﬁ)+p(v v vn@)] x,

where p = (bac; + 2byco)by 2. Obviously, H (u,v) is nonnegative and H(u,v) = 0 if
and only if (u,v) = (@,v). By Theorem [L.2} H(u,v) is well-posed for ¢ > 0 if (u, v)
is positive solution to system ([1.2)). The time derivative of H (u,v) for system (|1.2))
satisfies

dH (u,v)
dt

—/(u_ﬂut—l—p ;Evt)dm

[(d1 4+ 20q1u)Vu] + (u — @) (a1 — biu — c1v)

. [(dg —+ ao1u + QQQQU)VU + aglvVu] + p(’U - ’D)((LQ + bou — CQ’U)}dl‘

(d1—|—2a11u) 2 P21 p(ds + ag1u + 2a920)T
=—/ [uiw ul*+ ———Vu-Vo+ 2

[V[?]dx

- /Q[bl(u — @)%+ (c1 — pbo)(u — @) (v — D) + cap(v — 0)?]dz.

The second integrand in the above equality is positive definite by the choice of p.
Meanwhile the first integrand is positive semi-definite if
4pm(d1 —+ 20[22“)(d2 + ao1u + 2&22U) > uz(a21@)2. (51)

By the Lemma and Theorem the condition (1.4)) implies (5.1)). Therefore,
when all conditions in Theorem hold, there exists positive constant § depending
on by, by, c; and ¢y such that

@i&g _ﬁ/)u_u + (v - 0)]da. (5.2)

To obtain the uniform convergence of the solution to (1.2]), we recall the following
result which can be find in [21].

Lemma 5.1. Let a and b positive constant. Assume that o, € Clla,+o0),
Y(t) > 0, ¢ is bounded. If ¢'(t) < —b(t) and ¢'(t) is bounded in [a,+00), then

Using integration by parts, Holder’s inequality, Lemma 2.1} and Lemma[£:2} one
can easily verify that £ [[(u — @)? + (v — v)?]dz is bounded from above. Then

from Lemma and (5.2)), we have
[u(-,t) = L) — 0, [lv(,t) =Dl =0 (t — o0).

Namely, (u,v) converges uniformly to (7, 7). By the fact that H(u,v) is decreasing
for ¢ > 0, it is obvious that (@,7) is global asymptotic stable, and the proof of
Theorem [I.3]is complete. O
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