Electronic Journal of Differential Equations, Vol. 2008(2008), No. 06, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF GLOBAL SOLUTIONS FOR A PREDATOR-PREY MODEL WITH CROSS-DIFFUSION

SHENGHU XU

Abstract

In this article, we prove the existence of global classical solutions for a prey-predator model when the space dimension $n<10$. Under certain conditions on the coefficients of the reaction functions, the convergence of solutions is established for the system with large diffusion by constructing a Lyapunov function.

1. Introduction

To investigate the spatial segregation under the self and cross population pressure, Shigesada, Kawasaki and Teramoto [1] proposed a competition model in 1979. Then there have been established many results in the literatures; see for example [2, 3, 4, 5, 6, 7, 8, 2]. For the cross-diffusion systems with prey-predator type reaction functions, there are a few results mainly on the steady-state problems with the elliptic systems, see [10, 11, 12, 13, 14.

In this paper, we study the following cross-diffusion system, with prey-predator type reactions,

$$
\begin{array}{cl}
u_{t}-\Delta\left[\left(d_{1}+\alpha_{11} u+\alpha_{12} v\right) u\right]=u\left(a_{1}-b_{1} u-c_{1} v\right) & \text { in } \Omega \times[0, \infty), \\
v_{t}-\Delta\left[\left(d_{2}+\alpha_{21} u+\alpha_{22} v\right) v\right]=v\left(a_{2}+b_{2} u-c_{2} v\right) & \text { in } \Omega \times[0, \infty), \tag{1.1}\\
\partial_{\eta} u=\partial_{\eta} v=0 \quad \text { on } \partial \Omega \times[0, \infty), & \\
u(x, 0)=u_{0}(x) \geq 0, \quad v(x, 0)=v_{0}(x) \geq 0 & \text { in } \Omega,
\end{array}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 1)$ is a bounded domain with smooth boundary $\partial \Omega, \eta$ is the outward unit normal vector of the boundary $\partial \Omega$, and $\partial_{\eta}=\partial / \partial_{\eta} . \alpha_{i j}$ are given nonnegative constants for $i, j=1,2$. And $d_{i}, b_{i}, c_{i}(i=1,2)$ and a_{1} are positive constants only a_{2} may be non-positive.

In system 1.1 , u and v are nonnegative functions which represent the population densities of the prey and predator species, respectively, d_{1} and d_{2} are the random diffusion rates of the two species, α_{11} and α_{22} are self-diffusion rates, and α_{12} and α_{21} are the so-called cross-diffusion rates. When $\alpha_{i j}=0(i, j=1,2)$, the system is the well-known Lotka-Volterra prey-predator model. For more details on the biological background, see references [1, 18].

[^0]Local existence (in time) of solutions to (1.1) was established by Amann in a series of important papers [15, 16, 17]. His result can be summarized as follows:

Theorem 1.1. Suppose that u_{0}, v_{0} are in $W_{p}^{1}(\Omega)$ for some $p>n$. Then 1.1) has a unique non-negative smooth solution $u(x, t), v(x, t)$ in

$$
C\left([0, T), W_{p}^{1}(\Omega)\right) \bigcap C^{\infty}\left((0, T), C^{\infty}(\Omega)\right)
$$

with maximal existence time T. Moreover, if the solution (u, v) satisfies the estimate

$$
\sup _{0 \leq t \leq T}\|u(., t)\|_{W_{p}^{1}(\Omega)}<\infty \quad \text { and } \quad \sup _{0 \leq t \leq T}\|v(., t)\|_{W_{p}^{1}(\Omega)}<\infty
$$

then $T=\infty$.
However, little is known about global existence of solutions to 1.1). In 2006, Shim [18] proved the existence of global solutions to 1.1) in two cases: Case(A) $n=1, d_{1}=d_{2}$ and $\alpha_{11}=\alpha_{22}=0 ; \operatorname{Case}(\mathrm{B}) n=1,0<\alpha_{21}<8 \alpha_{11}$ and $0<\alpha_{12}<8 \alpha_{22}$.

In 19 the author considered the case when $\alpha_{11}, \alpha_{12}, \alpha_{22}>0$ and $\alpha_{21}=0$ for the system (1.1), and established the existence of global solutions with $n=1$.

We shall prove the existence of global solutions to the following system (namely, the system (1.1) for $\alpha_{12}=0$)

$$
\begin{gather*}
u_{t}-\Delta\left[\left(d_{1}+\alpha_{11} u\right) u\right]=u\left(a_{1}-b_{1} u-c_{1} v\right) \quad \text { in } \Omega \times[0, \infty), \\
v_{t}-\Delta\left[\left(d_{2}+\alpha_{21} u+\alpha_{22} v\right) v\right]=v\left(a_{2}+b_{2} u-c_{2} v\right) \quad \text { in } \Omega \times[0, \infty), \\
\partial_{\eta} u=\partial_{\eta} v=0 \quad \text { on } \partial \Omega \times[0, \infty), \tag{1.2}\\
u(x, 0)=u_{0}(x) \geq 0, \quad v(x, 0)=v_{0}(x) \geq 0 \quad \text { in } \Omega .
\end{gather*}
$$

This paper draws on ideas from two papers [6] and [9] which deal with crossdiffusion system with competition type reactions. Duo to the difference in the reaction functions. Therefore, in order to obtain the L^{p}-estimate of v, we have to estimate the term $u v^{p}$. We also obtain result on the asymptotic stability of the global solution to (1.2) if the diffusion coefficients are large enough by an important Lemma 5.1 from [21]. We summarize our results in the following theorems:

Theorem 1.2. Let $\alpha_{22}>0$ and assume that $u_{0} \geq 0, v_{0} \geq 0$ satisfy zero Neumann boundary condition and belong to $C^{2+\lambda}(\bar{\Omega})$ for some $\lambda>0$. Then (1.2) possesses a unique non-negative solution $u, v \in C^{2+\lambda, \frac{2+\lambda}{2}}\left(\bar{\Omega} \times[0, \infty)\right.$) if either (i) $\alpha_{11}=0$ or (ii) $\alpha_{11}>0$ and $n<10$.

Theorem 1.3. Assume that all conditions in Theorem 1.2 are satisfied. Assume further that

$$
\begin{align*}
-\frac{a_{1} b_{2}}{b_{1} c_{2}} & <\frac{a_{2}}{c_{2}}<\frac{a_{1}}{c_{1}}, \tag{1.3}\\
4 \rho \overline{u v} d_{1} d_{2} & >m^{2}\left(\bar{v} \alpha_{21}\right)^{2} . \tag{1.4}
\end{align*}
$$

Then (1.2) has the unique positive equilibrium point (\bar{u}, \bar{v}) which is global asymptotic stable, where m is the positive constant in Lemma 2.1 (independent of d_{1}, d_{2}), $\rho=\left(b_{2} c_{1}+2 b_{1} c_{2}\right) b_{2}^{-2}$ and

$$
(\bar{u}, \bar{v})=\left(\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{1} c_{2}+b_{2} c_{1}}, \frac{a_{2} b_{1}+a_{1} b_{2}}{b_{1} c_{2}+b_{2} c_{1}}\right) .
$$

The paper is organized as follows. In section 2, we collect some well known results and prove three new lemmas that are needed in section 3 and section 4. In section 3, we establish L^{r}-estimates of the solution v of 1.2 and in section 4 we give a proof of Theorem 1.2. In section 5, we give a proof of Theorem 1.3.

