Electronic Journal of Differential Equations, Vol. 2008(2008), No. 03, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SUFFICIENT CONDITIONS FOR THE OSCILLATION OF SOLUTIONS TO NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

AHMED BERKANE

Abstract

We present sufficient conditions for all solutions to a second-order ordinary differential equations to be oscillatory.

1. Introduction

Kirane and Rogovchenko [4] studied the oscillatory solutions of the equation

$$
\begin{equation*}
\left[r(t) \psi(x(t)) x^{\prime}(t)\right]^{\prime}+p(t) x^{\prime}(t)+q(t) f(x(t))=g(t), \quad t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where $t_{0} \geq 0, r(t) \in C^{1}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right), p(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right), q(t) \in C\left(\left[t_{0}, \infty\right)\right.$; $(0, \infty)), q(t)$ is not identical zero on $\left[t_{*}, \infty\right)$ for some $t_{*} \geq t_{0}, f(x), \psi(x) \in C(\mathbb{R}, \mathbb{R})$ and $\psi(x)>0$ for $x \neq 0$. Their results read as follows

Theorem 1.1. Case $g(t) \equiv 0$: Assume that for some constants K, C, C_{1} and for all $x \neq 0, f(x) / x \geq K>0$ and $0<C \leq \Psi(x) \leq C_{1}$. Let $h, H \in C(D, R)$, where $D=\left\{(t, s): t \geq s \geq t_{0}\right\}$, be such that
(i) $H(t, t)=0$ for $t \geq t_{0}, H(t, s)>0$ in $D_{0}=\left\{(t, s): t \geq s \geq t_{0}\right\}$
(ii) H has a continuous and non-positive partial derivative in D_{0} with respect to the second variable, and

$$
-\frac{\partial H}{\partial s}=h(t, s) \sqrt{H(t, s)}
$$

for all $(t, s) \in D_{0}$.
If there exists a function $\rho \in C^{1}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right)$ such that

$$
\limsup _{t \rightarrow+\infty} \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t}\left[H(t, s) \Theta(s)-\frac{C_{1}}{4} \rho(s) r(s) Q^{2}(t, s)\right] d s=\infty
$$

where

$$
\begin{aligned}
\Theta(t) & =\rho(t)\left(K q(t)-\left(\frac{1}{C}-\frac{1}{C_{1}}\right) \frac{p^{2}(t)}{4 r(t)}\right) \\
Q(t, s) & =h(t, s)+\left[\frac{p(s)}{C_{1} r(s)}-\frac{\rho^{\prime}(s)}{\rho(s)}\right] \sqrt{H(t, s)}
\end{aligned}
$$

2000 Mathematics Subject Classification. 34C15.
Key words and phrases. Nonlinear differential equations; oscillation.
(C) 2008 Texas State University - San Marcos.

Submitted September 7, 2007. Published January 2, 2008.
then (1.1) is oscillatory.
Theorem 1.2. Case $g(t) \neq 0$: Let the assumptions of theorem 1 be satisfied and suppose that the function $g(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right)$ satisfies

$$
\int^{\infty} \rho(s)|g(s)| d s=N<\infty
$$

Then any proper solution $x(t)$ of 1.1; i.e, a non-constant solution which exists for all $t \geq t_{0}$ and satisfies $\sup _{t \geq t_{0}}|x(t)|>0$, satisfies

$$
\liminf _{t \rightarrow \infty}|x(t)|=0
$$

Note that localization of the zeros is not given in the work by Kirane and Rogovchenko [4. Here we intend to give conditions that allow us to localize the zeros of solutions to (1.1). Observe that in contrast to 4 where a Ricatti type transform,

$$
v(t)=\rho \frac{r(t) \psi(x(t)) x^{\prime}(t)}{x(t)}
$$

is used, here we simply use a usual Ricatti transform.

