Electronic Journal of Differential Equations, Vol. 2008(2008), No. 06, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF GLOBAL SOLUTIONS FOR A PREDATOR-PREY MODEL WITH CROSS-DIFFUSION

SHENGHU XU

ABSTRACT. In this article, we prove the existence of global classical solutions for a prey-predator model when the space dimension n < 10. Under certain conditions on the coefficients of the reaction functions, the convergence of solutions is established for the system with large diffusion by constructing a Lyapunov function.

1. INTRODUCTION

To investigate the spatial segregation under the self and cross population pressure, Shigesada, Kawasaki and Teramoto [1] proposed a competition model in 1979. Then there have been established many results in the literatures; see for example [2, 3, 4, 5, 6, 7, 8, 9]. For the cross-diffusion systems with prey-predator type reaction functions, there are a few results mainly on the steady-state problems with the elliptic systems, see [10, 11, 12, 13, 14].

In this paper, we study the following cross-diffusion system, with prey-predator type reactions,

$$u_{t} - \Delta[(d_{1} + \alpha_{11}u + \alpha_{12}v)u] = u(a_{1} - b_{1}u - c_{1}v) \quad \text{in } \Omega \times [0, \infty),$$

$$v_{t} - \Delta[(d_{2} + \alpha_{21}u + \alpha_{22}v)v] = v(a_{2} + b_{2}u - c_{2}v) \quad \text{in } \Omega \times [0, \infty),$$

$$\partial_{\eta}u = \partial_{\eta}v = 0 \quad \text{on } \partial\Omega \times [0, \infty),$$

$$u(x, 0) = u_{0}(x) \geq 0, \quad v(x, 0) = v_{0}(x) \geq 0 \quad \text{in } \Omega,$$

(1.1)

where $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ is a bounded domain with smooth boundary $\partial\Omega$, η is the outward unit normal vector of the boundary $\partial\Omega$, and $\partial_{\eta} = \partial/\partial_{\eta}$. α_{ij} are given nonnegative constants for i, j = 1, 2. And $d_i, b_i, c_i (i = 1, 2)$ and a_1 are positive constants only a_2 may be non-positive.

In system (1.1), u and v are nonnegative functions which represent the population densities of the prey and predator species, respectively, d_1 and d_2 are the random diffusion rates of the two species, α_{11} and α_{22} are self-diffusion rates, and α_{12} and α_{21} are the so-called cross-diffusion rates. When $\alpha_{ij} = 0$ (i, j = 1, 2), the system is the well-known Lotka-Volterra prey-predator model. For more details on the biological background, see references [1, 18].

²⁰⁰⁰ Mathematics Subject Classification. 35K57, 35B35, 92D25.

Key words and phrases. Cross-diffusion; global solution; gradient estimates; stability. ©2008 Texas State University - San Marcos.

Submitted October 13, 2007. Published January 12, 2008.

Local existence (in time) of solutions to (1.1) was established by Amann in a series of important papers [15, 16, 17]. His result can be summarized as follows:

Theorem 1.1. Suppose that u_0, v_0 are in $W_p^1(\Omega)$ for some p > n. Then (1.1) has a unique non-negative smooth solution u(x,t), v(x,t) in

$$C([0,T), W_p^1(\Omega)) \bigcap C^{\infty}((0,T), C^{\infty}(\Omega))$$

with maximal existence time T. Moreover, if the solution (u, v) satisfies the estimate

$$\sup_{0 \le t \le T} \|u(.,t)\|_{W_p^1(\Omega)} < \infty \quad and \quad \sup_{0 \le t \le T} \|v(.,t)\|_{W_p^1(\Omega)} < \infty,$$

then $T = \infty$.

However, little is known about global existence of solutions to (1.1). In 2006, Shim [18] proved the existence of global solutions to (1.1) in two cases: Case(A) n = 1, $d_1 = d_2$ and $\alpha_{11} = \alpha_{22} = 0$; Case(B) n = 1, $0 < \alpha_{21} < 8\alpha_{11}$ and $0 < \alpha_{12} < 8\alpha_{22}$.

In [19] the author considered the case when $\alpha_{11}, \alpha_{12}, \alpha_{22} > 0$ and $\alpha_{21} = 0$ for the system (1.1), and established the existence of global solutions with n = 1.

We shall prove the existence of global solutions to the following system (namely, the system (1.1) for $\alpha_{12} = 0$)

$$u_{t} - \Delta[(d_{1} + \alpha_{11}u)u] = u(a_{1} - b_{1}u - c_{1}v) \text{ in } \Omega \times [0,\infty),$$

$$v_{t} - \Delta[(d_{2} + \alpha_{21}u + \alpha_{22}v)v] = v(a_{2} + b_{2}u - c_{2}v) \text{ in } \Omega \times [0,\infty),$$

$$\partial_{\eta}u = \partial_{\eta}v = 0 \text{ on } \partial\Omega \times [0,\infty),$$

$$u(x,0) = u_{0}(x) \geq 0, \quad v(x,0) = v_{0}(x) \geq 0 \text{ in } \Omega.$$
(1.2)

This paper draws on ideas from two papers [6] and [9] which deal with crossdiffusion system with competition type reactions. Due to the difference in the reaction functions. Therefore, in order to obtain the L^p -estimate of v, we have to estimate the term uv^p . We also obtain result on the asymptotic stability of the global solution to (1.2) if the diffusion coefficients are large enough by an important Lemma 5.1 from [21]. We summarize our results in the following theorems:

Theorem 1.2. Let $\alpha_{22} > 0$ and assume that $u_0 \ge 0, v_0 \ge 0$ satisfy zero Neumann boundary condition and belong to $C^{2+\lambda}(\overline{\Omega})$ for some $\lambda > 0$. Then (1.2) possesses a unique non-negative solution $u, v \in C^{2+\lambda, \frac{2+\lambda}{2}}(\overline{\Omega} \times [0, \infty))$ if either (i) $\alpha_{11} = 0$ or (ii) $\alpha_{11} > 0$ and n < 10.

Theorem 1.3. Assume that all conditions in Theorem 1.2 are satisfied. Assume further that

$$-\frac{a_1b_2}{b_1c_2} < \frac{a_2}{c_2} < \frac{a_1}{c_1},\tag{1.3}$$

$$4\rho \overline{u}\overline{v}d_1d_2 > m^2(\overline{v}\alpha_{21})^2. \tag{1.4}$$

Then (1.2) has the unique positive equilibrium point $(\overline{u}, \overline{v})$ which is global asymptotic stable, where m is the positive constant in Lemma 2.1 (independent of d_1, d_2), $\rho = (b_2c_1 + 2b_1c_2)b_2^{-2}$ and

$$(\overline{u}, \overline{v}) = \left(\frac{a_1c_2 - a_2c_1}{b_1c_2 + b_2c_1}, \frac{a_2b_1 + a_1b_2}{b_1c_2 + b_2c_1}\right).$$

The paper is organized as follows. In section 2, we collect some well known results and prove three new lemmas that are needed in section 3 and section 4. In section 3, we establish L^r -estimates of the solution v of (1.2) and in section 4 we give a proof of Theorem 1.2. In section 5, we give a proof of Theorem 1.3.

