
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 06, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF GLOBAL SOLUTIONS FOR A
PREDATOR-PREY MODEL WITH CROSS-DIFFUSION

SHENGHU XU

Abstract. In this article, we prove the existence of global classical solutions
for a prey-predator model when the space dimension n < 10. Under certain

conditions on the coefficients of the reaction functions, the convergence of
solutions is established for the system with large diffusion by constructing a

Lyapunov function.

1. Introduction

To investigate the spatial segregation under the self and cross population pres-
sure, Shigesada, Kawasaki and Teramoto [1] proposed a competition model in 1979.
Then there have been established many results in the literatures; see for example
[2, 3, 4, 5, 6, 7, 8, 9]. For the cross-diffusion systems with prey-predator type re-
action functions, there are a few results mainly on the steady-state problems with
the elliptic systems, see [10, 11, 12, 13, 14].

In this paper, we study the following cross-diffusion system, with prey-predator
type reactions,

ut −∆[(d1 + α11u+ α12v)u] = u(a1 − b1u− c1v) in Ω× [0,∞),

vt −∆[(d2 + α21u+ α22v)v] = v(a2 + b2u− c2v) in Ω× [0,∞),

∂ηu = ∂ηv = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, η is the
outward unit normal vector of the boundary ∂Ω, and ∂η = ∂/∂η. αij are given
nonnegative constants for i, j = 1, 2. And di, bi, ci(i = 1, 2) and a1 are positive
constants only a2 may be non-positive.

In system (1.1), u and v are nonnegative functions which represent the population
densities of the prey and predator species, respectively, d1 and d2 are the random
diffusion rates of the two species, α11 and α22 are self-diffusion rates, and α12 and
α21 are the so-called cross-diffusion rates. When αij = 0 (i, j = 1, 2), the system
is the well-known Lotka-Volterra prey-predator model. For more details on the
biological background, see references [1, 18].
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Local existence (in time) of solutions to (1.1) was established by Amann in a
series of important papers [15, 16, 17]. His result can be summarized as follows:

Theorem 1.1. Suppose that u0, v0 are in W 1
p (Ω) for some p > n. Then (1.1) has

a unique non-negative smooth solution u(x, t), v(x, t) in

C([0, T ),W 1
p (Ω))

⋂
C∞((0, T ), C∞(Ω))

with maximal existence time T . Moreover, if the solution (u, v) satisfies the estimate

sup
0≤t≤T

‖u(., t)‖W 1
p (Ω) <∞ and sup

0≤t≤T
‖v(., t)‖W 1

p (Ω) <∞,

then T = ∞.

However, little is known about global existence of solutions to (1.1). In 2006,
Shim [18] proved the existence of global solutions to (1.1) in two cases: Case(A)
n = 1, d1 = d2 and α11 = α22 = 0; Case(B) n = 1, 0 < α21 < 8α11 and
0 < α12 < 8α22.

In [19] the author considered the case when α11, α12, α22 > 0 and α21 = 0 for
the system (1.1), and established the existence of global solutions with n = 1.

We shall prove the existence of global solutions to the following system (namely,
the system (1.1) for α12 = 0)

ut −∆[(d1 + α11u)u] = u(a1 − b1u− c1v) in Ω× [0,∞),

vt −∆[(d2 + α21u+ α22v)v] = v(a2 + b2u− c2v) in Ω× [0,∞),

∂ηu = ∂ηv = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω.

(1.2)

This paper draws on ideas from two papers [6] and [9] which deal with cross-
diffusion system with competition type reactions. Duo to the difference in the
reaction functions. Therefore, in order to obtain the Lp-estimate of v, we have
to estimate the term uvp. We also obtain result on the asymptotic stability of the
global solution to (1.2) if the diffusion coefficients are large enough by an important
Lemma 5.1 from [21]. We summarize our results in the following theorems:

Theorem 1.2. Let α22 > 0 and assume that u0 ≥ 0, v0 ≥ 0 satisfy zero Neumann
boundary condition and belong to C2+λ(Ω) for some λ > 0. Then (1.2) possesses
a unique non-negative solution u, v ∈ C2+λ, 2+λ

2 (Ω× [0,∞)) if either (i) α11 = 0 or
(ii) α11 > 0 and n < 10.

Theorem 1.3. Assume that all conditions in Theorem 1.2 are satisfied. Assume
further that

−a1b2
b1c2

<
a2

c2
<
a1

c1
, (1.3)

4ρuvd1d2 > m2(vα21)2. (1.4)

Then (1.2) has the unique positive equilibrium point (u, v) which is global asymptotic
stable, where m is the positive constant in Lemma 2.1 (independent of d1, d2),
ρ = (b2c1 + 2b1c2)b−2

2 and

(u, v) =
(a1c2 − a2c1
b1c2 + b2c1

,
a2b1 + a1b2
b1c2 + b2c1

)
.
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The paper is organized as follows. In section 2, we collect some well known
results and prove three new lemmas that are needed in section 3 and section 4. In
section 3, we establish Lr-estimates of the solution v of (1.2) and in section 4 we
give a proof of Theorem 1.2. In section 5, we give a proof of Theorem 1.3.