2. Preliminaries

We list here some notation.

$$
\begin{aligned}
& Q_{T}=\Omega \times[0, T) \\
& \|u\|_{L^{p, q}\left(Q_{T}\right)}=\left(\int_{0}^{T}\left(\int_{\Omega}|u(x, t)|^{p} d x\right)^{\frac{q}{p}} d t\right)^{1 / q}, L^{p}\left(Q_{T}\right):=L^{p, p}\left(Q_{T}\right) \\
& \|u\|_{W_{P}^{2,1}\left(Q_{T}\right)}:=\|u\|_{L^{p}\left(Q_{T}\right)}+\left\|u_{t}\right\|_{L^{p}\left(Q_{T}\right)}+\|\nabla u\|_{L^{p}\left(Q_{T}\right)}+\left\|\nabla^{2} u\right\|_{L^{p}\left(Q_{T}\right)} \\
& \|u\|_{V_{2}\left(Q_{T}\right)}:=\sup _{0 \leq t \leq T}\|u(., t)\|_{L^{2}(\Omega)}+\|\nabla u(x, t)\|_{L^{2}\left(Q_{T}\right)} .
\end{aligned}
$$

Firstly, we present some useful lemmas.
Lemma 2.1. Let u, v be a solution of 1.2 in $[0, T)$. Then $0 \leq u \leq m$ and $v \geq 0$ in Q_{T}, where $m=\max \left\{\frac{a_{1}}{b_{1}},\left\|u_{0}\right\|_{L^{\infty}(\Omega)}\right\}$.
Proof. The first equation in 1.2 is expressed as

$$
\begin{equation*}
u_{t}=\left(d_{1}+2 \alpha_{11} u\right) \Delta u+2 \alpha_{11} \nabla u \cdot \nabla u+u\left(a_{1}-b_{1} u-c_{1} v\right) \tag{2.1}
\end{equation*}
$$

and the second equation is written as

$$
\begin{equation*}
v_{t}=\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) \Delta v+2\left(\alpha_{21} \nabla u+\alpha_{22} \nabla v\right) \nabla v+v\left(\alpha_{21} \Delta u+a_{2}+b_{2} u-c_{2} v\right) \tag{2.2}
\end{equation*}
$$

Then application of the maximum principle for 2.1 and 2.2 yields the nonnegative of u and v. Applying the maximum principle to 2.1) again one can also show the boundedness of u.

Lemma 2.2. There exists a positive $C_{1}(T)$ such that

$$
\begin{gathered}
\sup _{0 \leq t \leq T}\|u(., t)\|_{L^{1}(\Omega)}<C_{1}(T), \quad \sup _{0 \leq t \leq T}\|v(., t)\|_{L^{1}(\Omega)}<C_{1}(T), \\
\|u\|_{L^{2}\left(Q_{T}\right)}<C_{1}(T), \quad\|v\|_{L^{2}\left(Q_{T}\right)}<C_{1}(T)
\end{gathered}
$$

Proof. Integrating the first equation in (1.2) over the domain Ω, we have

$$
\begin{align*}
\frac{d}{d t} \int_{\Omega} u d x & =a_{1} \int_{\Omega} u d x-b_{1} \int_{\Omega} u^{2} d x-c_{1} \int_{\Omega} u v d x \\
& \leq a_{1} \int_{\Omega} u d x-b_{1} \int_{\Omega} u^{2} d x \tag{2.3}\\
& \leq a_{1} \int_{\Omega} u d x-\frac{b_{1}}{|\Omega|}\left(\int_{\Omega} u d x\right)^{2}
\end{align*}
$$

where we used Hölder's inequality. Then we have $\|u(., t)\|_{L^{1}(\Omega)} \leq M_{1}^{\prime}$, where $M_{1}^{\prime}=$ $\max \left\{\left\|u_{0}\right\|_{L^{1}(\Omega)}, \frac{a_{1}}{b_{1}}|\Omega|\right\}$. Furthermore,

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\|u(., t)\|_{L^{1}(\Omega)}<C_{1}(T) \tag{2.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} u d x \leq a_{1} \int_{\Omega} u d x-b_{1} \int_{\Omega} u^{2} d x \tag{2.5}
\end{equation*}
$$

Integrating 2.5 from 0 to T, we have

$$
\|u\|_{L^{2}\left(Q_{T}\right)}^{2} \leq \frac{a_{1}}{b_{1}} M_{1}^{\prime}\left|Q_{T}\right|+\left\|u_{0}\right\|_{L^{1}(\Omega)}
$$

Therefore,

$$
\begin{equation*}
\|u\|_{L^{2}\left(Q_{T}\right)} \leq C_{1}(T) \tag{2.6}
\end{equation*}
$$

Now, integrating the second equation in the system 1.2 over the domain Ω we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} v d x=a_{2} \int_{\Omega} v d x+b_{2} \int_{\Omega} u v d x-c_{2} \int_{\Omega} v^{2} d x . \tag{2.7}
\end{equation*}
$$

Multiplying 2.3) by $\frac{b_{2}}{c_{1}}$ and adding it to (2.7), we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}\left(\frac{b_{2}}{c_{1}} u+v\right) d x \leq \frac{a_{1} b_{2}}{c_{1}} \int_{\Omega} u d x+\left|a_{2}\right| \int_{\Omega} v d x-\frac{b_{1} b_{2}}{c_{1}} \int_{\Omega} u^{2} d x-c_{2} \int_{\Omega} v^{2} d x \tag{2.8}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \min \left\{1, \frac{b_{2}}{c_{1}}\right\} \frac{d}{d t} \int_{\Omega}(u+v) d x \\
& \leq \max \left\{\frac{a_{1} b_{2}}{c_{1}},\left|a_{2}\right|\right\} \int_{\Omega}(u+v) d x-\min \left\{\frac{b_{1} b_{2}}{c_{1}}, c_{2}\right\} \int_{\Omega}\left(u^{2}+v^{2}\right) d x \\
& \leq \max \left\{\frac{a_{1} b_{2}}{c_{1}},\left|a_{2}\right|\right\} \int_{\Omega}(u+v) d x-\frac{1}{2} \min \left\{\frac{b_{1} b_{2}}{c_{1}}, c_{2}\right\}\left[\int_{\Omega}(u+v) d x\right]^{2} .
\end{aligned}
$$

Therefore, $\|v(., t)\|_{L^{1}(\Omega)} \leq M_{2}^{\prime}$, where $M_{2}^{\prime}=\max \left\{\frac{A_{1}}{A_{2}},\left\|u_{0}+v_{0}\right\|_{L^{1}(\Omega)}\right\}$,

$$
A_{1}=\frac{\max \left\{\frac{a_{1} b_{2}}{c_{1}},\left|a_{2}\right|\right\}}{\min \left\{1, \frac{b_{2}}{c_{1}}\right\}}, \quad A_{2}=\frac{\min \left\{\frac{b_{1} b_{2}}{c_{1}}, c_{2}\right\}}{2 \min \left\{1, \frac{b_{2}}{c_{1}}\right\}}
$$

Then

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\|v(., t)\|_{L^{1}(\Omega)}<C_{1}(T) \tag{2.9}
\end{equation*}
$$

Integrating (2.8) from 0 to T, we have

$$
c_{2} \int_{Q_{T}} v^{2} d x d t \leq \frac{a_{1} b_{2}}{c_{1}} \int_{0}^{T} M_{1}^{\prime} d t+\left|a_{2}\right| \int_{0}^{T} M_{2}^{\prime} d t+\frac{b_{2}}{c_{1}}\left\|u_{0}\right\|_{L^{1}(\Omega)}+\left\|v_{0}\right\|_{L^{1}(\Omega)}
$$

which implies $\|v\|_{L^{2}\left(Q_{T}\right)} \leq C_{1}(T)$.
Lemma 2.3. Let $w_{1}=\left(d_{1}+\alpha_{11} u\right) u$. Then there exists a constant $C_{2}(T)$, depending on $\left\|u_{0}\right\|_{W_{2}^{1}(\Omega)}$ and $\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$ such that

$$
\begin{equation*}
\left\|w_{1}\right\|_{W_{2}^{2,1}\left(Q_{T}\right)} \leq C_{2}(T) \tag{2.10}
\end{equation*}
$$