2. Preliminaries

We list here some notation.

$$Q_{T} = \Omega \times [0, T),$$

$$\|u\|_{L^{p,q}(Q_{T})} = \left(\int_{0}^{T} \left(\int_{\Omega} |u(x,t)|^{p} dx\right)^{\frac{q}{p}} dt\right)^{1/q}, L^{p}(Q_{T}) := L^{p,p}(Q_{T}),$$

$$\|u\|_{W^{2,1}_{P}(Q_{T})} := \|u\|_{L^{p}(Q_{T})} + \|u_{t}\|_{L^{p}(Q_{T})} + \|\nabla u\|_{L^{p}(Q_{T})} + \|\nabla^{2}u\|_{L^{p}(Q_{T})},$$

$$\|u\|_{V_{2}(Q_{T})} := \sup_{0 \le t \le T} \|u(.,t)\|_{L^{2}(\Omega)} + \|\nabla u(x,t)\|_{L^{2}(Q_{T})}.$$

Firstly, we present some useful lemmas.

Lemma 2.1. Let u, v be a solution of (1.2) in [0,T). Then $0 \le u \le m$ and $v \ge 0$ in Q_T , where $m = \max\{\frac{a_1}{b_1}, \|u_0\|_{L^{\infty}(\Omega)}\}$.

Proof. The first equation in (1.2) is expressed as

$$u_t = (d_1 + 2\alpha_{11}u)\Delta u + 2\alpha_{11}\nabla u \cdot \nabla u + u(a_1 - b_1u - c_1v), \qquad (2.1)$$

and the second equation is written as

 $v_t = (d_2 + \alpha_{21}u + 2\alpha_{22}v)\Delta v + 2(\alpha_{21}\nabla u + \alpha_{22}\nabla v)\nabla v + v(\alpha_{21}\Delta u + a_2 + b_2u - c_2v).$ (2.2)

Then application of the maximum principle for (2.1) and (2.2) yields the nonnegative of u and v. Applying the maximum principle to (2.1) again one can also show the boundedness of u.

Lemma 2.2. There exists a positive $C_1(T)$ such that

$$\sup_{0 \le t \le T} \|u(.,t)\|_{L^{1}(\Omega)} < C_{1}(T), \quad \sup_{0 \le t \le T} \|v(.,t)\|_{L^{1}(\Omega)} < C_{1}(T),
\|u\|_{L^{2}(Q_{T})} < C_{1}(T), \quad \|v\|_{L^{2}(Q_{T})} < C_{1}(T).$$

Proof. Integrating the first equation in (1.2) over the domain Ω , we have

$$\frac{d}{dt} \int_{\Omega} u \, dx = a_1 \int_{\Omega} u \, dx - b_1 \int_{\Omega} u^2 dx - c_1 \int_{\Omega} uv dx$$

$$\leq a_1 \int_{\Omega} u \, dx - b_1 \int_{\Omega} u^2 dx$$

$$\leq a_1 \int_{\Omega} u \, dx - \frac{b_1}{|\Omega|} \Big(\int_{\Omega} u \, dx \Big)^2,$$
(2.3)

where we used Hölder's inequality. Then we have $||u(.,t)||_{L^1(\Omega)} \leq M'_1$, where $M'_1 = \max\{||u_0||_{L^1(\Omega)}, \frac{a_1}{b_1}|\Omega|\}$. Furthermore,

$$\sup_{0 \le t \le T} \|u(.,t)\|_{L^1(\Omega)} < C_1(T).$$
(2.4)

Since

$$\frac{d}{dt} \int_{\Omega} u \, dx \le a_1 \int_{\Omega} u \, dx - b_1 \int_{\Omega} u^2 dx.$$
(2.5)

Integrating (2.5) from 0 to T, we have

$$\|u\|_{L^2(Q_T)}^2 \le \frac{a_1}{b_1} M_1' |Q_T| + \|u_0\|_{L^1(\Omega)}.$$

Therefore,

$$\|u\|_{L^2(Q_T)} \le C_1(T). \tag{2.6}$$

Now, integrating the second equation in the system (1.2) over the domain Ω we have

S. XU

$$\frac{d}{dt} \int_{\Omega} v dx = a_2 \int_{\Omega} v dx + b_2 \int_{\Omega} u v dx - c_2 \int_{\Omega} v^2 dx.$$
(2.7)

Multiplying (2.3) by $\frac{b_2}{c_1}$ and adding it to (2.7), we have

$$\frac{d}{dt} \int_{\Omega} \left(\frac{b_2}{c_1}u + v\right) dx \le \frac{a_1 b_2}{c_1} \int_{\Omega} u \, dx + |a_2| \int_{\Omega} v \, dx - \frac{b_1 b_2}{c_1} \int_{\Omega} u^2 dx - c_2 \int_{\Omega} v^2 dx. \tag{2.8}$$

Then

$$\min\{1, \frac{b_2}{c_1}\}\frac{d}{dt}\int_{\Omega} (u+v)dx$$

$$\leq \max\{\frac{a_1b_2}{c_1}, |a_2|\}\int_{\Omega} (u+v)dx - \min\{\frac{b_1b_2}{c_1}, c_2\}\int_{\Omega} (u^2+v^2)dx$$

$$\leq \max\{\frac{a_1b_2}{c_1}, |a_2|\}\int_{\Omega} (u+v)dx - \frac{1}{2}\min\{\frac{b_1b_2}{c_1}, c_2\}\left[\int_{\Omega} (u+v)dx\right]^2.$$

Therefore, $\|v(.,t)\|_{L^1(\Omega)} \le M'_2$, where $M'_2 = \max\{\frac{A_1}{A_2}, \|u_0 + v_0\|_{L^1(\Omega)}\}$,

$$A_1 = \frac{\max\{\frac{a_1b_2}{c_1}, |a_2|\}}{\min\{1, \frac{b_2}{c_1}\}}, \quad A_2 = \frac{\min\{\frac{b_1b_2}{c_1}, c_2\}}{2\min\{1, \frac{b_2}{c_1}\}}.$$

Then

$$\sup_{0 \le t \le T} \|v(.,t)\|_{L^1(\Omega)} < C_1(T).$$
(2.9)

Integrating (2.8) from 0 to T, we have

$$c_2 \int_{Q_T} v^2 \, dx \, dt \le \frac{a_1 b_2}{c_1} \int_0^T M_1' dt + |a_2| \int_0^T M_2' dt + \frac{b_2}{c_1} \|u_0\|_{L^1(\Omega)} + \|v_0\|_{L^1(\Omega)},$$

ich implies $\|v\|_{L^2(\Omega_1)} \le C_1(T).$

whi plies $||v||_{L^2(Q_T)} \le C_1(T)$

Lemma 2.3. Let $w_1 = (d_1 + \alpha_{11}u)u$. Then there exists a constant $C_2(T)$, depending on $||u_0||_{W_2^1(\Omega)}$ and $||u_0||_{L^{\infty}(\Omega)}$ such that

$$\|w_1\|_{W_2^{2,1}(Q_T)} \le C_2(T).$$
(2.10)

Furthermore, $\nabla w_1 \in V_2(Q_T)$.