2. Main Results

Differential equation without a forcing term. Consider the second-order differential equation

$$
\begin{equation*}
\left[r(t) \psi(x(t)) x^{\prime}(t)\right]^{\prime}+p(t) x^{\prime}(t)+q(t) f(x(t))=0, \quad t \geq t_{0} \tag{2.1}
\end{equation*}
$$

where $\left.\left.t_{0} \geq 0, r(t) \in C^{1}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right), p(t) \in C\left(\left[t_{0}, \infty\right)\right) ; \mathbb{R}\right), q(t) \in C\left(\left[t_{0}, \infty\right)\right) ; R\right)$, $p(t)$ and $q(t)$ are not identical zero on $\left[t_{\star}, \infty\right)$ for some $t_{\star} \geq t_{0}, f(x), \psi(x) \in C(\mathbb{R}, \mathbb{R})$ and $\psi(x)>0$ for $x \neq 0$.

The next theorem follows the ideas in Nasr [6]. Assume that there exists an interval $[a, b]$, where $a, b \geq t_{\star}$, such that $e(t) \geq 0$.

Theorem 2.1. Assume that for some constants K, C, C_{1} and for all $x \neq 0$,

$$
\begin{gather*}
\frac{f(x)}{x} \geq K \geq 0 \tag{2.2}\\
0<C \leq \psi(x) \leq C_{1} \tag{2.3}
\end{gather*}
$$

Suppose further there exists a continuous function $u(t)$ such that $u(a)=u(b)=0$, $u(t)$ is differentiable on the open set $(a, b), a, b \geq t_{\star}$, and

$$
\begin{equation*}
\int_{a}^{b}\left[\left(K q(t)-\frac{p^{2}(t)}{2 C r(t)}\right) u^{2}(t)-2 C_{1} r(t)\left(u^{\prime}\right)^{2}(t)\right] d t \geq 0 \tag{2.4}
\end{equation*}
$$

Then every solution of (2.1) has a zero in $[a, b]$.
Proof. Let $x(t)$ be a solution of (2.1) that has zero on $[a, b]$. We may assume that $x(t)>0$ for all $t \in[a, b]$ since the case when $x(t)<0$ can be treated analogously. Let

$$
\begin{equation*}
v(t)=-\frac{x^{\prime}(t)}{x(t)}, \quad t \in[a, b] . \tag{2.5}
\end{equation*}
$$

Multiplying this equality by $r(t) \psi(x(t))$ and differentiate the result. Using 2.1 we obtain

$$
\begin{aligned}
(r(t) \psi(x(t)) v(t))^{\prime}= & -\frac{\left(r(t) \psi(x(t)) x^{\prime}(t)\right)^{\prime}}{x(t)}+r(t) \psi(x(t)) v^{2}(t) \\
= & -p(t) v(t)+q(t) \frac{f(x(t))}{x(t)}+r(t) \psi(x(t)) v^{2}(t) \\
= & \frac{(r(t) \psi(x(t))}{2} v^{2}(t)+\frac{r(t) \psi(x(t))}{2}\left(v^{2}(t)-2 \frac{p(t)}{r(t) \psi(x(t)) v(t)}\right) \\
& +q(t) \frac{f(x(t))}{x(t)} \\
= & \frac{(r(t) \psi(x(t))}{2} v^{2}(t)+\frac{r(t) \psi(x(t))}{2}\left(v(t)-\frac{p(t)}{(r(t) \psi(x(t))}\right)^{2} \\
& -\frac{p^{2}(t)}{2 r(t) \psi(x(t))}+q(t) \frac{f(x(t))}{x(t)} .
\end{aligned}
$$

Using $2.2-2.3$ and the fact that

$$
\frac{(r(t) \psi(x(t))}{2}\left(v(t)-\frac{p(t)}{r(t) \psi(x(t))}\right)^{2} \geq 0
$$

we have

$$
\begin{equation*}
(r(t) \psi(x(t)) v(t))^{\prime} \geq \frac{(r(t) \psi(x(t))}{2} v^{2}(t)-\frac{p^{2}(t)}{2 C r(t)}+K q(t) \tag{2.6}
\end{equation*}
$$