Furthermore, $\nabla w_{1} \in V_{2}\left(Q_{T}\right)$.
Proof. Note that w_{1} satisfies the equation

$$
\begin{equation*}
w_{1 t}=\left(d_{1}+2 \alpha_{11} u\right) \Delta w_{1}+n_{1}+n_{2} v \tag{2.11}
\end{equation*}
$$

where $n_{1}=u\left(d_{1}+2 \alpha_{11} u\right)\left(a_{1}-b_{1} u\right), n_{2}=-c_{1}\left(d_{1}+2 \alpha_{11} u\right) u$ depend on u and are bounded functions because of Lemma 2.1. Multiplying the above equation by $-\Delta w_{1}$ and integration by parts over Ω, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left|\nabla w_{1}\right|^{2} d x=-\int_{\Omega}\left(d_{1}+2 \alpha_{11} u\right)\left(\Delta w_{1}\right)^{2} d x-\int_{\Omega}\left(n_{1}+n_{2} v\right) \Delta w_{1} d x \tag{2.12}
\end{equation*}
$$

Integrating 2.12 from 0 to t, we obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, t)\right|^{2} d x-\frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, 0)\right|^{2} d x \\
& =-\int_{Q_{t}}\left(d_{1}+2 \alpha_{11} u\right)\left(\Delta w_{1}\right)^{2} d x d t-\int_{Q_{t}}\left(n_{1}+n_{2} v\right) \Delta w_{1} d x d t \\
& \leq-d_{1} \int_{Q_{t}}\left|\Delta w_{1}\right|^{2} d x d t+\int_{Q_{t}}\left(n_{1}+n_{2} v\right) \cdot\left|\Delta w_{1}\right| d x d t
\end{aligned}
$$

By Young's inequality and Hölder's inequality, we have

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, t)\right|^{2} d x+d_{1} \int_{Q_{T}}\left|\Delta w_{1}\right|^{2} d x d t \\
& \leq\left(\left\|n_{1}\right\|_{L^{2}\left(Q_{T}\right)}+\left\|n_{2} v\right\|_{L^{2}\left(Q_{T}\right)}\right) \cdot\left\|\Delta w_{1}\right\|_{L^{2}\left(Q_{T}\right)}+\frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, 0)\right|^{2} d x \\
& \leq m_{1}\left(1+\|v\|_{L^{2}\left(Q_{T}\right)}\right) \cdot\left\|\Delta w_{1}\right\|_{L^{2}\left(Q_{T}\right)}+\frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, 0)\right|^{2} d x \\
& \leq m_{1}\left(1+C_{1}(T)\right) \cdot\left\|\Delta w_{1}\right\|_{L^{2}\left(Q_{T}\right)}+\frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, 0)\right|^{2} d x \\
& \leq \frac{d_{1}}{2}\left\|\Delta w_{1}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\frac{m_{1}^{2}\left(1+C_{1}(T)\right)^{2}}{2 d_{1}}+\frac{1}{2} \int_{\Omega}\left|\nabla w_{1}(x, 0)\right|^{2} d x .
\end{aligned}
$$

Therefore,

$$
\sup _{0 \leq t \leq T} \int_{\Omega}\left|\nabla w_{1}\right|^{2}(x, t) d x+d_{1} \int_{Q_{T}}\left|\Delta w_{1}\right|^{2} d x d t \leq m_{2}
$$

where m_{2} depends on $\left\|u_{0}\right\|_{W_{2}^{1}(\Omega)}$ and $\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$. This implies $\nabla w_{1} \in V_{2}\left(Q_{T}\right)$. Since $w_{1} \in L^{2}\left(Q_{T}\right)$ we have from the elliptic regularity estimate [2, Lemma 2.3]

$$
\int_{Q_{T}}\left\|\left(w_{1}\right)_{x_{i} x_{j}}\right\|^{2} d x d t \leq m_{3} \quad \text { for } i, j=1, \ldots, n
$$

From 2.11, since n_{1}, n_{2} and u are bounded and $v \in L^{2}\left(Q_{T}\right)$, we have $w_{1 t} \in$ $L^{2}\left(Q_{T}\right)$. Hence, $w_{1} \in W_{2}^{2,1}\left(Q_{T}\right)$.

Let $a(x, t, \xi)$ be continuous and (x, ξ)-differentiable for $(x, t, \xi) \in \mathrm{Q}_{\mathrm{T}} \times \mathrm{R}$. Assume also that $a(x, t, \xi)$ satisfies the following conditions
(i) There is $d>0$ such that $a(x, t, \xi) \geq d$ and $a_{\xi}(x, t, \xi) \geq 0$ for all $(x, t) \in Q_{T}$ and ξ in R .
(ii) There is a continuous function M on R such that $a(x, t, \xi) \leq M(\xi)$ for all $(x, t) \in Q_{T}$.
(iii) For any bounded measurable function g on $Q_{T},\left|\nabla_{x} a(., ., g(.,)).\right|$ is in the space $L^{2 p}\left(Q_{T}\right)$.

Lemma 2.4. Assume that $w \in W_{p}^{2,1}\left(Q_{T}\right) \bigcap C^{2,1}(\bar{\Omega} \times[0, T))$ is a bounded function satisfying

$$
w_{t} \leq a(x, t, w) \Delta w+f(x, t) \quad \text { in } \quad Q_{T}
$$

with boundary condition $\frac{\partial w}{\partial \nu} \leq 0$ on $\partial_{Q_{T}}$, where $f \in L^{p}\left(Q_{T}\right)$. Then, ∇w is in $L^{2 p}\left(Q_{T}\right)$.

The proof of the above lemma can be found in [9, Proposition 2.1].

Lemma 2.5. Let $q>1, \widetilde{q}=2+\frac{4 q}{n(q+1)}, \widetilde{\beta}$ in $(0,1)$ and let $C_{T}>0$ be any number which may depend on T. Then there is a constant M_{1} depending on $q, n, \Omega, \widetilde{\beta}$ and C_{T} such that for any g in $C\left([0, T), W_{2}^{1}(\Omega)\right)$ with $\left(\int_{\Omega}|g(., t)|^{\widetilde{\beta}} d x\right)^{1 / \widetilde{\beta}} \leq C_{T}$ for all $t \in[0, T]$, we have the inequality

$$
\|g\|_{L^{\widetilde{q}}\left(Q_{T}\right)} \leq M_{1}\left\{1+\left(\sup _{0 \leq t \leq T}\|g(., t)\|_{L^{2 q / q+1}(\Omega)}\right)^{4 q / n(q+1) \widetilde{q}}\|\nabla g\|_{L^{2}\left(Q_{T}\right)}^{2 / \widetilde{q}}\right\}
$$

The proof of the above lemma can be found in [6, Lemmas 2.3, 2.4].

3. L^{r}-ESTIMATES FOR v

Lemma 3.1. There exists a constant $C_{3}(T)$ such that $\|\nabla u\|_{L^{4}\left(Q_{T}\right)} \leq C_{3}(T)$.
Proof. Let $\delta=\alpha_{11} / d_{1}, w_{1}=(1+\delta u) u$. By Lemma 2.1. u is bounded. Therefore, w_{1} is also bounded. By Lemma 2.3 , we have $w_{1} \in W_{2}^{2,1}\left(Q_{T}\right)$. Moreover, w_{1} satisfies

$$
\begin{aligned}
w_{1 t} & \leq d_{1}(1+2 \delta u) \Delta w_{1}+a_{1} u(1+2 \delta u) \\
& =\sqrt{d_{1}^{2}+4 \delta d_{1} w_{1}} \Delta w_{1}+a_{1} u(1+2 \delta u)
\end{aligned}
$$

By Lemma 2.4 with $p=2, a(x, t, \xi)=\sqrt{d_{1}^{2}+4 \delta d_{1} \xi}, f(x, t)=a_{1} u(x, t)(1+$ $2 \delta u(x, t)$), we obtain the desired result.