Proof. Note that w_1 satisfies the equation

$$w_{1t} = (d_1 + 2\alpha_{11}u)\Delta w_1 + n_1 + n_2v, \qquad (2.11)$$

where $n_1 = u(d_1 + 2\alpha_{11}u)(a_1 - b_1u), n_2 = -c_1(d_1 + 2\alpha_{11}u)u$ depend on u and are bounded functions because of Lemma 2.1. Multiplying the above equation by $-\Delta w_1$ and integration by parts over Ω , we have

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\nabla w_{1}|^{2}dx = -\int_{\Omega}(d_{1}+2\alpha_{11}u)(\Delta w_{1})^{2}dx - \int_{\Omega}(n_{1}+n_{2}v)\Delta w_{1}dx.$$
 (2.12)

Integrating (2.12) from 0 to t, we obtain

$$\begin{split} &\frac{1}{2} \int_{\Omega} |\nabla w_1(x,t)|^2 dx - \frac{1}{2} \int_{\Omega} |\nabla w_1(x,0)|^2 dx \\ &= -\int_{Q_t} (d_1 + 2\alpha_{11}u) (\Delta w_1)^2 \, dx \, dt - \int_{Q_t} (n_1 + n_2v) \Delta w_1 \, dx \, dt \\ &\leq -d_1 \int_{Q_t} |\Delta w_1|^2 \, dx \, dt + \int_{Q_t} (n_1 + n_2v) \cdot |\Delta w_1| dx \, dt \, . \end{split}$$

By Young's inequality and Hölder's inequality, we have

$$\begin{split} &\frac{1}{2} \int_{\Omega} |\nabla w_1(x,t)|^2 dx + d_1 \int_{Q_T} |\Delta w_1|^2 dx \, dt \\ &\leq (\|n_1\|_{L^2(Q_T)} + \|n_2 v\|_{L^2(Q_T)}) \cdot \|\Delta w_1\|_{L^2(Q_T)} + \frac{1}{2} \int_{\Omega} |\nabla w_1(x,0)|^2 dx \\ &\leq m_1 (1 + \|v\|_{L^2(Q_T)}) \cdot \|\Delta w_1\|_{L^2(Q_T)} + \frac{1}{2} \int_{\Omega} |\nabla w_1(x,0)|^2 dx \\ &\leq m_1 (1 + C_1(T)) \cdot \|\Delta w_1\|_{L^2(Q_T)} + \frac{1}{2} \int_{\Omega} |\nabla w_1(x,0)|^2 dx \\ &\leq \frac{d_1}{2} \|\Delta w_1\|_{L^2(Q_T)}^2 + \frac{m_1^2 (1 + C_1(T))^2}{2d_1} + \frac{1}{2} \int_{\Omega} |\nabla w_1(x,0)|^2 dx. \end{split}$$

Therefore,

$$\sup_{0 \le t \le T} \int_{\Omega} |\nabla w_1|^2(x,t) dx + d_1 \int_{Q_T} |\Delta w_1|^2 \, dx \, dt \le m_2,$$

where m_2 depends on $||u_0||_{W_2^1(\Omega)}$ and $||u_0||_{L^{\infty}(\Omega)}$. This implies $\nabla w_1 \in V_2(Q_T)$. Since $w_1 \in L^2(Q_T)$ we have from the elliptic regularity estimate [2, Lemma 2.3]

$$\int_{Q_T} \|(w_1)_{x_i x_j}\|^2 \, dx \, dt \le m_3 \quad \text{for } i, j = 1, \dots, n.$$

From (2.11), since n_1, n_2 and u are bounded and $v \in L^2(Q_T)$, we have $w_{1t} \in L^2(Q_T)$. Hence, $w_1 \in W_2^{2,1}(Q_T)$.

Let $a(x,t,\xi)$ be continuous and (x,ξ) -differentiable for $(x,t,\xi) \in Q_T \times R$. Assume also that $a(x,t,\xi)$ satisfies the following conditions

- (i) There is d > 0 such that $a(x, t, \xi) \ge d$ and $a_{\xi}(x, t, \xi) \ge 0$ for all $(x, t) \in Q_T$ and ξ in R.
- (ii) There is a continuous function M on \mathbb{R} such that $a(x,t,\xi) \leq M(\xi)$ for all $(x,t) \in Q_T$.
- (iii) For any bounded measurable function g on Q_T , $|\nabla_x a(.,.,g(.,.))|$ is in the space $L^{2p}(Q_T)$.

Lemma 2.4. Assume that $w \in W_p^{2,1}(Q_T) \cap C^{2,1}(\overline{\Omega} \times [0,T))$ is a bounded function satisfying

$$w_t \le a(x, t, w)\Delta w + f(x, t)$$
 in Q_T

with boundary condition $\frac{\partial w}{\partial \nu} \leq 0$ on ∂_{Q_T} , where $f \in L^p(Q_T)$. Then, ∇w is in $L^{2p}(Q_T)$.

The proof of the above lemma can be found in [9, Proposition 2.1].

Lemma 2.5. Let $q > 1, \tilde{q} = 2 + \frac{4q}{n(q+1)}, \tilde{\beta}$ in (0,1) and let $C_T > 0$ be any number which may depend on T. Then there is a constant M_1 depending on $q, n, \Omega, \tilde{\beta}$ and C_T such that for any g in $C([0,T), W_2^1(\Omega))$ with $(\int_{\Omega} |g(.,t)|^{\tilde{\beta}} dx)^{1/\tilde{\beta}} \leq C_T$ for all $t \in [0,T]$, we have the inequality

$$\|g\|_{L^{\widetilde{q}}(Q_T)} \le M_1 \{ 1 + \left(\sup_{0 \le t \le T} \|g(.,t)\|_{L^{2q/q+1}(\Omega)} \right)^{4q/n(q+1)\widetilde{q}} \|\nabla g\|_{L^2(Q_T)}^{2/\widetilde{q}} \}.$$

The proof of the above lemma can be found in [6, Lemmas 2.3, 2.4].

3. L^r -estimates for v

Lemma 3.1. There exists a constant $C_3(T)$ such that $\|\nabla u\|_{L^4(Q_T)} \leq C_3(T)$.

Proof. Let $\delta = \alpha_{11}/d_1$, $w_1 = (1 + \delta u)u$. By Lemma 2.1, u is bounded. Therefore, w_1 is also bounded. By Lemma 2.3, we have $w_1 \in W_2^{2,1}(Q_T)$. Moreover, w_1 satisfies

$$w_{1t} \le d_1(1+2\delta u)\Delta w_1 + a_1u(1+2\delta u) = \sqrt{d_1^2 + 4\delta d_1w_1}\Delta w_1 + a_1u(1+2\delta u)$$

By Lemma 2.4 with p = 2, $a(x, t, \xi) = \sqrt{d_1^2 + 4\delta d_1\xi}$, $f(x, t) = a_1 u(x, t)(1 + 2\delta u(x, t))$, we obtain the desired result.