2. Preliminaries

We list here some notation.

QT = Ω× [0, T ),

‖u‖Lp,q(QT ) =
( ∫ T

0

(
∫

Ω

|u(x, t)|pdx)
q
p dt

)1/q

, Lp(QT ) := Lp,p(QT ),

‖u‖W 2,1
P (QT ) := ‖u‖Lp(QT ) + ‖ut‖Lp(QT ) + ‖∇u‖Lp(QT ) + ‖∇2u‖Lp(QT ),

‖u‖V2(QT ) := sup
0≤t≤T

‖u(., t)‖L2(Ω) + ‖∇u(x, t)‖L2(QT ).

Firstly, we present some useful lemmas.

Lemma 2.1. Let u, v be a solution of (1.2) in [0, T ). Then 0 ≤ u ≤ m and v ≥ 0
in QT , where m = max{a1

b1
, ‖u0‖L∞(Ω)}.

Proof. The first equation in (1.2) is expressed as

ut = (d1 + 2α11u)∆u+ 2α11∇u · ∇u+ u(a1 − b1u− c1v), (2.1)

and the second equation is written as

vt = (d2+α21u+2α22v)∆v+2(α21∇u+α22∇v)∇v+v(α21∆u+a2+b2u−c2v). (2.2)

Then application of the maximum principle for (2.1) and (2.2) yields the nonnega-
tive of u and v. Applying the maximum principle to (2.1) again one can also show
the boundedness of u. �

Lemma 2.2. There exists a positive C1(T ) such that

sup
0≤t≤T

‖u(., t)‖L1(Ω) < C1(T ), sup
0≤t≤T

‖v(., t)‖L1(Ω) < C1(T ),

‖u‖L2(QT ) < C1(T ), ‖v‖L2(QT ) < C1(T ).

Proof. Integrating the first equation in (1.2) over the domain Ω, we have

d

dt

∫
Ω

u dx = a1

∫
Ω

u dx− b1

∫
Ω

u2dx− c1

∫
Ω

uvdx

≤ a1

∫
Ω

u dx− b1

∫
Ω

u2dx

≤ a1

∫
Ω

u dx− b1
|Ω|

( ∫
Ω

u dx
)2

,

(2.3)

where we used Hölder’s inequality. Then we have ‖u(., t)‖L1(Ω) ≤M ′
1, where M ′

1 =
max{‖u0‖L1(Ω),

a1
b1
|Ω|}. Furthermore,

sup
0≤t≤T

‖u(., t)‖L1(Ω) < C1(T ). (2.4)

Since
d

dt

∫
Ω

u dx ≤ a1

∫
Ω

u dx− b1

∫
Ω

u2dx. (2.5)
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Integrating (2.5) from 0 to T , we have

‖u‖2L2(QT ) ≤
a1

b1
M ′

1|QT |+ ‖u0‖L1(Ω).

Therefore,
‖u‖L2(QT ) ≤ C1(T ). (2.6)

Now, integrating the second equation in the system (1.2) over the domain Ω we
have

d

dt

∫
Ω

vdx = a2

∫
Ω

vdx+ b2

∫
Ω

uvdx− c2

∫
Ω

v2dx. (2.7)

Multiplying (2.3) by b2
c1

and adding it to (2.7), we have

d

dt

∫
Ω

(b2
c1
u+v

)
dx ≤ a1b2

c1

∫
Ω

u dx+ |a2|
∫

Ω

v dx− b1b2
c1

∫
Ω

u2dx−c2
∫

Ω

v2dx. (2.8)

Then

min{1, b2
c1
} d
dt

∫
Ω

(
u+ v

)
dx

≤ max{a1b2
c1

, |a2|}
∫

Ω

(u+ v)dx−min{b1b2
c1

, c2}
∫

Ω

(u2 + v2)dx

≤ max{a1b2
c1

, |a2|}
∫

Ω

(u+ v)dx− 1
2

min{b1b2
c1

, c2}
[ ∫

Ω

(u+ v)dx
]2
.

Therefore, ‖v(., t)‖L1(Ω) ≤M ′
2, where M ′

2 = max{A1
A2
, ‖u0 + v0‖L1(Ω)},

A1 =
max{a1b2

c1
, |a2|}

min{1, b2
c1
}

, A2 =
min{ b1b2

c1
, c2}

2 min{1, b2
c1
}
.