Lemma 3.2. Let $r>2$ and $p_{r}=\frac{2 r}{r-2}$ be two positive numbers. Assume that $\alpha_{22}>0$ and assume also that there is a constant $M_{r, T}>0$ depending only on r, T, Ω and the coefficients of 1.2 such that

$$
\|\nabla u\|_{L^{r}\left(Q_{T}\right)} \leq M_{r, T} .
$$

Then for any $q>1$, there exists a constant $C(r, q, T)>0$ such that

$$
\begin{align*}
& \|v(., t)\|_{L^{q}(\Omega)}^{q}+\left\|\nabla\left(v^{q / 2}\right)\right\|_{L^{2}\left(Q_{t}\right)}^{2}+\left\|\nabla\left(v^{(q+1) / 2}\right)\right\|_{L^{2}\left(Q_{t}\right)}^{2} \\
& \leq C(r, q, T)\left(1+\|v\|_{L^{\frac{p_{r(q-1)}^{2}}{2}}\left(Q_{t}\right)}^{q-1}\right) . \tag{3.1}
\end{align*}
$$

Proof. For any constant $q>1$, multiplying the second equation of 1.2 by $q v^{q-1}$ and using the integration by parts, we obtain

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{\Omega} v^{q} d x \\
& =q \int_{\Omega} v^{q-1} \nabla \cdot\left[\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) \nabla v+\alpha_{21} v \nabla u\right] d x+q \int_{\Omega} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x \\
& =-q(q-1) \int_{\Omega} v^{q-2}\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right)|\nabla v|^{2} d x-\alpha_{21}(q-1) \int_{\Omega} \nabla\left(v^{q}\right) \cdot \nabla u d x \\
& \quad+q \int_{\Omega} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x \\
& \leq-q(q-1) d_{2} \int_{\Omega} v^{q-2}|\nabla v|^{2} d x-2 \alpha_{22} q(q-1) \int_{\Omega} v^{q-1}|\nabla v|^{2} d x \\
& \quad-\alpha_{21}(q-1) \int_{\Omega} \nabla\left(v^{q}\right) \cdot \nabla u d x+q \int_{\Omega} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x \\
& =-\frac{4(q-1) d_{2}}{q} \int_{\Omega}\left|\nabla\left(v^{\frac{q}{2}}\right)\right|^{2} d x-\frac{8 \alpha_{22} q(q-1)}{(q+1)^{2}} \int_{\Omega}\left|\nabla\left(v^{\frac{q+1}{2}}\right)\right|^{2} d x
\end{aligned}
$$

$$
-\alpha_{21}(q-1) \int_{\Omega} \nabla\left(v^{q}\right) \cdot \nabla u d x+q \int_{\Omega} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x
$$

Integrating the above inequality from 0 to t, we have

$$
\begin{align*}
& \int_{\Omega} v^{q}(x, t) d x+\frac{4(q-1) d_{2}}{q} \int_{Q_{t}}\left|\nabla\left(v^{\frac{q}{2}}\right)\right|^{2} d x d t+\frac{8 \alpha_{22} q(q-1)}{(q+1)^{2}} \int_{Q_{t}}\left|\nabla\left(v^{\frac{q+1}{2}}\right)\right|^{2} d x d t \\
& \leq \int_{\Omega} v^{q}(x, 0) d x-\alpha_{21}(q-1) \int_{Q_{t}} \nabla\left(v^{q}\right) \cdot \nabla u d x d t+q \int_{Q_{t}} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x d t \tag{3.2}
\end{align*}
$$

By Hölder's inequality, we have

$$
\begin{align*}
& q \int_{Q_{t}} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x d t \\
& =a_{2} q \int_{Q_{t}} v^{q} d x d t-c_{2} q \int_{Q_{t}} v^{q+1} d x d t+b_{2} q \int_{Q_{t}} u v^{q} d x d t \\
& \leq-c_{2} q\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+\left|a_{2}\right| q\left|Q_{T}\right|^{\frac{1}{q+1}}\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q}+b_{2} q \int_{Q_{t}} u v^{q} d x d t \tag{3.3}\\
& \leq-c_{2} q\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+\left|a_{2}\right| q\left[\varepsilon\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+\varepsilon^{-q}\left|Q_{T}\right|^{\frac{q}{q+1}}\right]+b_{2} q \int_{Q_{t}} u v^{q} d x d t \\
& \leq B_{1}+b_{2} q \int_{Q_{t}} u v^{q} d x d t
\end{align*}
$$

where $\varepsilon=\frac{c_{2}}{\left|a_{2}\right|}, B_{1}$ depends on $T, q,|\Omega|$ and the coefficients of $1.2 \mid$.
On the other hand, since that $\frac{1}{r}+\frac{1}{2}+\frac{1}{p_{r}}=1$, using the Hölder's inequality and Poincaré inequality, we have

$$
\begin{align*}
\int_{Q_{t}} u v^{q} d x d t & =\int_{Q_{t}} u \cdot v^{\frac{q-1}{2}} \cdot v^{\frac{q+1}{2}} d x d t \\
& \leq\left\|v^{\frac{q-1}{2}}\right\|_{L^{p_{r}}\left(Q_{t}\right)} \cdot\left\|v^{\frac{q+1}{2}}\right\|_{L^{2}\left(Q_{t}\right)} \cdot\|u\|_{L^{r}\left(Q_{t}\right)} \tag{3.4}\\
& \leq C_{4} m\|v\|_{L^{\frac{p_{r}(q-1)}{2}}\left(Q_{t}\right)}^{(q-1) / 2} \cdot\left\|\nabla\left(v^{\frac{q+1}{2}}\right)\right\|_{L^{2}\left(Q_{t}\right)} .
\end{align*}
$$

The substitution (3.4) into (3.3) leads to

$$
\begin{equation*}
q \int_{Q_{t}} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x d t \leq B_{1}+C_{5}\|v\|_{L^{\frac{p_{r}(q-1)}{2}}\left(Q_{t}\right)}^{(q-1) / 2} \cdot\left\|\nabla\left(v^{\frac{q+1}{2}}\right)\right\|_{L^{2}\left(Q_{t}\right)} . \tag{3.5}
\end{equation*}
$$

Since that $\frac{1}{r}+\frac{1}{2}+\frac{1}{p_{r}}=1$ and ∇u is in $L^{r}\left(Q_{T}\right)$, using the Hölder's inequality, we have

$$
\begin{aligned}
\left|-\int_{Q_{t}} \nabla\left(v^{q}\right) \cdot \nabla u d x d t\right| & =\frac{2 q}{q+1}\left|\int_{Q_{t}} v^{\frac{q-1}{2}} \cdot \nabla\left(v^{\frac{(q+1)}{2}}\right) \cdot \nabla u d x d t\right| \\
& \leq \frac{2 q}{q+1}\left\|v^{\frac{q-1}{2}}\right\|_{L^{p_{r}}\left(Q_{t}\right)} \cdot\left\|\nabla\left(v^{\frac{q+1}{2}}\right)\right\|_{L^{2}\left(Q_{t}\right)} \cdot\|\nabla u\|_{L^{r}\left(Q_{t}\right)} \\
& \leq \frac{2 q}{q+1}\|v\|_{L^{\frac{q-1}{2}}}^{\frac{p_{r}(q-1)}{2}}\left(Q_{t}\right) \\
& \left.\leq \frac{2 q}{q+1} M_{r, T}\|v\|^{\frac{q-1}{2}} v_{L^{\frac{p_{r}(q-1)}{2}}\left(Q_{t}\right)}^{\frac{q+1}{2}}\right)\left\|_{L^{2}\left(Q_{t}\right)} \cdot\right\| \nabla u\left\|_{L^{r}\left(Q_{t}\right)} \cdot\right\| \nabla\left(v^{\frac{q+1}{2}}\right) \|_{L^{2}\left(Q_{t}\right)} .
\end{aligned}
$$