Lemma 3.2. Let r > 2 and $p_r = \frac{2r}{r-2}$ be two positive numbers. Assume that $\alpha_{22} > 0$ and assume also that there is a constant $M_{r,T} > 0$ depending only on r, T, Ω and the coefficients of (1.2) such that

$$\|\nabla u\|_{L^r(Q_T)} \le M_{r,T}$$

Then for any q > 1, there exists a constant C(r, q, T) > 0 such that

$$\|v(.,t)\|_{L^{q}(\Omega)}^{q} + \|\nabla(v^{q/2})\|_{L^{2}(Q_{t})}^{2} + \|\nabla(v^{(q+1)/2})\|_{L^{2}(Q_{t})}^{2}$$

$$\leq C(r,q,T) \left(1 + \|v\|_{L^{\frac{pr(q-1)}{2}}(Q_{t})}^{q-1}\right).$$

$$(3.1)$$

Proof. For any constant q > 1, multiplying the second equation of (1.2) by qv^{q-1} and using the integration by parts, we obtain

$$\begin{split} &\frac{\partial}{\partial t} \int_{\Omega} v^{q} dx \\ &= q \int_{\Omega} v^{q-1} \nabla \cdot \left[(d_{2} + \alpha_{21}u + 2\alpha_{22}v) \nabla v + \alpha_{21}v \nabla u \right] dx + q \int_{\Omega} v^{q} (a_{2} + b_{2}u - c_{2}v) dx \\ &= -q(q-1) \int_{\Omega} v^{q-2} (d_{2} + \alpha_{21}u + 2\alpha_{22}v) |\nabla v|^{2} dx - \alpha_{21}(q-1) \int_{\Omega} \nabla (v^{q}) \cdot \nabla u \, dx \\ &+ q \int_{\Omega} v^{q} (a_{2} + b_{2}u - c_{2}v) dx \\ &\leq -q(q-1) d_{2} \int_{\Omega} v^{q-2} |\nabla v|^{2} dx - 2\alpha_{22}q(q-1) \int_{\Omega} v^{q-1} |\nabla v|^{2} dx \\ &- \alpha_{21}(q-1) \int_{\Omega} \nabla (v^{q}) \cdot \nabla u \, dx + q \int_{\Omega} v^{q} (a_{2} + b_{2}u - c_{2}v) dx \\ &= -\frac{4(q-1) d_{2}}{q} \int_{\Omega} |\nabla (v^{\frac{q}{2}})|^{2} dx - \frac{8\alpha_{22}q(q-1)}{(q+1)^{2}} \int_{\Omega} |\nabla (v^{\frac{q+1}{2}})|^{2} dx \end{split}$$

$$-\alpha_{21}(q-1)\int_{\Omega}\nabla(v^q)\cdot\nabla u\,dx+q\int_{\Omega}v^q(a_2+b_2u-c_2v)dx.$$

Integrating the above inequality from 0 to t, we have

$$\int_{\Omega} v^{q}(x,t)dx + \frac{4(q-1)d_{2}}{q} \int_{Q_{t}} |\nabla(v^{\frac{q}{2}})|^{2}dx \, dt + \frac{8\alpha_{22}q(q-1)}{(q+1)^{2}} \int_{Q_{t}} |\nabla(v^{\frac{q+1}{2}})|^{2} \, dx \, dt$$

$$\leq \int_{\Omega} v^{q}(x,0)dx - \alpha_{21}(q-1) \int_{Q_{t}} \nabla(v^{q}) \cdot \nabla u \, dx \, dt + q \int_{Q_{t}} v^{q}(a_{2}+b_{2}u-c_{2}v) \, dx \, dt.$$
(3.2)

By Hölder's inequality, we have

$$\begin{split} q \int_{Q_{t}} v^{q}(a_{2} + b_{2}u - c_{2}v) \, dx \, dt \\ &= a_{2}q \int_{Q_{t}} v^{q} dx dt - c_{2}q \int_{Q_{t}} v^{q+1} dx dt + b_{2}q \int_{Q_{t}} uv^{q} dx dt \\ &\leq -c_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q+1} + |a_{2}|q|Q_{T}|^{\frac{1}{q+1}} \|v\|_{L^{q+1}(Q_{t})}^{q} + b_{2}q \int_{Q_{t}} uv^{q} dx dt \\ &\leq -c_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q+1} + |a_{2}|q[\varepsilon \|v\|_{L^{q+1}(Q_{t})}^{q+1} + \varepsilon^{-q}|Q_{T}|^{\frac{q}{q+1}}] + b_{2}q \int_{Q_{t}} uv^{q} dx dt \\ &\leq B_{1} + b_{2}q \int_{Q_{t}} uv^{q} dx dt, \end{split}$$
(3.3)

where $\varepsilon = \frac{c_2}{|a_2|}$, B_1 depends on $T, q, |\Omega|$ and the coefficients of (1.2). On the other hand, since that $\frac{1}{r} + \frac{1}{2} + \frac{1}{p_r} = 1$, using the Hölder's inequality and Poincaré inequality, we have

$$\int_{Q_t} uv^q dx dt = \int_{Q_t} u \cdot v^{\frac{q-1}{2}} \cdot v^{\frac{q+1}{2}} dx dt
\leq \|v^{\frac{q-1}{2}}\|_{L^{p_r}(Q_t)} \cdot \|v^{\frac{q+1}{2}}\|_{L^2(Q_t)} \cdot \|u\|_{L^r(Q_t)}
\leq C_4 m \|v\|_{L^{\frac{p_r(q-1)}{2}}(Q_t)}^{(q-1)/2} \cdot \|\nabla(v^{\frac{q+1}{2}})\|_{L^2(Q_t)}.$$
(3.4)

The substitution (3.4) into (3.3) leads to

$$q \int_{Q_t} v^q (a_2 + b_2 u - c_2 v) dx dt \le B_1 + C_5 \|v\|_{L^{\frac{p_r(q-1)}{2}}(Q_t)}^{(q-1)/2} \cdot \|\nabla(v^{\frac{q+1}{2}})\|_{L^2(Q_t)}.$$
(3.5)

Since that $\frac{1}{r} + \frac{1}{2} + \frac{1}{p_r} = 1$ and ∇u is in $L^r(Q_T)$, using the Hölder's inequality, we have

$$\begin{split} \left| -\int_{Q_t} \nabla(v^q) \cdot \nabla u \, dx \, dt \right| &= \frac{2q}{q+1} \left| \int_{Q_t} v^{\frac{q-1}{2}} \cdot \nabla(v^{\frac{(q+1)}{2}}) \cdot \nabla u \, dx \, dt \right| \\ &\leq \frac{2q}{q+1} \|v^{\frac{q-1}{2}}\|_{L^{p_r}(Q_t)} \cdot \|\nabla(v^{\frac{q+1}{2}})\|_{L^2(Q_t)} \cdot \|\nabla u\|_{L^r(Q_t)} \\ &\leq \frac{2q}{q+1} \|v\|_{L^{\frac{pr(q-1)}{2}}(Q_t)}^{\frac{q-1}{2}} \cdot \|\nabla(v^{\frac{q+1}{2}})\|_{L^2(Q_t)} \cdot \|\nabla u\|_{L^r(Q_t)} \\ &\leq \frac{2q}{q+1} M_{r,T} \|v\|_{L^{\frac{pr(q-1)}{2}}(Q_t)}^{\frac{q-1}{2}} \cdot \|\nabla(v^{\frac{q+1}{2}})\|_{L^2(Q_t)}. \end{split}$$