Multiplying both sides of this inequality by $u^{2}(t)$ and integrating on $[a, b]$. Using integration by parts on the left side, the condition $u(a)=u(b)=0$ and 2.3 , we obtain

$$
\begin{aligned}
0 \geq & \int_{a}^{b} \frac{r(t) \psi(x(t))}{2} v^{2}(t) u^{2}(t) d t+2 \int_{a}^{b} r(t) \psi(x(t)) v(t) u(t) u^{\prime}(t) d t \\
& +\int_{a}^{b} K q(t) u^{2}(t) d t-\int_{a}^{b} \frac{p^{2}(t)}{2 C r(t)} u^{2}(t) d t \\
\geq & \int_{a}^{b} \frac{r(t) \psi(x(t))}{2}\left(v^{2}(t) u^{2}(t)+4 v(t) u(t) u^{\prime}(t)\right) d t \\
& +\int_{a}^{b} K q(t) u^{2}(t) d t-\int_{a}^{b} \frac{p^{2}(t) u^{2}(t)}{2 C r(t)} d t \\
\geq & \int_{a}^{b} \frac{r(t) \psi(x(t))}{2}\left[v(t) u(t)+2 u^{\prime}(t)\right]^{2} d t-2 \int_{a}^{b} r(t) \psi(x(t)) u^{\prime 2}(t) d t \\
& +\int_{a}^{b} K q(t) u^{2}(t) d t-\int_{a}^{b} \frac{p^{2}(t)}{2 C r(t)} u^{2}(t) d t \\
\geq & \int_{a}^{b}\left[\left(K q(t)-\frac{p^{2}(t)}{2 C r(t)}\right) u^{2}(t)-2 r(t) \psi(x(t)) u^{\prime 2}(t)\right] d t \\
& +\int_{a}^{b} \frac{r(t) \psi(x(t))}{2}\left[v(t) u(t)+2 u^{\prime}(t)\right]^{2} d t
\end{aligned}
$$

Now, from we have

$$
\begin{aligned}
0 \geq & \int_{a}^{b}\left[\left(K q(t)-\frac{p^{2}(t)}{2 C r(t)}\right) u^{2}(t)-2 r(t) C_{1} u^{\prime 2}(t)\right] d t \\
& +\int_{a}^{b} \frac{r(t) \psi(x(t))}{2}\left[v(t) u(t)+2 u^{\prime}(t)\right]^{2} d t
\end{aligned}
$$

If the first integral on the right-hand side of the inequality is greater than zero, then we have directly a contradiction. If the first integral is zero and the second is also zero then $x(t)$ has the same zeros as $u(t)$ at the points a and $b ;\left(x(t)=k u^{2}(t)\right)$, which is again a contradiction with our assumption.

Corollary 2.2. Assume that there exist a sequence of disjoint intervals $\left[a_{n}, b_{n}\right]$, and a sequence of functions $u_{n}(t)$ defined and continuous an $\left[a_{n}, b_{n}\right]$, differentiable on $\left(a_{n}, b_{n}\right)$ with $u_{n}\left(a_{n}\right)=u_{n}\left(b_{n}\right)=0$, and satisfying assumption 2.4. Let the conditions of Theorem 2.1, hold. Then 2.1 is oscillatory.

Differential equation with a forcing term. Consider the differential equation

$$
\begin{equation*}
\left[r(t) \psi(x(t)) x^{\prime}(t)\right]^{\prime}+p(t) x^{\prime}(t)+q(t) f(x(t))=g(t), \quad t \geq t_{0} \tag{2.7}
\end{equation*}
$$

where $\left.t_{0} \geq 0, g(t) \in C\left(\left[t_{0}, \infty\right) ; \mathbb{R}\right) r(t) \in C^{1}\left(\left[t_{0}, \infty\right) ;(0, \infty)\right), p(t) \in C\left(\left[t_{0}, \infty\right)\right) ; R\right)$, $\left.q(t) \in C\left(\left[t_{0}, \infty\right)\right) ; R\right), p(t)$ and $q(t)$ are not identical zero on $\left[t_{\star}, \infty\left[\right.\right.$ for some $t_{\star} \geq t_{0}$, $f(x), \psi(x) \in C(\mathbb{R}, \mathbb{R})$ and $\psi(x)>0$ for $x \neq 0$.

Assume that there exists an interval $[a, b]$, where $a, b \geq t_{\star}$, such that $g(t) \geq 0$ and there exists $c \in(a, b)$ such that $g(t)$ has different signs on $[a, c]$ and $[c, b]$. Without loss of generality, let $g(t) \leq 0$ on $[a, c]$ and $g(t) \geq 0$ on $[c, b]$.