The substitution (3.5) and the above inequality into (3.2) leads to

$$
\begin{align*}
& \int_{\Omega} v^{q}(x, t) d x+\frac{4(q-1) d_{2}}{q} \int_{Q_{t}}\left|\nabla\left(v^{\frac{q}{2}}\right)\right|^{2} d x d t+\frac{8 \alpha_{22} q(q-1)}{(q+1)^{2}} \int_{Q_{t}}\left|\nabla\left(v^{\frac{q+1}{2}}\right)\right|^{2} d x d t \\
& \leq B_{2}+C_{6}\|v\|_{L^{\frac{q-1}{2}}}^{\frac{p_{r}(q-1)}{2}}\left(Q_{t}\right) \\
& \left.\leq B_{2}+\frac{C_{6}}{4 \varepsilon}\|v\|_{L^{\frac{q+1}{2}}}\right) \|_{L^{2}\left(Q_{t}\right)}^{q-1} \tag{3.6}\\
& { }_{L}^{\frac{p_{r}(q-1)}{2}}\left(Q_{t}\right)
\end{align*}+C_{6} \varepsilon\left\|\nabla\left(v^{\frac{q+1}{2}}\right)\right\|_{L^{2}\left(Q_{t}\right)}^{2}, ~ l
$$

where $B_{2}>0$ depending on q, T, Ω coefficients of 1.2 and initial datal v_{0}. For any $\varepsilon>0$, from (3.6) and by choosing a sufficiently small ε, such that $C_{6} \varepsilon<\frac{8 \alpha_{22} q(q-1)}{(q+1)^{2}}$, we get (3.1). This completes the proof of the lemma.

For any number a, we denote $a_{+}=\max \{a, 0\}$.
Proposition 3.3. Let $\alpha_{22}>0$.
(i) If $\alpha_{11}>0$, then there is a constant $C_{7}(T)>0$ such that

$$
\|v\|_{V_{2}\left(Q_{T}\right)} \leq C_{7}(T)
$$

Moreover, for any constant $r<\frac{4(n+1)}{(n-2)_{+}}$, there exists a positive constant C_{T} such that

$$
\|v\|_{L^{r}\left(Q_{T}\right)} \leq C_{T}
$$

(ii) If $\alpha_{11}=0$, then

$$
\|v\|_{L^{r}\left(Q_{T}\right)} \leq C_{T} \quad \text { for any } \quad r>1
$$

Proof. (i) Set $w=v^{(q+1) / 2}$ so that $v^{q}=w^{2 q /(q+1)}$ and $v^{q+1}=w^{2}$. Then

$$
\begin{aligned}
E & \equiv \sup _{0 \leq t \leq T} \int_{\Omega} v^{q}(x, t) d x+\int_{Q_{T}}\left|\nabla\left(v^{(q+1) / 2}\right)\right|^{2} d x d t \\
& =\sup _{0 \leq t \leq T} \int_{\Omega} w^{2 q / q+1} d x+\int_{Q_{T}}|\nabla w|^{2} d x d t
\end{aligned}
$$

Let $r_{0}=4, p_{0}=\frac{2 r_{0}}{r_{0}-2}$. By Lemma 3.1. we see that ∇u is in $L^{r_{0}}\left(Q_{T}\right)$. So, from Lemma 3.2. we have

$$
\begin{equation*}
E+\left\|\nabla\left(v^{\frac{q}{2}}\right)\right\|_{L^{2}\left(Q_{T}\right)}^{2} \leq C\left(r_{0}, q, T\right)\left(1+\|w\|_{L^{\frac{2(q-1)}{q+1}}}^{\frac{p_{0}(q-1)}{q+1}}\left(Q_{T}\right),\right. \tag{3.7}
\end{equation*}
$$

where $C\left(r_{0}, q, T\right)>0$ depending only T, Ω, initial data u_{0}, v_{0} and the coefficients of 1.2 . Since $q>1$, if we restrict our q so that

$$
\begin{equation*}
\left(n p_{0}-2 n-4\right) q \leq 2 n+n p_{0} \tag{3.8}
\end{equation*}
$$

Then, $\frac{p_{0}(q-1)}{q+1} \leq \widetilde{q}$, where $\widetilde{q}=2+\frac{4 q}{n(q+1)}$. Therefore, by Hölder's inequality

$$
\begin{equation*}
\|w\|_{L^{\frac{p_{0}(q-1)}{q+1}}\left(Q_{T}\right)} \leq C_{8}(q, T)\|w\|_{L^{\tilde{q}}\left(Q_{T}\right)} \tag{3.9}
\end{equation*}
$$

where $C_{8}(q, T)=\left|Q_{T}\right|^{\frac{q+1}{p_{0}(q-1)}-\frac{1}{q}}$. Setting $\widetilde{\beta}=2 /(q+1) \in(0,1)$, by Lemma 2.2 we have

$$
\begin{equation*}
\|w(., t)\|_{L^{\tilde{\beta}}(\Omega)}=\|v(., t)\|_{L^{1}(\Omega)}^{\frac{1}{\tilde{\beta}}} \leq\left(C_{1}(T)\right)^{\frac{1}{\tilde{\beta}}}, \quad \forall t \in[0, T) \tag{3.10}
\end{equation*}
$$

Hence, by Lemma 2.5 and the definition of E, 3.10 yields

$$
\begin{equation*}
\|w\|_{L^{p_{0}(q-1) / q+1}\left(Q_{T}\right)} \leq C_{8}(q, T)\|w\|_{L^{\widetilde{q}}\left(Q_{T}\right)} \leq C_{8}(q, T) M_{1}\left\{1+E^{2 / n \widetilde{q}} E^{\frac{1}{q}}\right\} \tag{3.11}
\end{equation*}
$$

Then (3.7) together with the above inequality, we can find a constant $C_{9}(q, T)>0$ such that

$$
\begin{equation*}
E \leq C_{9}(q, T)\left(1+E^{\mu} E^{\nu}\right) \tag{3.12}
\end{equation*}
$$

with

$$
\mu=\frac{4(q-1)}{n \widetilde{q}(q+1)}, \quad \nu=\frac{2(q-1)}{\widetilde{q}(q+1)} .
$$

Since

$$
\mu+\nu=\frac{2(q-1)}{\widetilde{q}(q+1)}\left[\frac{2}{n}+1\right]<\frac{1}{\widetilde{q}}\left[\frac{4 q}{n(q+2)}+2\right]=1
$$

it is easy to see from 3.12 that E is bounded. Therefore, from 3.11) and 3.12 we get $w \in L^{\widetilde{q}}\left(Q_{T}\right)$ which in turn implies that $v \in L^{r}\left(Q_{T}\right)$ with $r=\frac{\tilde{q}(q+1)}{2}$ for any q satisfying 3.8. Now, looking at (3.8), if $n \leq 2$, we have

$$
\begin{equation*}
n p_{0}-2 n-4=2(n-2) \leq 0, \tag{3.13}
\end{equation*}
$$

then (3.8) holds for all q. so for $n \leq 2, v \in L^{r}\left(Q_{T}\right)$ for all $r>1$. Now, suppose that $n>2$, we see 3.8 is equivalent to

$$
1<q<q_{0}:=\frac{2 n+n p_{0}}{\left(n p_{0}-2 n-4\right)}=\frac{3 n}{n-2}
$$

Then, we have

$$
\frac{\widetilde{q}(q+1)}{2}=q+1+\frac{2 q}{n} \leq \bar{r}_{1}:=q_{0}+1+\frac{2 q_{0}}{n}=\frac{4(n+1)}{n-2}
$$

So, we see that v is in $L^{r}\left(Q_{T}\right)$ for all $1<r \leq \bar{r}_{1}$. Since 3.8 holds true for $q=2$. So when $q=2$, we have E is finite. Therefore, from (3.7) and (3.11), we see that $\|v\|_{V_{2}\left(Q_{T}\right)}$ is bounded for any n, this completes the proof of Proposition 3.3 when $\alpha_{11}>0$ and $r<\frac{4(n+2)}{(n-2)_{+}}$.