The substitution (3.5) and the above inequality into (3.2) leads to

S. XU

$$\int_{\Omega} v^{q}(x,t)dx + \frac{4(q-1)d_{2}}{q} \int_{Q_{t}} |\nabla(v^{\frac{q}{2}})|^{2}dx \, dt + \frac{8\alpha_{22}q(q-1)}{(q+1)^{2}} \int_{Q_{t}} |\nabla(v^{\frac{q+1}{2}})|^{2} \, dx \, dt \\
\leq B_{2} + C_{6} \|v\|_{L^{\frac{p_{r}(q-1)}{2}}(Q_{t})}^{\frac{q-1}{2}} \cdot \|\nabla(v^{\frac{q+1}{2}})\|_{L^{2}(Q_{t})}^{2} \\
\leq B_{2} + \frac{C_{6}}{4\varepsilon} \|v\|_{L^{\frac{p_{r}(q-1)}{2}}(Q_{t})}^{q-1} + C_{6}\varepsilon \|\nabla(v^{\frac{q+1}{2}})\|_{L^{2}(Q_{t})}^{2},$$
(3.6)

where $B_2 > 0$ depending on q, T, Ω coefficients of (1.2) and initial datal v_0 . For any $\varepsilon > 0$, from (3.6) and by choosing a sufficiently small ε , such that $C_6 \varepsilon < \frac{8\alpha_{22}q(q-1)}{(q+1)^2}$, we get (3.1). This completes the proof of the lemma.

For any number a, we denote $a_+ = \max\{a, 0\}$.

Proposition 3.3. Let $\alpha_{22} > 0$.

(i) If $\alpha_{11} > 0$, then there is a constant $C_7(T) > 0$ such that

$$||v||_{V_2(Q_T)} \le C_7(T).$$

Moreover, for any constant $r < \frac{4(n+1)}{(n-2)_+}$, there exists a positive constant C_T such that

$$\|v\|_{L^r(Q_T)} \le C_T$$

(ii) If $\alpha_{11} = 0$, then

$$\|v\|_{L^r(Q_T)} \le C_T \quad for \ any \quad r > 1.$$

Proof. (i) Set $w = v^{(q+1)/2}$ so that $v^q = w^{2q/(q+1)}$ and $v^{q+1} = w^2$. Then

$$E \equiv \sup_{0 \le t \le T} \int_{\Omega} v^q(x,t) dx + \int_{Q_T} |\nabla(v^{(q+1)/2})|^2 dx dt$$
$$= \sup_{0 \le t \le T} \int_{\Omega} w^{2q/q+1} dx + \int_{Q_T} |\nabla w|^2 dx dt.$$

Let $r_0 = 4$, $p_0 = \frac{2r_0}{r_0 - 2}$. By Lemma 3.1, we see that ∇u is in $L^{r_0}(Q_T)$. So, from Lemma 3.2, we have

$$E + \|\nabla(v^{\frac{q}{2}})\|_{L^{2}(Q_{T})}^{2} \leq C(r_{0}, q, T) \left(1 + \|w\|_{L^{\frac{2(q-1)}{q+1}}(Q_{T})}^{\frac{2(q-1)}{q+1}}\right),$$
(3.7)

where $C(r_0, q, T) > 0$ depending only T, Ω , initial data u_0, v_0 and the coefficients of (1.2). Since q > 1, if we restrict our q so that

$$(np_0 - 2n - 4)q \le 2n + np_0. \tag{3.8}$$

Then, $\frac{p_0(q-1)}{q+1} \leq \widetilde{q}$, where $\widetilde{q} = 2 + \frac{4q}{n(q+1)}$. Therefore, by Hölder's inequality

$$\|w\|_{L^{\frac{p_0(q-1)}{q+1}}(Q_T)} \le C_8(q,T) \|w\|_{L^{\widetilde{q}}(Q_T)},\tag{3.9}$$

where $C_8(q,T) = |Q_T|^{\frac{q+1}{p_0(q-1)} - \frac{1}{q}}$. Setting $\tilde{\beta} = 2/(q+1) \in (0,1)$, by Lemma 2.2 we have

$$\|w(.,t)\|_{L^{\widetilde{\beta}}(\Omega)} = \|v(.,t)\|_{L^{1}(\Omega)}^{\frac{1}{\widetilde{\beta}}} \le (C_{1}(T))^{\frac{1}{\widetilde{\beta}}}, \quad \forall t \in [0,T).$$
(3.10)

Hence, by Lemma 2.5 and the definition of E, (3.10) yields

$$\|w\|_{L^{p_0(q-1)/q+1}(Q_T)} \le C_8(q,T) \|w\|_{L^{\widetilde{q}}(Q_T)} \le C_8(q,T) M_1\{1 + E^{2/n\widetilde{q}} E^{\frac{1}{\widetilde{q}}}\}.$$
 (3.11)

Then (3.7) together with the above inequality, we can find a constant $C_9(q,T) > 0$ such that

$$E \le C_9(q, T)(1 + E^{\mu}E^{\nu}) \tag{3.12}$$

with

$$\mu = \frac{4(q-1)}{n\widetilde{q}(q+1)}, \quad \nu = \frac{2(q-1)}{\widetilde{q}(q+1)}.$$

Since

$$\mu + \nu = \frac{2(q-1)}{\widetilde{q}(q+1)} \left[\frac{2}{n} + 1\right] < \frac{1}{\widetilde{q}} \left[\frac{4q}{n(q+2)} + 2\right] = 1,$$

it is easy to see from (3.12) that E is bounded. Therefore, from (3.11) and (3.12) we get $w \in L^{\tilde{q}}(Q_T)$ which in turn implies that $v \in L^r(Q_T)$ with $r = \frac{\tilde{q}(q+1)}{2}$ for any q satisfying (3.8). Now, looking at (3.8), if $n \leq 2$, we have

$$np_0 - 2n - 4 = 2(n - 2) \le 0, \tag{3.13}$$

then (3.8) holds for all q. so for $n \leq 2, v \in L^r(Q_T)$ for all r > 1. Now, suppose that n > 2, we see (3.8) is equivalent to

$$1 < q < q_0 := \frac{2n + np_0}{(np_0 - 2n - 4)} = \frac{3n}{n - 2}.$$

Then, we have

$$\frac{\widetilde{q}(q+1)}{2} = q+1 + \frac{2q}{n} \le \overline{r}_1 := q_0 + 1 + \frac{2q_0}{n} = \frac{4(n+1)}{n-2}.$$

So, we see that v is in $L^r(Q_T)$ for all $1 < r \leq \overline{r}_1$. Since (3.8) holds true for q = 2. So when q = 2, we have E is finite. Therefore, from (3.7) and (3.11), we see that $\|v\|_{V_2(Q_T)}$ is bounded for any n, this completes the proof of Proposition 3.3 when $\alpha_{11} > 0$ and $r < \frac{4(n+2)}{(n-2)_+}$.

