Xavier Carvajal, Mahendra Panthee
Abstract:
We study some well-posedness issues of the initial value problem
associated with the equation
where
,
and
is bounded above.
Using the theory developed by Bourgain and Kenig, Ponce and Vega,
we prove that the initial value problem is locally well-posed for
given data in Sobolev spaces
with regularity below
.
Examples of this model are the Ostrovsky-Stepanyams-Tsimring equation
for
, the derivative
Korteweg-de Vries-Kuramoto-Sivashinsky equation for
,
and the Korteweg-de Vries-Burguers equation
for
.
Submitted August 1, 2007. Published January 2, 2008.
Math Subject Classifications: 35A07, 35Q53.
Key Words: Bourgain spaces; KdV equation; local smoothing effect.
Show me the PDF file (312 KB), TEX file, and other files for this article.
Xavier Carvajal Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária Ilha do Fundão, Caixa Postal 68530 21941-972 Rio de Janeiro, RJ, Brasil email: carvajal@im.ufrj.br | |
Mahendra Panthee Centro de Análise Matemática, Geometria e Sistemas Dinâmicos Departamento de Matemática, Instituto Superior Técnico 1049-001 Lisboa, Portugal email: mpanthee@math.ist.utl.pt |
Return to the EJDE web page