Next, we consider the case $\alpha_{11}=0$. By Hölder's inequality, we have

$$
\begin{align*}
& q \int_{Q_{t}} v^{q}\left(a_{2}+b_{2} u-c_{2} v\right) d x d t \\
& =a_{2} q \int_{Q_{t}} v^{q} d x d t-c_{2} q \int_{Q_{t}} v^{q+1} d x d t+b_{2} q \int_{Q_{t}} u v^{q} d x d t \\
& \leq-c_{2} q\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+\left.\left.\left|a_{2}\right| q\right|_{T}\right|^{\frac{1}{q+1}}\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q} \tag{3.14}\\
& \quad+b_{2} q\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q} \cdot\|u\|_{L^{q+1}\left(Q_{t}\right)} \\
& \leq-c_{2} q\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+\left.\left.\left|a_{2}\right| q\right|_{T}\right|^{\frac{1}{q+1}}\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q}+b_{2} q m\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q} \\
& \leq-c_{2} q\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+q \varepsilon\|v\|_{L^{q+1}\left(Q_{t}\right)}^{q+1}+B_{3} \\
& \leq B_{3}
\end{align*}
$$

where $\varepsilon=c_{2}$ and $B_{3}>0$ which depends only on $T, q,|\Omega|,\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$ and the coefficients of 1.2 .

We can integrate by parts once to obtain from Lemma 2.1 and analogue of 20 , Theorem 9.1, p. 341-342] for Neumann boundary condition [20, p.351]

$$
\begin{align*}
& \left|-\int_{Q_{t}} \nabla\left(v^{q}\right) \cdot \nabla u d x d t\right| \\
& =\left|-\int_{Q_{t}} v^{q} \Delta u d x d t\right| \\
& \leq\|v\|_{L^{q+1}\left(Q_{T}\right)}^{q} \cdot\|\Delta u\|_{L^{q+1}\left(Q_{T}\right)} \tag{3.15}\\
& \leq C_{10}\|v\|_{L^{q+1}\left(Q_{T}\right)}^{q}\left(\left\|u\left(a_{1}-b_{1} u-c_{1} v\right)\right\|_{L^{q+1}\left(Q_{T}\right)}+\left\|u_{0}\right\|_{W_{q+1}^{2-\frac{2}{q+1}}(\Omega)}\right) \\
& \leq C_{11}\left(1+\|v\|_{L^{q+1}\left(Q_{T}\right)}^{q+1}\right)
\end{align*}
$$

The substitution of (3.14) and (3.15) into (3.2) leads to

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left\|v^{q}(t)\right\|_{L^{q}(\Omega)}^{q}+\left\|\nabla\left(v^{(q+1) / 2}\right)\right\|_{L^{2}\left(Q_{T}\right)}^{2} \leq C_{12}\left(1+\|v\|_{L^{q+1}\left(Q_{T}\right)}^{q+1}\right) \tag{3.16}
\end{equation*}
$$

We introduce $w=v^{\frac{q+1}{2}}$, then (3.16 leads to

$$
\begin{equation*}
E \equiv \sup _{0 \leq t \leq T}\|w(t)\|_{L^{\frac{2 q}{q+1}}(\Omega)}^{\frac{2 q}{q+1}}+\|\nabla w\|_{L^{2}\left(Q_{T}\right)}^{2} \leq C_{12}\left(1+\|w\|_{L^{2}\left(Q_{T}\right)}^{2}\right) \tag{3.17}
\end{equation*}
$$

Recall that Lemma 2.2 implies $v \in L^{2}\left(Q_{T}\right)$, so $\|w\|_{L^{\frac{4}{q+1}}\left(Q_{T}\right)} \leq C_{13}$. Since $\frac{4}{q+1}<$ $2 \leq \widetilde{q}$. Then we see from Hölder's inequality

$$
\begin{equation*}
\|w\|_{L^{2}\left(Q_{T}\right)}^{2} \leq\|w\|_{L^{\tilde{q}}\left(Q_{T}\right)}^{2(1-\lambda)}\|w\|_{L^{\frac{4}{q+1}}\left(Q_{T}\right)}^{2 \lambda} \leq C_{13}^{2 \lambda}\|w\|_{L^{\tilde{q}}\left(Q_{T}\right)}^{2(1-\lambda)}, \tag{3.18}
\end{equation*}
$$

where $\lambda=\left(\frac{1}{2}-\frac{1}{\widetilde{q}}\right) /\left(\frac{q+1}{4}-\frac{1}{\widetilde{q}}\right)$. Setting $\widetilde{\beta}=2 /(q+1) \in(0,1)$, we have $\|w(., t)\|_{L^{\tilde{\beta}}(\Omega)}=$ $\|v(., t)\|_{L^{1}(\Omega)}^{\frac{1}{\beta}} \leq C_{1}(T)^{\frac{1}{\beta}}$ for all $t \in[0, T)$ by Lemma 2.2. Then it follow from (3.17), (3.18) and Lemma 2.5 that

$$
\begin{equation*}
E \leq C_{14}\left(1+E^{\alpha}\right) \tag{3.19}
\end{equation*}
$$

with

$$
\alpha=\frac{2(1-\lambda)}{\widetilde{q}}\left(\frac{2}{n}+1\right)<1 .
$$

Thus (3.19) implies

$$
\sup _{0 \leq t \leq T}\|w(t)\|_{L^{\frac{2 q}{q+1}}(\Omega)}^{\frac{2 q}{q+1}} \leq E \leq C_{15}
$$

with some $C_{15}>0$, let $r=q>1$, so that $\sup _{0 \leq t \leq T}\|v(t)\|_{L^{r}(\Omega)} \leq C_{T}$ and the proof is complete.

4. Proof of Theorem 1.2

The first step of the proof is to show v is in $L^{r}\left(Q_{T}\right)$ for any $r>1$.
Lemma 4.1. Let $\alpha_{11}>0$ and suppose that there are $r_{1}>\max \left\{\frac{n+2}{2}, 3\right\}$ and a positive constant $C_{r_{1}, T}$ such that

$$
\|v\|_{L^{r_{1}}\left(Q_{T}\right)} \leq C_{r_{1}, T}
$$

Then, v is in $L^{r}\left(Q_{T}\right)$ for any $r>1$.

Proof. The proof is almost identical to [9, Lemma 4.1], but for completeness we repeat it here. First, the equation for u can be written in the divergence form as

$$
\begin{equation*}
u_{t}=\nabla \cdot\left[\left(d_{1}+2 \alpha_{11} u\right) \nabla u\right]+u\left(a_{1}-b_{1} u-c_{1} v\right) \tag{4.1}
\end{equation*}
$$

where $d_{1}+2 \alpha_{11} u$ is bounded in \bar{Q}_{T} by Lemma 2.1 and $u\left(a_{1}-b_{1} u-c_{1} v\right)$ is in $L^{r_{1}}$ with $r_{1}>\frac{n+2}{2}$. Application of the Hölder continuity result in [20, Theorem 10.1, p. 204] to (4.1) yields

$$
\begin{equation*}
u \in C^{\beta, \frac{\beta}{2}}\left(\bar{Q}_{T}\right) \quad \text { with some } \beta>0 . \tag{4.2}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
w_{1 t}=\left(d_{1}+2 \alpha_{11} u\right) \Delta w_{1}+f_{1} \tag{4.3}
\end{equation*}
$$

where $w_{1}=\left(d_{1}+\alpha_{11} u\right) u$ is as in the proof of Lemma 2.3, $f_{1}=\left(d_{1}+2 \alpha_{11} u\right) u\left(a_{1}-\right.$ $b_{1} u-c_{1} v$). Since u is bounded and by the assumption of this Lemma, we see that f_{1} is in $L^{r_{1}}\left(Q_{T}\right)$. From 4.2, Lemma 2.1 and Proposition 3.3, applying [20, Theorem 9.1, pp. 341-342] and its remark [20, P. 351], we have

$$
\begin{equation*}
w_{1} \in W_{r_{1}}^{2,1}\left(Q_{T}\right) \tag{4.4}
\end{equation*}
$$