Next, we consider the case $\alpha_{11} = 0$. By Hölder's inequality, we have

$$\begin{aligned} q \int_{Q_{t}} v^{q}(a_{2} + b_{2}u - c_{2}v) \, dx \, dt \\ &= a_{2}q \int_{Q_{t}} v^{q} dx dt - c_{2}q \int_{Q_{t}} v^{q+1} dx dt + b_{2}q \int_{Q_{t}} uv^{q} dx dt \\ &\leq -c_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q+1} + |a_{2}|q|Q_{T}|^{\frac{1}{q+1}} \|v\|_{L^{q+1}(Q_{t})}^{q} \\ &+ b_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q} \cdot \|u\|_{L^{q+1}(Q_{t})} \\ &\leq -c_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q+1} + |a_{2}|q|Q_{T}|^{\frac{1}{q+1}} \|v\|_{L^{q+1}(Q_{t})}^{q} + b_{2}qm\|v\|_{L^{q+1}(Q_{t})}^{q} \\ &\leq -c_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q+1} + |a_{2}|q|Q_{T}|^{\frac{1}{q+1}} \|v\|_{L^{q+1}(Q_{t})}^{q} + b_{2}qm\|v\|_{L^{q+1}(Q_{t})}^{q} \\ &\leq -c_{2}q \|v\|_{L^{q+1}(Q_{t})}^{q+1} + q\varepsilon \|v\|_{L^{q+1}(Q_{t})}^{q+1} + B_{3} \\ &\leq B_{3}, \end{aligned}$$

$$(3.14)$$

where $\varepsilon = c_2$ and $B_3 > 0$ which depends only on $T, q, |\Omega|, ||u_0||_{L^{\infty}(\Omega)}$ and the coefficients of (1.2).

We can integrate by parts once to obtain from Lemma 2.1 and analogue of [20, Theorem 9.1, p. 341-342] for Neumann boundary condition [20, p.351]

$$\begin{aligned} \left| -\int_{Q_{t}} \nabla(v^{q}) \cdot \nabla u \, dx \, dt \right| \\ &= \left| -\int_{Q_{t}} v^{q} \Delta u \, dx \, dt \right| \\ &\leq \|v\|_{L^{q+1}(Q_{T})}^{q} \cdot \|\Delta u\|_{L^{q+1}(Q_{T})} \tag{3.15} \\ &\leq C_{10} \|v\|_{L^{q+1}(Q_{T})}^{q} \left(\|u(a_{1} - b_{1}u - c_{1}v)\|_{L^{q+1}(Q_{T})} + \|u_{0}\|_{W^{2-\frac{2}{q+1}}_{q+1}(\Omega)} \right) \\ &\leq C_{11} \left(1 + \|v\|_{L^{q+1}(Q_{T})}^{q+1} \right). \end{aligned}$$

The substitution of (3.14) and (3.15) into (3.2) leads to

$$\sup_{0 \le t \le T} \|v^q(t)\|_{L^q(\Omega)}^q + \|\nabla(v^{(q+1)/2})\|_{L^2(Q_T)}^2 \le C_{12} \left(1 + \|v\|_{L^{q+1}(Q_T)}^{q+1}\right).$$
(3.16)

We introduce $w = v^{\frac{q+1}{2}}$, then (3.16) leads to

$$E \equiv \sup_{0 \le t \le T} \|w(t)\|_{L^{\frac{2q}{q+1}}(\Omega)}^{\frac{2q}{q+1}} + \|\nabla w\|_{L^{2}(Q_{T})}^{2} \le C_{12} \left(1 + \|w\|_{L^{2}(Q_{T})}^{2}\right).$$
(3.17)

Recall that Lemma 2.2 implies $v \in L^2(Q_T)$, so $||w||_{L^{\frac{4}{q+1}}(Q_T)} \leq C_{13}$. Since $\frac{4}{q+1} < 2 \leq \tilde{q}$. Then we see from Hölder's inequality

$$\|w\|_{L^{2}(Q_{T})}^{2} \leq \|w\|_{L^{\tilde{q}}(Q_{T})}^{2(1-\lambda)} \|w\|_{L^{\frac{4}{q+1}}(Q_{T})}^{2\lambda} \leq C_{13}^{2\lambda} \|w\|_{L^{\tilde{q}}(Q_{T})}^{2(1-\lambda)},$$
(3.18)

where $\lambda = (\frac{1}{2} - \frac{1}{\tilde{q}})/(\frac{q+1}{4} - \frac{1}{\tilde{q}})$. Setting $\tilde{\beta} = 2/(q+1) \in (0,1)$, we have $||w(.,t)||_{L^{\tilde{\beta}}(\Omega)} = ||v(.,t)||_{L^{1}(\Omega)} \leq C_{1}(T)^{\frac{1}{\tilde{\beta}}}$ for all $t \in [0,T)$ by Lemma 2.2. Then it follow from (3.17), (3.18) and Lemma 2.5 that

$$E \le C_{14}(1 + E^{\alpha}) \tag{3.19}$$

with

$$\alpha = \frac{2(1-\lambda)}{\widetilde{q}} \left(\frac{2}{n} + 1\right) < 1.$$

Thus (3.19) implies

$$\sup_{0 \le t \le T} \|w(t)\|_{L^{\frac{2q}{q+1}}(\Omega)}^{\frac{2q}{q+1}} \le E \le C_{15}$$

with some $C_{15} > 0$, let r = q > 1, so that $\sup_{0 \le t \le T} \|v(t)\|_{L^r(\Omega)} \le C_T$ and the proof is complete.

4. Proof of Theorem 1.2

The first step of the proof is to show v is in $L^r(Q_T)$ for any r > 1.

Lemma 4.1. Let $\alpha_{11} > 0$ and suppose that there are $r_1 > \max\{\frac{n+2}{2},3\}$ and a positive constant $C_{r_1,T}$ such that

$$\|v\|_{L^{r_1}(Q_T)} \le C_{r_1,T}.$$

Then, v is in $L^r(Q_T)$ for any r > 1.

10

Proof. The proof is almost identical to [9, Lemma 4.1], but for completeness we repeat it here. First, the equation for u can be written in the divergence form as

$$u_t = \nabla \cdot [(d_1 + 2\alpha_{11}u)\nabla u] + u(a_1 - b_1u - c_1v), \qquad (4.1)$$

where $d_1 + 2\alpha_{11}u$ is bounded in \overline{Q}_T by Lemma 2.1 and $u(a_1 - b_1u - c_1v)$ is in L^{r_1} with $r_1 > \frac{n+2}{2}$. Application of the Hölder continuity result in [20, Theorem 10.1, p. 204] to (4.1) yields

$$u \in C^{\beta, \frac{\beta}{2}}(\overline{Q}_T)$$
 with some $\beta > 0.$ (4.2)

Moreover, we have

$$w_{1t} = (d_1 + 2\alpha_{11}u)\Delta w_1 + f_1, \qquad (4.3)$$

where $w_1 = (d_1 + \alpha_{11}u)u$ is as in the proof of Lemma 2.3, $f_1 = (d_1 + 2\alpha_{11}u)u(a_1 - b_1u - c_1v)$. Since u is bounded and by the assumption of this Lemma, we see that f_1 is in $L^{r_1}(Q_T)$. From (4.2), Lemma 2.1 and Proposition 3.3, applying [20, Theorem 9.1, pp. 341-342] and its remark [20, P. 351], we have

$$w_1 \in W_{r_1}^{2,1}(Q_T).$$
 (4.4)

This implies $\nabla u = \frac{1}{d_1 + 2\alpha_{11}u} \nabla w_1$ in $L^{r_1}(Q_T)$. Now, following the proof of Proposition 3.3 with r_1 instead of r_0 and $p_1 = \frac{2r_1}{r_1 - 2}$ instead of p_0 , we see that either v is in $L^r(Q_T)$ for any r > 1 or else v is in $L^{r_2}(Q_T)$ with

$$r_2 := \frac{(n+1)r_1}{n+2-r_1}.$$

The later case happens if and only if $n + 2 - r_1 > 0$.