Then
sup

0≤t≤T
‖v(., t)‖L1(Ω) < C1(T ). (2.9)

Integrating (2.8) from 0 to T , we have

c2

∫
QT

v2 dx dt ≤ a1b2
c1

∫ T

0

M ′
1dt+ |a2|

∫ T

0

M ′
2dt+

b2
c1
‖u0‖L1(Ω) + ‖v0‖L1(Ω),

which implies ‖v‖L2(QT ) ≤ C1(T ). �

Lemma 2.3. Let w1 = (d1+α11u)u .Then there exists a constant C2(T ), depending
on ‖u0‖W 1

2 (Ω) and ‖u0‖L∞(Ω) such that

‖w1‖W 2,1
2 (QT ) ≤ C2(T ). (2.10)

Furthermore, ∇w1 ∈ V2(QT ).

Proof. Note that w1 satisfies the equation

w1t = (d1 + 2α11u)∆w1 + n1 + n2v, (2.11)

where n1 = u(d1 + 2α11u)(a1 − b1u), n2 = −c1(d1 + 2α11u)u depend on u and
are bounded functions because of Lemma 2.1. Multiplying the above equation by
−∆w1 and integration by parts over Ω, we have

1
2
d

dt

∫
Ω

|∇w1|2dx = −
∫

Ω

(d1 + 2α11u)(∆w1)2dx−
∫

Ω

(n1 + n2v)∆w1dx. (2.12)
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Integrating (2.12) from 0 to t, we obtain

1
2

∫
Ω

|∇w1(x, t)|2dx−
1
2

∫
Ω

|∇w1(x, 0)|2dx

= −
∫

Qt

(d1 + 2α11u)(∆w1)2 dx dt−
∫

Qt

(n1 + n2v)∆w1 dx dt

≤ −d1

∫
Qt

|∆w1|2 dx dt+
∫

Qt

(n1 + n2v) · |∆w1|dx dt .

By Young’s inequality and Hölder’s inequality, we have

1
2

∫
Ω

|∇w1(x, t)|2dx+ d1

∫
QT

|∆w1|2 dx dt

≤ (‖n1‖L2(QT ) + ‖n2v‖L2(QT )) · ‖∆w1‖L2(QT ) +
1
2

∫
Ω

|∇w1(x, 0)|2dx

≤ m1(1 + ‖v‖L2(QT )) · ‖∆w1‖L2(QT ) +
1
2

∫
Ω

|∇w1(x, 0)|2dx

≤ m1(1 + C1(T )) · ‖∆w1‖L2(QT ) +
1
2

∫
Ω

|∇w1(x, 0)|2dx

≤ d1

2
‖∆w1‖2L2(QT ) +

m2
1(1 + C1(T ))2

2d1
+

1
2

∫
Ω

|∇w1(x, 0)|2dx.

Therefore,

sup
0≤t≤T

∫
Ω

|∇w1|2(x, t)dx+ d1

∫
QT

|∆w1|2 dx dt ≤ m2,

where m2 depends on ‖u0‖W 1
2 (Ω) and ‖u0‖L∞(Ω). This implies ∇w1 ∈ V2(QT ).

Since w1 ∈ L2(QT ) we have from the elliptic regularity estimate [2, Lemma 2.3]∫
QT

‖(w1)xixj
‖2 dx dt ≤ m3 for i, j = 1, . . . , n.

From (2.11), since n1, n2 and u are bounded and v ∈ L2(QT ), we have w1t ∈
L2(QT ). Hence, w1 ∈W 2,1

2 (QT ). �

Let a(x, t, ξ) be continuous and (x, ξ)-differentiable for (x, t, ξ) ∈ QT × R. As-
sume also that a(x, t, ξ) satisfies the following conditions

(i) There is d > 0 such that a(x, t, ξ) ≥ d and aξ(x, t, ξ) ≥ 0 for all (x, t) ∈ QT

and ξ in R.
(ii) There is a continuous function M on R such that a(x, t, ξ) ≤ M(ξ) for all

(x, t) ∈ QT .
(iii) For any bounded measurable function g on QT , |∇xa(., ., g(., .))| is in the

space L2p(QT ).

Lemma 2.4. Assume that w ∈W 2,1
p (QT )

⋂
C2,1(Ω× [0, T )) is a bounded function

satisfying
wt ≤ a(x, t, w)∆w + f(x, t) in QT

with boundary condition ∂w
∂ν ≤ 0 on ∂QT

, where f ∈ Lp(QT ). Then, ∇w is in
L2p(QT ).

The proof of the above lemma can be found in [9, Proposition 2.1].
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Lemma 2.5. Let q > 1, q̃ = 2 + 4q
n(q+1) , β̃ in (0, 1) and let CT > 0 be any number

which may depend on T . Then there is a constant M1 depending on q, n,Ω, β̃ and
CT such that for any g in C([0, T ),W 1

2 (Ω)) with (
∫
Ω
|g(., t)|eβdx)1/eβ ≤ CT for all

t ∈ [0, T ], we have the inequality

‖g‖Leq(QT ) ≤M1

{
1 +

(
sup

0≤t≤T
‖g(., t)‖L2q/q+1(Ω)

)4q/n(q+1)eq‖∇g‖2/eq
L2(QT )

}
.