This implies $\nabla u=\frac{1}{d_{1}+2 \alpha_{11} u} \nabla w_{1}$ in $L^{r_{1}}\left(Q_{T}\right)$. Now, following the proof of Proposition 3.3 with r_{1} instead of r_{0} and $p_{1}=\frac{2 r_{1}}{r_{1}-2}$ instead of p_{0}, we see that either v is in $L^{r}\left(Q_{T}\right)$ for any $r>1$ or else v is in $L^{r_{2}}\left(Q_{T}\right)$ with

$$
r_{2}:=\frac{(n+1) r_{1}}{n+2-r_{1}} .
$$

The later case happens if and only if $n+2-r_{1}>0$.
If v is in $L^{r_{2}}\left(Q_{T}\right)$, we see that f_{1} is in $L^{r_{2}}\left(Q_{T}\right)$. Therefore, applying [20, Theorem 9.1, p. 341-342] and its remark [20, p. 351] again, we have ∇u in $L^{r_{2}}\left(Q_{T}\right)$. Then we go back and do the same argument again. Keep doing likes this we will get a sequence of numbers

$$
\begin{equation*}
r_{k+1}:=\frac{(n+1) r_{k}}{n+2-r_{k}} . \tag{4.5}
\end{equation*}
$$

We stop and get the conclusion that v is in $L^{r}\left(Q_{T}\right)$ for any $r>1$ when

$$
\begin{equation*}
n+2-r_{k} \leq 0 \tag{4.6}
\end{equation*}
$$

Since $r_{1}>3$, from 4.5 we can prove by induction that $r_{k}>3, k=1,2, \ldots$ Then, we have

$$
\begin{equation*}
\frac{r_{k+1}}{r_{k}}=\frac{n+1}{n+2-r_{k}} \geq \frac{n+1}{n-1}>1 \tag{4.7}
\end{equation*}
$$

Thus, the sequence r_{k} is strictly increasing. Therefore, there must be some k such that (4.6) holds. we stop at this k and conclude that v is in $L^{r}\left(Q_{T}\right)$ for any $r>1$, namely, there is a positive constant C_{16} such that $\|v\|_{L^{r}\left(Q_{T}\right)} \leq C_{16}$, where $C_{16}>0$ depending on q, T, Ω and the coefficients of the system (1.2) but not on r.

So, from Proposition 3.3 and Lemma 4.1, we have the following lemma.
Lemma 4.2. Let $\alpha_{22}>0$ and suppose (i) $\alpha_{11}=0$ or (ii) $\alpha_{11}>0$ and $n<10$. Then there exists M_{2} such that

$$
\|v\|_{L^{r}\left(Q_{T}\right)} \leq M_{2} \quad \text { for any } r>1
$$

Moreover, for any $r>1, v$ is in $V_{2}\left(Q_{T}\right)$.

Proof of Theorem 1.2. We give the proof only in case $\alpha_{11}>0$ because the proof for $\alpha_{11}=0$ is essentially the same. By Lemma 4.2, v is bounded in \bar{Q}_{T}. From 4.3), we have

$$
w_{1 t}=\left(d_{1}+2 \alpha_{11} u\right) \Delta w_{1}+f_{1}
$$

where $f_{1}=\left(d_{1}+2 \alpha_{11} u\right) u\left(a_{1}-b_{1} u-c_{1} v\right)$ is bounded in \bar{Q}_{T} by Lemma 2.1 and Lemma 4.2. $\left(d_{1}+2 \alpha_{11} u\right) \in C^{\beta, \frac{\beta}{2}}\left(Q_{T}\right)$ by 4.2). By [20, Theorem 9.1, p.341-342], we have

$$
\left\|w_{1}\right\|_{W_{r}^{2,1}}\left(Q_{T}\right)<M_{3} \quad \text { for } \frac{n+2}{2}<r<\frac{4(n+1)}{(n-2)_{+}}
$$

Hence it follows from [20, Lemma 3.3, p.80] that

$$
\begin{equation*}
w_{1} \in C^{1+\beta^{*}}, \frac{\left(1+\beta^{*}\right)}{2}\left(\bar{Q}_{T}\right), \quad \forall 0<\beta^{*}<1 \tag{4.8}
\end{equation*}
$$

Since $u=\frac{-d_{1}+\sqrt{d_{1}^{2}+4 w_{1} \alpha_{11}}}{2 \alpha_{11}}$, it follow from 4.8 that

$$
\begin{equation*}
u \in C^{1+\beta^{*}}, \frac{\left(1+\beta^{*}\right)}{2}\left(\bar{Q}_{T}\right), \quad \forall 0<\beta^{*}<1 \tag{4.9}
\end{equation*}
$$

Next, we rewrite the equation for v in divergence form as

$$
v_{t}=\nabla \cdot\left[\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) \nabla v+\alpha_{21} v \nabla u\right]+f_{2}(x, t),
$$

where $f_{2}(x, t)=v\left(a_{2}+b_{2} u-c_{2} v\right), u, v$ and ∇u are all bounded functions because of Lemma 2.1. Lemma 4.2 and 4.9. By [20, Theorem 10.1, p.204], we have

$$
\begin{equation*}
v \in C^{\sigma, \frac{\sigma}{2}}\left(\bar{Q}_{T}\right) \text { with some } 0<\sigma<1 \tag{4.10}
\end{equation*}
$$

Now, we then return to the equation for u and write it as

$$
\begin{equation*}
u_{t}=\left(d_{1}+2 \alpha_{11} u\right) \Delta u+f_{3}(x, t) \tag{4.11}
\end{equation*}
$$

where $f_{3}(x, t)=2 \alpha_{11}|\nabla u|^{2}+u\left(a_{1}-b_{1} u-c_{1} v\right) \in C^{\sigma, \frac{\sigma}{2}}\left(\bar{Q}_{T}\right)$ by 4.9) and 4.10). Then the Schuader estimate in [20, Theorem 5.3, p.320-321] applied to 4.11) yields

$$
\begin{equation*}
u \in C^{2+\sigma^{*}, \frac{2+\sigma^{*}}{2}}\left(\bar{Q}_{T}\right) \quad \text { with } \sigma^{*}=\min \{\lambda, \sigma\} \tag{4.12}
\end{equation*}
$$

Let $w_{2}=\left(d_{2}+\alpha_{21} u+\alpha_{22} v\right) v$. Then w_{2} satisfies

$$
\begin{equation*}
w_{2 t}=\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) \Delta w_{2}+f_{4}(x, t) \tag{4.13}
\end{equation*}
$$

where $f_{4}(x, t)=\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) v\left(a_{2}+b_{2} u-c_{2} v\right)+\alpha_{21} v u_{t} \in C^{\sigma^{*}, \frac{\sigma^{*}}{2}}\left(\bar{Q}_{T}\right)$ by (4.11) and 4.12), $d_{2}+\alpha_{21} u+2 \alpha_{22} v \in C^{\sigma, \frac{\sigma}{2}}\left(\bar{Q}_{T}\right)$ by 4.9) and 4.10, by applying the Schuader estimate to the equation 4.13), we have

$$
\begin{equation*}
w_{2} \in C^{2+\sigma^{*}, \frac{2+\sigma^{*}}{2}}\left(\bar{Q}_{T}\right) \tag{4.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
v=\frac{-\left(d_{2}+\alpha_{21} u\right)+\sqrt{\left(d_{2}+\alpha_{21} u\right)^{2}+4 w_{2} \alpha_{22}}}{2 \alpha_{22}} \in C^{2+\sigma^{*}, \frac{2+\sigma^{*}}{2}}\left(\bar{Q}_{T}\right) \tag{4.15}
\end{equation*}
$$

Now repeat the procedure by making use of 4.12 and 4.15 in place of 4.9 and (4.10), we have

$$
\begin{equation*}
u, v \in C^{2+\lambda, \frac{2+\lambda}{2}}\left(\bar{Q}_{T}\right) \tag{4.16}
\end{equation*}
$$

Finally, the estimates (4.12) and 4.15 imply that the hypotheses of Theorem 1.1 are satisfied. So that (u, v) exists globally in time. The proof of Theorem 1.2 is now complete.

