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POSITIVE SOLUTIONS FOR CLASSES OF MULTIPARAMETER
ELLIPTIC SEMIPOSITONE PROBLEMS

SCOTT CALDWELL, ALFONSO CASTRO,

RATNASINGHAM SHIVAJI, SUMALEE UNSURANGSIE

Abstract. We study positive solutions to multiparameter boundary-value

problems of the form

−∆u = λg(u) + µf(u) in Ω

u = 0 on ∂Ω,

where λ > 0, µ > 0, Ω ⊆ Rn; n ≥ 2 is a smooth bounded domain with ∂Ω in

class C2 and ∆ is the Laplacian operator. In particular, we assume g(0) > 0
and superlinear while f(0) < 0, sublinear, and eventually strictly positive. For

fixed µ, we establish existence and multiplicity for λ small, and nonexistence

for λ large. Our proofs are based on variational methods, the Mountain Pass
Lemma, and sub-super solutions.

1. Introduction

We study the multiparameter elliptic boundary-value problem
−∆u = λg(u) + µf(u) in Ω

u = 0 on ∂Ω,
(1.1)

where λ > 0, µ > 0, Ω ⊆ Rn; n ≥ 2 is a smooth bounded domain with ∂Ω in class
C2 and ∆ is the Laplacian operator. We assume g : [0,∞) → R is differentiable,
g(0) > 0, non decreasing, and there exist A,B ∈ (0,∞) and q ∈ (1, n+2

n−2 ) such that
for x > 0 and large

Axq ≤ g(x) ≤ Bxq. (1.2)
Also, we assume there exists θ > 2 such that for x > 0 and large

xg(x) ≥ θG(x) (1.3)

where G(x) =
∫ x

0
g(t)dt.

Further, we assume f : [0,∞) → R is differentiable, f(0) < 0, non decreasing,
eventually strictly positive, and there exists α ∈ (0, 1) such that

lim
u→∞

f(u)
uα

= 0. (1.4)

We establish the following results:
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Theorem 1.1. Let µ > 0 be fixed. There exists λ∗ > 0 such that if λ ∈ (0, λ∗),
(1.1) has a positive solution uλ satisfying ‖uλ‖∞ ≥ c∗λ−

1
q−1 , where c∗ > 0 is

independent of λ.

Theorem 1.2. There exists µ0 > 0 such that for µ ≥ µ0, (1.1) has at least two
positive solutions for λ small.

Theorem 1.3. Let µ > 0 be fixed. Then (1.1) has no positive solution for λ large.

We note that for fixed µ > 0, when λ is small λg(0) + µf(0) < 0, and hence
(1.1) is a semipositone problem. It has been well documented in recent years
(see [8, 12, 13]), that the study of positive solutions for semipositone problems is
mathematically very challenging. We establish Theorem 1.1 using the Mountain
Pass Lemma. In Theorem 1.2, the second positive solution is established via sub-
super solutions. The nonexistence result in Theorem 1.3 is proved by using the
fact that λg(u) + µf(u) is bounded below by a piecewise linear function. We will
prove Theorem 1.1 in Section 2, Theorem 1.2 in Section 3, and Theorem 1.3 in
Section 3. Our results apply, for example, to the case when f(u) = (u + 1)

1
3 − 2

and g(u) = u3 + 1.
We refer the reader to [10] where the case n = 1 was studied in detail. In

particular, using a modified quadrature method, analysis of positive solution curves
and their evolution as λ, µ vary was established. See [25] for related results for single
parameter semipositone problems.

2. Proof of Theorem 1.1

We extend g and f as g(x) = g(0) and f(x) = f(0) for all x < 0. Throughout
this paper we will denote by W the Sobolev space W 1,2

0 (Ω) and by Lr the space
Lr(Ω), for r ∈ [1,∞). Let J : W → R be defined by

J(u) :=
∫

Ω

|∇u|2

2
dx−

∫
Ω

Hλ(u)dx, (2.1)

where Hλ(u) = λG(u) + µF (u) with G(t) =
∫ t

0
g(s)ds and F (t) =

∫ t

0
f(s)ds. For

future reference we note that there exist real numbers Ã, B̃, C̃ such that

G(x) ≤ B
|x|q+1

q + 1
+ B̃ for all x ∈ R,

G(x) ≥ A
xq+1

q + 1
+ Ã for all x ∈ [0,∞),

F (x) ≤ |x|α+1 + C̃ for all x ∈ R.

(2.2)

In addition, defining hλ(x) = λg(x) + µf(x) it follows from (1.2) that for any
θ1 ∈ (2, θ), there exists θ2 such that

xhλ(x) ≥ θ1(λG(x) + µF (x)− θ2) for all x ∈ R. (2.3)

Also from (1.2) and (1.4) we see that there exists θ3 such that

|g(x)| ≤ θ3(|x|q + 1) for all x ∈ R.

|f(x)| ≤ θ3(|x|+ 1) for all x ∈ R.
(2.4)

It is well known that J is class C1 and that u is a critical point of J if and only
if u is a solution of (1.1). We prove J has a critical point using the Mountain Pass
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Lemma (see Ambrosetti and Rabinowitz in [5]). We now recall the Mountain Pass
Lemma.