If v is in $L^{r_2}(Q_T)$, we see that f_1 is in $L^{r_2}(Q_T)$. Therefore, applying [20, Theorem 9.1, p. 341-342] and its remark [20, p. 351] again, we have ∇u in $L^{r_2}(Q_T)$. Then we go back and do the same argument again. Keep doing likes this we will get a sequence of numbers

$$r_{k+1} := \frac{(n+1)r_k}{n+2-r_k}.$$
(4.5)

We stop and get the conclusion that v is in $L^r(Q_T)$ for any r > 1 when

$$n+2-r_k \le 0. \tag{4.6}$$

Since $r_1 > 3$, from (4.5) we can prove by induction that $r_k > 3, k = 1, 2, ...$ Then, we have

$$\frac{r_{k+1}}{r_k} = \frac{n+1}{n+2-r_k} \ge \frac{n+1}{n-1} > 1.$$
(4.7)

Thus, the sequence r_k is strictly increasing. Therefore, there must be some k such that (4.6) holds. we stop at this k and conclude that v is in $L^r(Q_T)$ for any r > 1, namely, there is a positive constant C_{16} such that $\|v\|_{L^r(Q_T)} \leq C_{16}$, where $C_{16} > 0$ depending on q, T, Ω and the coefficients of the system (1.2) but not on r. \Box

So, from Proposition 3.3 and Lemma 4.1, we have the following lemma.

Lemma 4.2. Let $\alpha_{22} > 0$ and suppose (i) $\alpha_{11} = 0$ or (ii) $\alpha_{11} > 0$ and n < 10. Then there exists M_2 such that

$$||v||_{L^r(Q_T)} \le M_2 \text{ for any } r > 1.$$

Moreover, for any r > 1, v is in $V_2(Q_T)$.

Proof of Theorem 1.2. We give the proof only in case $\alpha_{11} > 0$ because the proof for $\alpha_{11} = 0$ is essentially the same. By Lemma 4.2, v is bounded in \overline{Q}_T . From (4.3), we have

S. XU

$$w_{1t} = (d_1 + 2\alpha_{11}u)\Delta w_1 + f_1,$$

where $f_1 = (d_1 + 2\alpha_{11}u)u(a_1 - b_1u - c_1v)$ is bounded in \overline{Q}_T by Lemma 2.1 and Lemma 4.2, $(d_1 + 2\alpha_{11}u) \in C^{\beta,\frac{\beta}{2}}(Q_T)$ by (4.2). By [20, Theorem 9.1, p.341-342], we have

$$||w_1||_{W_r^{2,1}}(Q_T) < M_3 \text{ for } \frac{n+2}{2} < r < \frac{4(n+1)}{(n-2)_+}.$$

Hence it follows from [20, Lemma 3.3, p.80] that

$$w_1 \in C^{1+\beta^*, \frac{(1+\beta^*)}{2}}(\overline{Q}_T), \quad \forall 0 < \beta^* < 1.$$
 (4.8)

Since $u = \frac{-d_1 + \sqrt{d_1^2 + 4w_1\alpha_{11}}}{2\alpha_{11}}$, it follow from (4.8) that

$$u \in C^{1+\beta^*, \frac{(1+\beta^*)}{2}}(\overline{Q}_T), \quad \forall \, 0 < \beta^* < 1.$$
 (4.9)

Next, we rewrite the equation for v in divergence form as

$$v_t = \nabla \cdot \left[(d_2 + \alpha_{21}u + 2\alpha_{22}v)\nabla v + \alpha_{21}v\nabla u \right] + f_2(x, t),$$

where $f_2(x,t) = v(a_2 + b_2u - c_2v)$, u, v and ∇u are all bounded functions because of Lemma 2.1, Lemma 4.2 and (4.9). By [20, Theorem 10.1, p.204], we have

$$v \in C^{\sigma, \frac{\sigma}{2}}(\overline{Q}_T)$$
 with some $0 < \sigma < 1.$ (4.10)

Now, we then return to the equation for u and write it as

$$u_t = (d_1 + 2\alpha_{11}u)\Delta u + f_3(x, t), \qquad (4.11)$$

where $f_3(x,t) = 2\alpha_{11}|\nabla u|^2 + u(a_1 - b_1u - c_1v) \in C^{\sigma,\frac{\sigma}{2}}(\overline{Q}_T)$ by (4.9) and (4.10). Then the Schuader estimate in [20, Theorem 5.3, p.320-321] applied to (4.11) yields

$$u \in C^{2+\sigma^*, \frac{2+\sigma^*}{2}}(\overline{Q}_T) \quad \text{with } \sigma^* = \min\{\lambda, \sigma\}.$$
(4.12)

Let $w_2 = (d_2 + \alpha_{21}u + \alpha_{22}v)v$. Then w_2 satisfies

$$w_{2t} = (d_2 + \alpha_{21}u + 2\alpha_{22}v)\Delta w_2 + f_4(x, t), \qquad (4.13)$$

where $f_4(x,t) = (d_2 + \alpha_{21}u + 2\alpha_{22}v)v(a_2 + b_2u - c_2v) + \alpha_{21}vu_t \in C^{\sigma^*, \frac{\sigma^*}{2}}(\overline{Q}_T)$ by (4.11) and (4.12), $d_2 + \alpha_{21}u + 2\alpha_{22}v \in C^{\sigma, \frac{\sigma}{2}}(\overline{Q}_T)$ by (4.9) and (4.10), by applying the Schuader estimate to the equation (4.13), we have

$$w_2 \in C^{2+\sigma^*,\frac{2+\sigma^*}{2}}(\overline{Q}_T). \tag{4.14}$$

Then

$$v = \frac{-(d_2 + \alpha_{21}u) + \sqrt{(d_2 + \alpha_{21}u)^2 + 4w_2\alpha_{22}}}{2\alpha_{22}} \in C^{2+\sigma^*, \frac{2+\sigma^*}{2}}(\overline{Q}_T).$$
(4.15)

Now repeat the procedure by making use of (4.12) and (4.15) in place of (4.9) and (4.10), we have

$$u, v \in C^{2+\lambda, \frac{2+\lambda}{2}}(\overline{Q}_T).$$

$$(4.16)$$

Finally, the estimates (4.12) and (4.15) imply that the hypotheses of Theorem 1.1 are satisfied. So that (u, v) exists globally in time. The proof of Theorem 1.2 is now complete.