The proof of the above lemma can be found in [6, Lemmas 2.3, 2.4].

3. Lr-estimates for v

Lemma 3.1. There exists a constant C3(T ) such that ‖∇u‖L4(QT ) ≤ C3(T ).

Proof. Let δ = α11/d1, w1 = (1 + δu)u. By Lemma 2.1, u is bounded. Therefore,
w1 is also bounded. By Lemma 2.3, we have w1 ∈W 2,1

2 (QT ). Moreover, w1 satisfies

w1t ≤ d1(1 + 2δu)∆w1 + a1u(1 + 2δu)

=
√
d2
1 + 4δd1w1∆w1 + a1u(1 + 2δu).

By Lemma 2.4 with p = 2, a(x, t, ξ) =
√
d2
1 + 4δd1ξ, f(x, t) = a1u(x, t)(1 +

2δu(x, t)), we obtain the desired result. �

Lemma 3.2. Let r > 2 and pr = 2r
r−2 be two positive numbers. Assume that

α22 > 0 and assume also that there is a constant Mr,T > 0 depending only on
r, T,Ω and the coefficients of (1.2) such that

‖∇u‖Lr(QT ) ≤Mr,T .

Then for any q > 1, there exists a constant C(r, q, T ) > 0 such that

‖v(., t)‖q
Lq(Ω) + ‖∇(vq/2)‖2L2(Qt)

+ ‖∇(v(q+1)/2)‖2L2(Qt)

≤ C(r, q, T )
(
1 + ‖v‖q−1

L
pr(q−1)

2 (Qt)

)
.

(3.1)

Proof. For any constant q > 1, multiplying the second equation of (1.2) by qvq−1

and using the integration by parts, we obtain

∂

∂t

∫
Ω

vqdx

= q

∫
Ω

vq−1∇ · [(d2 + α21u+ 2α22v)∇v + α21v∇u]dx+ q

∫
Ω

vq(a2 + b2u− c2v)dx

= −q(q − 1)
∫

Ω

vq−2(d2 + α21u+ 2α22v)|∇v|2dx− α21(q − 1)
∫

Ω

∇(vq) · ∇u dx

+ q

∫
Ω

vq(a2 + b2u− c2v)dx

≤ −q(q − 1)d2

∫
Ω

vq−2|∇v|2dx− 2α22q(q − 1)
∫

Ω

vq−1|∇v|2dx

− α21(q − 1)
∫

Ω

∇(vq) · ∇u dx+ q

∫
Ω

vq(a2 + b2u− c2v)dx

= −4(q − 1)d2

q

∫
Ω

|∇(v
q
2 )|2dx− 8α22q(q − 1)

(q + 1)2

∫
Ω

|∇(v
q+1
2 )|2dx
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− α21(q − 1)
∫

Ω

∇(vq) · ∇u dx+ q

∫
Ω

vq(a2 + b2u− c2v)dx.

Integrating the above inequality from 0 to t, we have∫
Ω

vq(x, t)dx+
4(q − 1)d2

q

∫
Qt

|∇(v
q
2 )|2dx dt+

8α22q(q − 1)
(q + 1)2

∫
Qt

|∇(v
q+1
2 )|2 dx dt

≤
∫

Ω

vq(x, 0)dx− α21(q − 1)
∫

Qt

∇(vq) · ∇u dx dt+ q

∫
Qt

vq(a2 + b2u− c2v) dx dt.

(3.2)
By Hölder’s inequality, we have

q

∫
Qt

vq(a2 + b2u− c2v) dx dt

= a2q

∫
Qt

vqdxdt− c2q

∫
Qt

vq+1dxdt+ b2q

∫
Qt

uvqdxdt

≤ −c2q‖v‖q+1
Lq+1(Qt)

+ |a2|q|QT |
1

q+1 ‖v‖q
Lq+1(Qt)

+ b2q

∫
Qt

uvqdxdt

≤ −c2q‖v‖q+1
Lq+1(Qt)

+ |a2|q
[
ε‖v‖q+1

Lq+1(Qt)
+ ε−q|QT |

q
q+1

]
+ b2q

∫
Qt

uvqdxdt

≤ B1 + b2q

∫
Qt

uvqdxdt,

(3.3)

where ε = c2
|a2| , B1 depends on T, q, |Ω| and the coefficients of (1.2).

On the other hand, since that 1
r + 1

2 + 1
pr

= 1, using the Hölder’s inequality and
Poincaré inequality, we have∫

Qt

uvqdxdt =
∫

Qt

u · v
q−1
2 · v

q+1
2 dx dt

≤ ‖v
q−1
2 ‖Lpr (Qt) · ‖v

q+1
2 ‖L2(Qt) · ‖u‖Lr(Qt)

≤ C4m‖v‖(q−1)/2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt).

(3.4)

The substitution (3.4) into (3.3) leads to

q

∫
Qt

vq(a2 + b2u− c2v)dxdt ≤ B1 + C5‖v‖(q−1)/2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt).