Theorem 2.3. Let 2.3 hold and assume that

$$
\begin{equation*}
\frac{f(x)}{x|x|} \geq K \tag{2.8}
\end{equation*}
$$

for a positive constant K and for all $x \neq 0$. Furthermore assume that there exists a continuous function $u(t)$ such that $u(a)=u(b)=u(c)=0, u(t)$ differentiable on the open set $(a, c) \cup(c, b)$, and satisfies the inequalities

$$
\begin{gather*}
\int_{a}^{c}\left[\left(\sqrt{K q(t) g|(t)|}-\frac{p^{2}(t)}{2 C r(t)}\right) u^{2}-2 C_{1} r(t)\left(u^{\prime}\right)^{2}(t)\right] d(t) \geq 0 \tag{2.9}\\
\int_{c}^{b}\left[\left(\sqrt{K q(t) g|(t)|}-\frac{p^{2}(t)}{2 C r(t)}\right) u^{2}-2 C_{1} r(t)\left(u^{\prime}\right)^{2}(t)\right] d(t) \geq 0 \tag{2.10}
\end{gather*}
$$

Then every solution of equation (2.7) has a zero in $[a, b]$.
Proof. Assume to the contrary that $x(t)$, a solution of 2.7), has no zero in $[a, b]$. Let $x(t)<0$ for example. Using the same computations as in the first part, we
obtain:

$$
\begin{aligned}
(r(t) \psi(x(t)) v(t))^{\prime}= & -\frac{\left(r(t) \psi(x(t)) x^{\prime}(t)\right)^{\prime}}{x(t)}+r(t) \psi(x(t)) v^{2}(t)-\frac{g(t)}{x(t)} \\
= & -p(t) v(t)+q(t) \frac{f(x(t))}{x(t)}+r(t) \psi(x(t)) v^{2}(t)-\frac{g(t)}{x(t)} \\
= & \frac{(r(t) \psi(x(t))}{2} v^{2}(t)+\frac{r(t) \psi(x(t))}{2}\left(v^{2}(t)-2 \frac{p(t) v(t)}{r(t) \psi(x(t))}\right) \\
& +q(t) \frac{f(x(t))}{x(t)}-\frac{g(t)}{x(t)} \\
= & \frac{(r(t) \psi(x(t))}{2} v^{2}(t)+\frac{r(t) \psi(x(t))}{2}\left(v(t)-\frac{p(t)}{r(t) \psi(x(t)) v(t)}\right)^{2} \\
& -\frac{p^{2}(t)}{2 r(t) \psi(x(t))}+q(t) \frac{f(x(t))}{x(t)}-\frac{g(t)}{x(t)}
\end{aligned}
$$

For $t \in[c, b]$ we have

$$
\begin{aligned}
(r(t) \psi(x(t)) v(t))^{\prime}= & \frac{r(t) \psi(x(t))}{2} v^{2}(t)+\frac{r(t) \psi(x(t))}{2}\left(v(t)-\frac{p(t)}{r(t) \psi(x(t))}\right)^{2} \\
& -\frac{p^{2}(t)}{2 r(t) \psi(x(t))}+q(t) \frac{f(x(t))}{x(t)|x(t)|}|x(t)|+\frac{|g(t)|}{|x(t)|}
\end{aligned}
$$

From (2.8), and using the fact that

$$
\frac{r(t) \psi(x(t))}{2}\left(v(t)-\frac{p(t)}{r(t) \psi(x(t))}\right)^{2} \geq 0
$$

we deduce

$$
\begin{equation*}
(r(t) \psi(x(t)) v(t))^{\prime} \geq \frac{(r(t) \psi(x(t))}{2} v^{2}(t)-\frac{p^{2}(t)}{2 r(t) \psi(x(t))}+K q(t)|x(t)|+\frac{|g(t)|}{|x(t)|} \tag{2.11}
\end{equation*}
$$

Using the Hölder inequality in 2.11 we obtain

$$
\begin{equation*}
(r(t) \psi(x(t)) v(t))^{\prime} \geq \frac{(r(t) \psi(x(t))}{2} v^{2}(t)+\sqrt{K q(t)|g(t)|}-\frac{p^{2}(t)}{2 r(t) \psi(x(t))} \tag{2.12}
\end{equation*}
$$