5. Stability

In this section, we discuss global asymptotic stability of positive equilibrium point $(\overline{u}, \overline{v})$ for (1.2), namely to prove Theorem 1.3.

Proof of Theorem 1.3. Define the Lyapunov function:

$$H(u,v) = \int_{\Omega} \left[\left(u - \bar{u} - \bar{u} \ln \frac{u}{\bar{u}} \right) + \rho \left(v - \bar{v} - \bar{v} \ln \frac{v}{\bar{v}} \right) \right] dx,$$

where $\rho = (b_2c_1 + 2b_1c_2)b_2^{-2}$. Obviously, H(u, v) is nonnegative and H(u, v) = 0 if and only if $(u, v) = (\bar{u}, \bar{v})$. By Theorem 1.2, H(u, v) is well-posed for $t \ge 0$ if (u, v)is positive solution to system (1.2). The time derivative of H(u, v) for system (1.2) satisfies

$$\begin{split} &\frac{dH(u,v)}{dt} \\ &= \int_{\Omega} \left(\frac{u-\bar{u}}{u} u_t + \rho \frac{v-\bar{v}}{v} v_t \right) dx \\ &= \int_{\Omega} \left\{ \frac{u-\bar{u}}{u} \nabla \cdot \left[(d_1 + 2\alpha_{11}u) \nabla u \right] + (u-\bar{u})(a_1 - b_1u - c_1v) \right. \\ &+ \rho \frac{v-\bar{v}}{v} \nabla \cdot \left[(d_2 + \alpha_{21}u + 2\alpha_{22}v) \nabla v + \alpha_{21}v \nabla u \right] + \rho(v-\bar{v})(a_2 + b_2u - c_2v) \right\} dx \\ &= -\int_{\Omega} \left[\frac{(d_1 + 2\alpha_{11}u)\bar{u}}{u^2} |\nabla u|^2 + \frac{\rho\alpha_{21}\bar{v}}{v} \nabla u \cdot \nabla v + \frac{\rho(d_2 + \alpha_{21}u + 2\alpha_{22}v)\bar{v}}{v^2} |\nabla v|^2 \right] dx \\ &- \int_{\Omega} \left[b_1(u-\bar{u})^2 + (c_1 - \rho b_2)(u-\bar{u})(v-\bar{v}) + c_2\rho(v-\bar{v})^2 \right] dx. \end{split}$$

The second integrand in the above equality is positive definite by the choice of ρ . Meanwhile the first integrand is positive semi-definite if

$$4\rho \overline{u}\overline{v}(d_1 + 2\alpha_{22}u)(d_2 + \alpha_{21}u + 2\alpha_{22}v) > u^2(\alpha_{21}\overline{v})^2.$$
(5.1)

By the Lemma 2.1 and Theorem 1.2, the condition (1.4) implies (5.1). Therefore, when all conditions in Theorem 1.3 hold, there exists positive constant δ depending on b_1, b_2, c_1 and c_2 such that

$$\frac{dH(u,v)}{dt} \le -\delta \int_{\Omega} [(u-\bar{u})^2 + (v-\bar{v})^2] dx.$$
(5.2)

To obtain the uniform convergence of the solution to (1.2), we recall the following result which can be find in [21].

Lemma 5.1. Let a and b positive constant. Assume that $\varphi, \psi \in C^1[a, +\infty)$, $\psi(t) \geq 0, \varphi$ is bounded. If $\varphi'(t) \leq -b\psi(t)$ and $\psi'(t)$ is bounded in $[a, +\infty)$, then $\lim_{t\to\infty} \psi(t) = 0$.

Using integration by parts, Hölder's inequality, Lemma 2.1, and Lemma 4.2, one can easily verify that $\frac{d}{dt} \int_{\Omega} [(u - \bar{u})^2 + (v - \bar{v})^2] dx$ is bounded from above. Then from Lemma 5.1 and (5.2), we have

 $\|u(\cdot,t)-\overline{u}\|_{L^{\infty}(\Omega)}\to 0, \quad \|v(\cdot,t)-\overline{v}\|_{L^{\infty}(\Omega)}\to 0 \quad (t\to\infty).$

Namely, (u, v) converges uniformly to $(\overline{u}, \overline{v})$. By the fact that H(u, v) is decreasing for $t \ge 0$, it is obvious that $(\overline{u}, \overline{v})$ is global asymptotic stable, and the proof of Theorem 1.3 is complete.

Acknowledgements. The author would like to thank professor Sheng-mao Fu for the encouragement and useful discussions, also the anonymous referee for the very careful reading of the original manuscript and the helpful suggestions.

References

- N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biology, 79(1979), 83-99.
- Y. Lou, W. Ni, Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Systems, 4(1998), 193-203.
- [3] Y. Li, C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dynam. Systems, 12(2005), 193-203.
- [4] Seong-A Shim, Uniform boundedness and convergence of solutions to the systems with crossdiffusion dominated by self-diffusion, Nonlinear Analysis: RWA, 4(2003), 65-86.
- [5] Y. S. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dynam. Systems, 9(2003), 1193-1200.
- [6] Y. S. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dynam. Systems, 10(2004), 719-730.
- [7] D. Le, T. Nguyen, Global existence for a class of triangular parabolic system on domains of arbitrary dimension, Proceedings of AMS, 7(2005), 1985-1992.
- [8] P. V. Tuoc, Global eistence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion system on domains of arbitary dimensions, Proceedings of AMS, 135(2007), 3933-3941.
- [9] P. V. Tuoc, On global existence of solutions to a cross-diffusion system, IMA Preprint Series 2149.
- [10] K. Kuto, Y. Yamada, Multiple coexistence states for a prey-predator system with crossdiffusion, J. Differential Equations, 197(2004), 315-348.
- [11] E. Ahmed, A. S. Hegazi, A. S. Elgazzar, On persistence and stability of some biological systems with cross diffusion, Adv. Compelex Syst, 7(2004), 65-76.
- [12] K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 197(2004), 293-314.
- [13] K. Nakashima, Y. Yamada, Positive steady states for prey-predator models with crossdiffusion, Adv. Differential Equations, 1(1996), 1099-1122.
- [14] K. Ryu, I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dynam. Systems, 9(2003), 1049-1061.
- [15] H. Amann, Dynamic theory of quasilinear parabolic equations: Abstract evolution equations, Nonlinear Analysis, 12(1988), 859-919.
- [16] H. Amann, Dynamic theory of quasilinear parabolic equations: Reaction-diffusion, Diff. Int. Eqs, 3(1990), 13-75.
- [17] H. Amann, Dynamic theory of quasilinear parabolic equations: Global existence, Math. Z., 202(1989), 219-250.
- [18] Seong-A Shim, Long-time properties of prey-predator system with cross-diffusion, Commun. Korean Math. Soc. 21(2006), 293-320.
- [19] Seong-A Shim, Global existence of solutions to the prey-predator system with a singel crossdiffusion, Bull. Korean Math. Soc. 43(2006), 443-459.
- [20] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, AMS, 1968.
- [21] M. X. Wang, Nonlinear Parabolic Equation of Parabolic Type. Science Press, Beijing, 1993 (in Chinese).

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China $E\text{-}mail\ address:\ xuluck2001@163.com$