5. Stability

In this section, we discuss global asymptotic stability of positive equilibrium point (\bar{u}, \bar{v}) for $\sqrt{1.2}$, namely to prove Theorem 1.3 .

Proof of Theorem 1.3. Define the Lyapunov function:

$$
H(u, v)=\int_{\Omega}\left[\left(u-\bar{u}-\bar{u} \ln \frac{u}{\bar{u}}\right)+\rho\left(v-\bar{v}-\bar{v} \ln \frac{v}{\bar{v}}\right)\right] d x
$$

where $\rho=\left(b_{2} c_{1}+2 b_{1} c_{2}\right) b_{2}^{-2}$. Obviously, $H(u, v)$ is nonnegative and $H(u, v)=0$ if and only if $(u, v)=(\bar{u}, \bar{v})$. By Theorem 1.2, $H(u, v)$ is well-posed for $t \geq 0$ if (u, v) is positive solution to system 1.2 . The time derivative of $H(u, v)$ for system 1.2 satisfies

$$
\begin{aligned}
& \frac{d H(u, v)}{d t} \\
& =\int_{\Omega}\left(\frac{u-\bar{u}}{u} u_{t}+\rho \frac{v-\bar{v}}{v} v_{t}\right) d x \\
& =\int_{\Omega}\left\{\frac{u-\bar{u}}{u} \nabla \cdot\left[\left(d_{1}+2 \alpha_{11} u\right) \nabla u\right]+(u-\bar{u})\left(a_{1}-b_{1} u-c_{1} v\right)\right. \\
& \left.\quad+\rho \frac{v-\bar{v}}{v} \nabla \cdot\left[\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) \nabla v+\alpha_{21} v \nabla u\right]+\rho(v-\bar{v})\left(a_{2}+b_{2} u-c_{2} v\right)\right\} d x \\
& =-\int_{\Omega}\left[\frac{\left(d_{1}+2 \alpha_{11} u\right) \bar{u}}{u^{2}}|\nabla u|^{2}+\frac{\rho \alpha_{21} \bar{v}}{v} \nabla u \cdot \nabla v+\frac{\rho\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right) \bar{v}}{v^{2}}|\nabla v|^{2}\right] d x \\
& \quad-\int_{\Omega}\left[b_{1}(u-\bar{u})^{2}+\left(c_{1}-\rho b_{2}\right)(u-\bar{u})(v-\bar{v})+c_{2} \rho(v-\bar{v})^{2}\right] d x .
\end{aligned}
$$

The second integrand in the above equality is positive definite by the choice of ρ. Meanwhile the first integrand is positive semi-definite if

$$
\begin{equation*}
4 \rho \overline{u v}\left(d_{1}+2 \alpha_{22} u\right)\left(d_{2}+\alpha_{21} u+2 \alpha_{22} v\right)>u^{2}\left(\alpha_{21} \bar{v}\right)^{2} . \tag{5.1}
\end{equation*}
$$

By the Lemma 2.1 and Theorem 1.2 , the condition $\sqrt{1.4}$ implies (5.1). Therefore, when all conditions in Theorem 1.3 hold, there exists positive constant δ depending on b_{1}, b_{2}, c_{1} and c_{2} such that

$$
\begin{equation*}
\frac{d H(u, v)}{d t} \leq-\delta \int_{\Omega}\left[(u-\bar{u})^{2}+(v-\bar{v})^{2}\right] d x \tag{5.2}
\end{equation*}
$$

To obtain the uniform convergence of the solution to 1.2 , we recall the following result which can be find in 21 .

Lemma 5.1. Let a and b positive constant. Assume that $\varphi, \psi \in C^{1}[a,+\infty)$, $\psi(t) \geq 0, \varphi$ is bounded. If $\varphi^{\prime}(t) \leq-b \psi(t)$ and $\psi^{\prime}(t)$ is bounded in $[a,+\infty)$, then $\lim _{t \rightarrow \infty} \psi(t)=0$.

Using integration by parts, Hölder's inequality, Lemma 2.1. and Lemma 4.2, one can easily verify that $\frac{d}{d t} \int_{\Omega}\left[(u-\bar{u})^{2}+(v-\bar{v})^{2}\right] d x$ is bounded from above. Then from Lemma 5.1 and 5.2 , we have

$$
\|u(\cdot, t)-\bar{u}\|_{L^{\infty}(\Omega)} \rightarrow 0, \quad\|v(\cdot, t)-\bar{v}\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad(t \rightarrow \infty)
$$

Namely, (u, v) converges uniformly to (\bar{u}, \bar{v}). By the fact that $H(u, v)$ is decreasing for $t \geq 0$, it is obvious that (\bar{u}, \bar{v}) is global asymptotic stable, and the proof of Theorem 1.3 is complete.

Acknowledgements. The author would like to thank professor Sheng-mao Fu for the encouragement and useful discussions, also the anonymous referee for the very careful reading of the original manuscript and the helpful suggestions.

References

[1] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biology, 79(1979), 83-99.
[2] Y. Lou, W. Ni, Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Systems, 4(1998), 193-203.
[3] Y. Li, C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dynam. Systems, 12(2005), 193-203.
[4] Seong-A Shim, Uniform boundedness and convergence of solutions to the systems with crossdiffusion dominated by self-diffusion, Nonlinear Analysis: RWA, 4(2003), 65-86.
[5] Y. S. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-KawasakiTeramoto model with strongly coupled cross-diffusion, Discrete Contin. Dynam. Systems, 9(2003), 1193-1200.
[6] Y. S. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-KawasakiTeramoto model with strongly coupled cross-diffusion, Discrete Contin. Dynam. Systems, 10(2004), 719-730.
[7] D. Le, T. Nguyen, Global existence for a class of triangular parabolic system on domains of arbitary dimension, Proceedings of AMS, 7(2005), 1985-1992.
[8] P. V. Tuoc, Global eistence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion system on domains of arbitary dimensions, Proceedings of AMS, 135(2007), 3933-3941.
[9] P. V. Tuoc, On global existence of solutions to a cross-diffusion system, IMA Preprint Series 2149.
[10] K. Kuto, Y. Yamada, Multiple coexistence states for a prey-predator system with crossdiffusion, J. Differential Equations, 197(2004), 315-348.
[11] E. Ahmed, A. S. Hegazi, A. S. Elgazzar, On persistence and stability of some biological systems with cross diffusion, Adv. Compelex Syst, 7(2004), 65-76.
[12] K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 197(2004), 293-314.
[13] K. Nakashima, Y. Yamada, Positive steady ststes for prey-predator models with crossdiffusion, Adv. Differential Equations, 1(1996), 1099-1122.
[14] K. Ryu, I. Ahn, Positive steady-ststes for two interacting species models with linear self-cross diffusions, Discrete Contin. Dynam. Systems, 9(2003), 1049-1061.
[15] H. Amann, Dynamic theory of quasilinear parabolic equations: Abstract evolution equations, Nonlinear Analysis, 12(1988), 859-919.
[16] H. Amann, Dynamic theory of quasilinear parabolic equations: Reaction-diffusion, Diff. Int. Eqs, 3(1990), 13-75.
[17] H. Amann, Dynamic theory of quasilinear parabolic equations: Global existence, Math. Z., 202(1989), 219-250.
[18] Seong-A Shim, Long-time properties of prey-predator system with cross-diffusion, Commum. Korean Math. Soc. 21(2006), 293-320.
[19] Seong-A Shim, Global existence of solutions to the prey-predator system with a singel crossdiffusion, Bull. Korean Math. Soc. 43(2006), 443-459.
[20] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, AMS, 1968.
[21] M. X. Wang, Nonlinear Parabolic Equation of Parabolic Type. Science Press, Beijing, 1993 (in Chinese).

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
E-mail address: xuluck2001@163.com

[^0]: 2000 Mathematics Subject Classification. 35K57, 35B35, 92D25.
 Key words and phrases. Cross-diffusion; global solution; gradient estimates; stability.
 (C)2008 Texas State University - San Marcos.

 Submitted October 13, 2007. Published January 12, 2008.