Multiplying both sides of this inequality by $u^{2}(t)$ and integrating on $[c, b]$, we obtain after using integration by parts on the left-hand side and the condition $u(c)=$ $u(b)=0$,

$$
\begin{aligned}
0 \geq & \int_{c}^{b} \frac{r(t) \psi(x(t))}{2} v^{2}(t) u^{2}(t) d t+\int_{c}^{b} \sqrt{K q(t)|g(t)|} u^{2}(t) d t \\
& -\int_{c}^{b} \frac{p^{2}(t) u^{2}(t)}{2 r(t) \psi(x(t))} d t+2 \int_{c}^{b} r(t) \psi(x(t)) v(t) u(t) u^{\prime}(t) d t \\
\geq & \int_{c}^{b} \frac{r(t) \psi(x(t))}{2}\left[v(t) u(t)-2 u^{\prime}(t)\right]^{2} d t-2 \int_{c}^{b} r(t) \psi(x(t)) u^{\prime 2}(t) d t \\
& +\int_{c}^{b} \sqrt{K q(t)|g(t)|} u^{2}(t) d t-\int_{c}^{b} \frac{p^{2}(t) u^{2}(t)}{2 r(t) \psi(x(t))} d t
\end{aligned}
$$

Assumption 2.3) allows us to write

$$
\begin{aligned}
0 \geq & \int_{c}^{b} \frac{r(t) \psi(x(t))}{2}\left[v(t) u(t)+2 u^{\prime}(t)\right]^{2} d t-2 \int_{c}^{b} C_{1} r(t)\left(u^{\prime}\right)^{2}(t) d t \\
& +\int_{c}^{b} \sqrt{K q(t)|g(t)|} u^{2}(t) d t-\int_{c}^{b} \frac{p^{2}(t) u^{2}(t)}{2 C r(t)} d t \\
\geq & \int_{c}^{b} \frac{r(t) \psi(x(t))}{2}\left[v(t) u(t)+2 u^{\prime}(t)\right]^{2} d t \\
& +\int_{c}^{b}\left[\left(\sqrt{K q(t) g|(t)|}-\frac{p^{2}(t)}{2 C r(t)}\right) u^{2}(t)-2 C_{1} r(t)\left(u^{\prime}\right)^{2}(t)\right] d t .
\end{aligned}
$$

This leads to a contradiction as in Theorem 2.1 the proof is complete.
Corollary 2.4. Assume that there exist a sequence of disjoint intervals $\left[a_{n}, b_{n}\right] a$ sequences of points $c_{n} \in\left(a_{n}, c_{n}\right)$, and a sequence of functions $u_{n}(t)$ defined and continuous on $\left[a_{n}, b_{n}\right]$, differentiable on $\left(a_{n}, c_{n}\right) \cup\left(c_{n}, b_{n}\right)$ with $u_{n}\left(a_{n}\right)=u_{n}\left(b_{n}\right)=$ $u_{n}\left(c_{n}\right)=0$, and satisfying assumptions $2.9-2.10$. Let the conditions of Theorem 2.3 hold. Then (2.7) is oscillatory.

References

[1] M. A. El-Sayed, An oscillation criterion for forced second order linear differential equation, Proc. Amer. Math. Soc. 33 (1972), 613-817.
[2] A. G. Kartsatos, On the maintenance of oscillation of n-th order equation under the effect of a small forcing terms, J. Diff. Equations 10 (1971), 355-363.
[3] A. G. Kartsatos, On the maintenance of oscillation of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377-382.
[4] M. Kirane and Y. Rogovchenko, Oscillations results for the second order damped differential equation with non-monotonous nonlinearity, J. Math. Anal. Appl. 250, 118-138 (2000).
[5] V. Komkov, On boundedness and oscillation of the differential equation $x^{\prime \prime}-A(t) g(x)=f(t)$ in \mathbb{R}^{n}, SIAM J. Appl. Math. 22 (1972), 561-568.
[6] A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126, 1, (1998) 123-125.
[7] S. M. Rankin, Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. 53 (1976), 550-556.
[8] J. S. W. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal. 19, 3 (1998).
Ahmed Berkane
Faculté des Sciences, Département de Mathématiques, Université Badji Mokhtar, 23000
Annaba, Algeria
E-mail address: aberkane20052005@yahoo.fr