(3.5)
Since that 1

r + 1
2 + 1

pr
= 1 and ∇u is in Lr(QT ), using the Hölder’s inequality, we

have∣∣− ∫
Qt

∇(vq) · ∇u dx dt
∣∣ =

2q
q + 1

∣∣ ∫
Qt

v
q−1
2 · ∇(v

(q+1)
2 ) · ∇u dx dt

∣∣
≤ 2q
q + 1

‖v
q−1
2 ‖Lpr (Qt) · ‖∇(v

q+1
2 )‖L2(Qt) · ‖∇u‖Lr(Qt)

≤ 2q
q + 1

‖v‖
q−1
2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt) · ‖∇u‖Lr(Qt)

≤ 2q
q + 1

Mr,T ‖v‖
q−1
2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt).
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The substitution (3.5) and the above inequality into (3.2) leads to∫
Ω

vq(x, t)dx+
4(q − 1)d2

q

∫
Qt

|∇(v
q
2 )|2dx dt+

8α22q(q − 1)
(q + 1)2

∫
Qt

|∇(v
q+1
2 )|2 dx dt

≤ B2 + C6‖v‖
q−1
2

L
pr(q−1)

2 (Qt)
· ‖∇(v

q+1
2 )‖L2(Qt)

≤ B2 +
C6

4ε
‖v‖q−1

L
pr(q−1)

2 (Qt)
+ C6ε‖∇(v

q+1
2 )‖2L2(Qt)

,

(3.6)
where B2 > 0 depending on q, T,Ω coefficients of (1.2) and initial datal v0. For any
ε > 0, from (3.6) and by choosing a sufficiently small ε, such that C6ε <

8α22q(q−1)
(q+1)2 ,

we get (3.1). This completes the proof of the lemma. �

For any number a, we denote a+ = max{a, 0}.

Proposition 3.3. Let α22 > 0.
(i) If α11 > 0, then there is a constant C7(T ) > 0 such that

‖v‖V2(QT ) ≤ C7(T ).

Moreover, for any constant r < 4(n+1)
(n−2)+

, there exists a positive constant CT

such that
‖v‖Lr(QT ) ≤ CT .

(ii) If α11 = 0, then

‖v‖Lr(QT ) ≤ CT for any r > 1.

Proof. (i) Set w = v(q+1)/2 so that vq = w2q/(q+1) and vq+1 = w2. Then

E ≡ sup
0≤t≤T

∫
Ω

vq(x, t)dx+
∫

QT

|∇(v(q+1)/2)|2 dx dt

= sup
0≤t≤T

∫
Ω

w2q/q+1dx+
∫

QT

|∇w|2 dx dt.

Let r0 = 4, p0 = 2r0
r0−2 . By Lemma 3.1, we see that ∇u is in Lr0(QT ). So, from

Lemma 3.2, we have

E + ‖∇(v
q
2 )‖2L2(QT ) ≤ C(r0, q, T )

(
1 + ‖w‖

2(q−1)
q+1

L
p0(q−1)

q+1 (QT )

)
, (3.7)

where C(r0, q, T ) > 0 depending only T,Ω, initial data u0, v0 and the coefficients
of (1.2). Since q > 1, if we restrict our q so that

(np0 − 2n− 4)q ≤ 2n+ np0. (3.8)

Then, p0(q−1)
q+1 ≤ q̃, where q̃ = 2 + 4q

n(q+1) . Therefore, by Hölder’s inequality

‖w‖
L

p0(q−1)
q+1 (QT )

≤ C8(q, T )‖w‖Leq(QT ), (3.9)

where C8(q, T ) = |QT |
q+1

p0(q−1)−
1eq . Setting β̃ = 2/(q + 1) ∈ (0, 1), by Lemma 2.2 we

have

‖w(., t)‖L eβ(Ω) = ‖v(., t)‖
1eβ
L1(Ω) ≤ (C1(T ))

1eβ , ∀t ∈ [0, T ). (3.10)
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Hence, by Lemma 2.5 and the definition of E, (3.10) yields

‖w‖Lp0(q−1)/q+1(QT ) ≤ C8(q, T )‖w‖Leq(QT ) ≤ C8(q, T )M1{1 + E2/neqE 1eq }. (3.11)

Then (3.7) together with the above inequality, we can find a constant C9(q, T ) > 0
such that

E ≤ C9(q, T )(1 + EµEν) (3.12)

with

µ =
4(q − 1)
nq̃(q + 1)

, ν =
2(q − 1)
q̃(q + 1)

.

Since

µ+ ν =
2(q − 1)
q̃(q + 1)

[ 2
n

+ 1
]
<

1
q̃

[ 4q
n(q + 2)

+ 2
]

= 1,

it is easy to see from (3.12) that E is bounded. Therefore, from (3.11) and (3.12)
we get w ∈ Leq(QT ) which in turn implies that v ∈ Lr(QT ) with r = eq(q+1)

2 for any
q satisfying (3.8). Now, looking at (3.8), if n ≤ 2, we have

np0 − 2n− 4 = 2(n− 2) ≤ 0, (3.13)

then (3.8) holds for all q. so for n ≤ 2, v ∈ Lr(QT ) for all r > 1. Now, suppose
that n > 2, we see (3.8) is equivalent to

1 < q < q0 :=
2n+ np0

(np0 − 2n− 4)
=

3n
n− 2

.

Then, we have

q̃(q + 1)
2

= q + 1 +
2q
n
≤ r1 := q0 + 1 +

2q0
n

=
4(n+ 1)
n− 2

.

So, we see that v is in Lr(QT ) for all 1 < r ≤ r1. Since (3.8) holds true for q = 2.
So when q = 2, we have E is finite. Therefore, from (3.7) and (3.11), we see that
‖v‖V2(QT ) is bounded for any n, this completes the proof of Proposition 3.3 when
α11 > 0 and r < 4(n+2)

(n−2)+
.

Next, we consider the case α11 = 0. By Hölder’s inequality, we have

q

∫
Qt

vq(a2 + b2u− c2v) dx dt

= a2q

∫
Qt

vqdxdt− c2q

∫
Qt

vq+1dxdt+ b2q

∫
Qt

uvqdxdt

≤ −c2q‖v‖q+1
Lq+1(Qt)

+ |a2|q|QT |
1

q+1 ‖v‖q
Lq+1(Qt)

+ b2q‖v‖q
Lq+1(Qt)

· ‖u‖Lq+1(Qt)

≤ −c2q‖v‖q+1
Lq+1(Qt)

+ |a2|q|QT |
1

q+1 ‖v‖q
Lq+1(Qt)

+ b2qm‖v‖q
Lq+1(Qt)

≤ −c2q‖v‖q+1
Lq+1(Qt)

+ qε‖v‖q+1
Lq+1(Qt)

+B3

≤ B3,

(3.14)

where ε = c2 and B3 > 0 which depends only on T, q, |Ω|, ‖u0‖L∞(Ω) and the
coefficients of (1.2).
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We can integrate by parts once to obtain from Lemma 2.1 and analogue of [20,
Theorem 9.1, p. 341-342] for Neumann boundary condition [20, p.351]∣∣− ∫

Qt

∇(vq) · ∇u dx dt
∣∣

=
∣∣− ∫

Qt

vq∆u dx dt
∣∣

≤ ‖v‖q
Lq+1(QT ) · ‖∆u‖Lq+1(QT )

≤ C10‖v‖q
Lq+1(QT )

(
‖u(a1 − b1u− c1v)‖Lq+1(QT ) + ‖u0‖

W
2− 2

q+1
q+1 (Ω)

)
≤ C11

(
1 + ‖v‖q+1

Lq+1(QT )

)
.

(3.15)

The substitution of (3.14) and (3.15) into (3.2) leads to

sup
0≤t≤T

‖vq(t)‖q
Lq(Ω) + ‖∇(v(q+1)/2)‖2L2(QT ) ≤ C12

(
1 + ‖v‖q+1

Lq+1(QT )

)
. (3.16)

We introduce w = v
q+1
2 , then (3.16) leads to

E ≡ sup
0≤t≤T

‖w(t)‖
2q

q+1

L
2q

q+1 (Ω)
+ ‖∇w‖2L2(QT ) ≤ C12

(
1 + ‖w‖2L2(QT )

)
. (3.17)

Recall that Lemma 2.2 implies v ∈ L2(QT ), so ‖w‖
L

4
q+1 (QT )

≤ C13. Since 4
q+1 <

2 ≤ q̃. Then we see from Hölder’s inequality

‖w‖2L2(QT ) ≤ ‖w‖2(1−λ)

Leq(QT )
‖w‖2λ

L
4

q+1 (QT )
≤ C2λ

13 ‖w‖
2(1−λ)

Leq(QT )
, (3.18)

where λ = ( 1
2−

1eq )/( q+1
4 − 1eq ). Setting β̃ = 2/(q+1) ∈ (0, 1), we have ‖w(., t)‖L eβ(Ω) =

‖v(., t)‖
1eβ
L1(Ω) ≤ C1(T )

1eβ for all t ∈ [0, T ) by Lemma 2.2. Then it follow from (3.17),
(3.18) and Lemma 2.5 that

E ≤ C14(1 + Eα) (3.19)

with

α =
2(1− λ)

q̃

( 2
n

+ 1
)
< 1.

Thus (3.19) implies

sup
0≤t≤T

‖w(t)‖
2q

q+1

L
2q

q+1 (Ω)
≤ E ≤ C15

with some C15 > 0, let r = q > 1, so that sup0≤t≤T ‖v(t)‖Lr(Ω) ≤ CT and the proof
is complete. �

4. Proof of Theorem 1.2

The first step of the proof is to show v is in Lr(QT ) for any r > 1.

Lemma 4.1. Let α11 > 0 and suppose that there are r1 > max{n+2
2 , 3} and a

positive constant Cr1,T such that

‖v‖Lr1 (QT ) ≤ Cr1,T .

Then, v is in Lr(QT ) for any r > 1.
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Proof. The proof is almost identical to [9, Lemma 4.1], but for completeness we
repeat it here. First, the equation for u can be written in the divergence form as

ut = ∇ · [(d1 + 2α11u)∇u] + u(a1 − b1u− c1v), (4.1)

where d1 + 2α11u is bounded in QT by Lemma 2.1 and u(a1 − b1u− c1v) is in Lr1

with r1 >
n+2

2 . Application of the Hölder continuity result in [20, Theorem 10.1,
p. 204] to (4.1) yields

u ∈ Cβ, β
2 (QT ) with some β > 0. (4.2)

Moreover, we have
w1t = (d1 + 2α11u)∆w1 + f1, (4.3)

where w1 = (d1 +α11u)u is as in the proof of Lemma 2.3, f1 = (d1 + 2α11u)u(a1−
b1u−c1v). Since u is bounded and by the assumption of this Lemma, we see that f1
is in Lr1(QT ). From (4.2), Lemma 2.1 and Proposition 3.3, applying [20, Theorem
9.1, pp. 341-342] and its remark [20, P. 351], we have

w1 ∈W 2,1
r1

(QT ). (4.4)

This implies ∇u = 1
d1+2α11u∇w1 in Lr1(QT ). Now, following the proof of Proposi-

tion 3.3 with r1 instead of r0 and p1 = 2r1
r1−2 instead of p0, we see that either v is

in Lr(QT ) for any r > 1 or else v is in Lr2(QT ) with

r2 :=
(n+ 1)r1
n+ 2− r1

.

The later case happens if and only if n+ 2− r1 > 0.
If v is in Lr2(QT ), we see that f1 is in Lr2(QT ). Therefore, applying [20, Theorem

9.1, p. 341-342] and its remark [20, p. 351] again, we have ∇u in Lr2(QT ). Then
we go back and do the same argument again. Keep doing likes this we will get a
sequence of numbers

rk+1 :=
(n+ 1)rk
n+ 2− rk

. (4.5)

We stop and get the conclusion that v is in Lr(QT ) for any r > 1 when

n+ 2− rk ≤ 0. (4.6)

Since r1 > 3, from (4.5) we can prove by induction that rk > 3, k = 1, 2, . . . . Then,
we have

rk+1

rk
=

n+ 1
n+ 2− rk

≥ n+ 1
n− 1

> 1. (4.7)

Thus, the sequence rk is strictly increasing. Therefore, there must be some k such
that (4.6) holds. we stop at this k and conclude that v is in Lr(QT ) for any r > 1,
namely, there is a positive constant C16 such that ‖v‖Lr(QT ) ≤ C16, where C16 > 0
depending on q, T,Ω and the coefficients of the system (1.2) but not on r. �

So, from Proposition 3.3 and Lemma 4.1, we have the following lemma.

Lemma 4.2. Let α22 > 0 and suppose (i) α11 = 0 or (ii) α11 > 0 and n < 10.
Then there exists M2 such that

‖v‖Lr(QT ) ≤M2 for any r > 1.

Moreover, for any r > 1, v is in V2(QT ).
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Proof of Theorem 1.2. We give the proof only in case α11 > 0 because the proof for
α11 = 0 is essentially the same. By Lemma 4.2, v is bounded in QT . From (4.3),
we have

w1t = (d1 + 2α11u)∆w1 + f1,

where f1 = (d1 + 2α11u)u(a1 − b1u − c1v) is bounded in QT by Lemma 2.1 and
Lemma 4.2, (d1 + 2α11u) ∈ Cβ, β

2 (QT ) by (4.2). By [20, Theorem 9.1, p.341-342],
we have

‖w1‖W 2,1
r

(QT ) < M3 for
n+ 2

2
< r <

4(n+ 1)
(n− 2)+

.

Hence it follows from [20, Lemma 3.3, p.80] that

w1 ∈ C1+β∗,
(1+β∗)

2 (QT ), ∀ 0 < β∗ < 1. (4.8)

Since u = −d1+
√

d2
1+4w1α11

2α11
, it follow from (4.8) that

u ∈ C1+β∗,
(1+β∗)

2 (QT ), ∀ 0 < β∗ < 1. (4.9)

Next, we rewrite the equation for v in divergence form as

vt = ∇ · [(d2 + α21u+ 2α22v)∇v + α21v∇u] + f2(x, t),

where f2(x, t) = v(a2 + b2u− c2v), u, v and ∇u are all bounded functions because
of Lemma 2.1, Lemma 4.2 and (4.9). By [20, Theorem 10.1, p.204], we have

v ∈ Cσ, σ
2 (QT )with some0 < σ < 1. (4.10)

Now, we then return to the equation for u and write it as

ut = (d1 + 2α11u)∆u+ f3(x, t), (4.11)

where f3(x, t) = 2α11|∇u|2 + u(a1 − b1u − c1v) ∈ Cσ, σ
2 (QT ) by (4.9) and (4.10).

Then the Schuader estimate in [20, Theorem 5.3, p.320-321] applied to (4.11) yields

u ∈ C2+σ∗, 2+σ∗
2 (QT ) with σ∗ = min{λ, σ}. (4.12)

Let w2 = (d2 + α21u+ α22v)v. Then w2 satisfies

w2t = (d2 + α21u+ 2α22v)∆w2 + f4(x, t), (4.13)

where f4(x, t) = (d2 + α21u + 2α22v)v(a2 + b2u − c2v) + α21vut ∈ Cσ∗, σ∗
2 (QT ) by

(4.11) and (4.12), d2 + α21u+ 2α22v ∈ Cσ, σ
2 (QT ) by (4.9) and (4.10), by applying

the Schuader estimate to the equation (4.13), we have

w2 ∈ C2+σ∗, 2+σ∗
2 (QT ). (4.14)

Then

v =
−(d2 + α21u) +

√
(d2 + α21u)2 + 4w2α22

2α22
∈ C2+σ∗, 2+σ∗

2 (QT ). (4.15)

Now repeat the procedure by making use of (4.12) and (4.15) in place of (4.9) and
(4.10), we have

u, v ∈ C2+λ, 2+λ
2 (QT ). (4.16)

Finally, the estimates (4.12) and (4.15) imply that the hypotheses of Theorem 1.1
are satisfied. So that (u, v) exists globally in time. The proof of Theorem 1.2 is
now complete. �
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5. Stability

In this section, we discuss global asymptotic stability of positive equilibrium
point (u, v) for (1.2), namely to prove Theorem 1.3.

Proof of Theorem 1.3. Define the Lyapunov function:

H(u, v) =
∫

Ω

[
(u− ū− ū ln

u

ū
) + ρ(v − v̄ − v̄ ln

v

v̄
)
]
dx,

where ρ = (b2c1 + 2b1c2)b−2
2 . Obviously, H(u, v) is nonnegative and H(u, v) = 0 if

and only if (u, v) = (u, v). By Theorem 1.2, H(u, v) is well-posed for t ≥ 0 if (u, v)
is positive solution to system (1.2). The time derivative of H(u, v) for system (1.2)
satisfies
dH(u, v)

dt

=
∫

Ω

(u− ū

u
ut + ρ

v − v̄

v
vt

)
dx

=
∫

Ω

{u− ū

u
∇ · [(d1 + 2α11u)∇u] + (u− ū)(a1 − b1u− c1v)

+ ρ
v − v̄

v
∇ · [(d2 + α21u+ 2α22v)∇v + α21v∇u] + ρ(v − v̄)(a2 + b2u− c2v)}dx

= −
∫

Ω

[ (d1 + 2α11u)ū
u2

|∇u|2 +
ρα21v̄

v
∇u · ∇v +

ρ(d2 + α21u+ 2α22v)v̄
v2

|∇v|2
]
dx

−
∫

Ω

[b1(u− ū)2 + (c1 − ρb2)(u− ū)(v − v̄) + c2ρ(v − v̄)2]dx.

The second integrand in the above equality is positive definite by the choice of ρ.
Meanwhile the first integrand is positive semi-definite if

4ρuv(d1 + 2α22u)(d2 + α21u+ 2α22v) > u2(α21v)2. (5.1)

By the Lemma 2.1 and Theorem 1.2, the condition (1.4) implies (5.1). Therefore,
when all conditions in Theorem 1.3 hold, there exists positive constant δ depending
on b1, b2, c1 and c2 such that

dH(u, v)
dt

≤ −δ
∫

Ω

[(u− ū)2 + (v − v̄)2]dx. (5.2)

To obtain the uniform convergence of the solution to (1.2), we recall the following
result which can be find in [21].

Lemma 5.1. Let a and b positive constant. Assume that ϕ,ψ ∈ C1[a,+∞),
ψ(t) ≥ 0, ϕ is bounded. If ϕ′(t) ≤ −bψ(t) and ψ′(t) is bounded in [a,+∞), then
limt→∞ ψ(t) = 0.

Using integration by parts, Hölder’s inequality, Lemma 2.1, and Lemma 4.2, one
can easily verify that d

dt

∫
Ω
[(u − ū)2 + (v − v̄)2]dx is bounded from above. Then

from Lemma 5.1 and (5.2), we have

‖u(·, t)− u‖L∞(Ω) → 0, ‖v(·, t)− v‖L∞(Ω) → 0 (t→∞).

Namely, (u, v) converges uniformly to (u, v). By the fact that H(u, v) is decreasing
for t ≥ 0, it is obvious that (u, v) is global asymptotic stable, and the proof of
Theorem 1.3 is complete. �
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