Lemma 2.1 (Mountain Pass Lemma). Let E be a real Banach space and J ∈
C1(E, R) satisfy the Palais-Smale condition. Suppose J(0) = 0 and

(I) there are constants ρ, α > 0 such that J/∂Bρ
≥ α and

(II) there is an e ∈ E\Bρ such that J(e) ≤ 0.
Then J possesses a critical value c0 ≥ α. Moreover, c0 can be characterized as

c0 = inf
σ∈Γ

max
t∈σ[(0,1)]

J(t),

where Γ = {σ ∈ C([0, 1], E) : σ(0) = 0, σ(1) = e} and Bρ is a ball in E with center
0 and radius ρ.

We recall that J : W → R is said to satisfy the Palais-Smale condition if every
sequence (vn), such that (J(vn)) is bounded and ∇J(vn) → 0, has a convergent
subsequence.

Due to (2.3) a standard argument (see [5]) shows that for each λ > 0, the
functional J satisfies the Palais-Smale condition.

In Lemma 2.2 we show that J satisfies the first and second conditions of the
Mountain Pass Lemma and obtain a critical estimate on J . In Lemma 2.3 we
obtain a crucial regularity estimate which we will use to prove that the solution
obtained from the Mountain Pass Lemma is positive.

In the next lemma we prove that J satisfies the remaining conditions of the
Mountain Pass Lemma and obtain an estimate on the critical level.

Lemma 2.2. There exists λ > 0 and C > 0 such that if λ ∈ (0, λ) then J has a
critical point uλ of mountain pass type satisfying

J(uλ) ≥ C2

8
λ
− 2

q−1 .

Proof. By the Sobolev imbedding theorem there exist positive constants K1,K2

such that

‖u‖Lq+1(Ω) ≤ K1‖u‖W 1,2
0 (Ω), and ‖u‖Lα+1(Ω) ≤ K2‖u‖W 1,2

0 (Ω), (2.5)

for all u ∈ W 1,2
0 (Ω). Let C = ((q + 1)/(4BKq+1

1 ))1/(q+1) and r = Cλ
− 1

q−1 . Let
‖u‖W 1,2

0
= r. This and (2.2) yield

J(u) =
1
2

r2 −
∫

Ω

Hλ(u)dx

≥ 1
2

r2 − λB

q + 1

∫
Ω

|u|q+1dx− λB̃|Ω| − µ

∫
Ω

|u|α+1dx− µC̃|Ω|

≥ 1
2

r2 − λBKq+1
1

q + 1
rq+1 − λB̃|Ω| − µKα+1

2 rα+1 − µC̃|Ω|

= λ−2/(q−1)
(C2

4
− λ(q+1)/(q−1)B̃|Ω| − µKα+1

2 Cα+1λ(1−α)/(q−1)

− µC̃|Ω|λ2/(q−1)
)

≥ λ−2/(q−1) C
2

8

(2.6)
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for λ sufficiently small.
Let v1 denote an eigenfunction corresponding to the principal eigenvalue λ1 of

−∆ with Dirichlet boundary conditions with v1 > 0 and ‖v1‖W 1,2
0

= 1. Let

F (β) = min{F (s); s ∈ [0,∞)}. (2.7)

For s ≥ 0

J(sv1) =
s2

2
‖v1‖2W 1,2

0 (Ω)
− λ

∫
Ω

G(sv1)dx− µ

∫
Ω

F (sv1)dx

≤ s2

2
− λ

(
Asq+1

∫
Ω

vq+1
1

q + 1
dx + Ã|Ω|

)
− µF (β)|Ω|

→ −∞ as s →∞,

(2.8)

since q > 1. This implies there is a s1 > r such that J(s1v1) ≤ 0. By choosing
v = s1v1 we have satisfied the second condition of the Mountain Pass Lemma and
Lemma 2.2 is proven. �

Lemma 2.3. There exist c1 > 0 and λ̂ ∈ (0, λ̄), such that ‖uλ‖∞ ≤ c1λ
−1

q−1 for all
λ ∈ (0, λ̂).

Proof. Throughout this proof c denotes several positive constants independent of
the parameter λ. From (2.2) we have

J(sv1) =
1
2

s2 −
∫

Ω

Hλ(sv1)dx

≤ 1
2

s2 − λAsq+1

q + 1

∫
Ω

|v1|q+1dx− λÃ|Ω| − µF (β)|Ω|

≤ 1
2

s2 − λAK2

q + 1
sq+1 − (µF (β) + λÃ)|Ω| where K2 =

∫
Ω
|v1|q+1dx

≡ p(s)− (µF (β) + λÃ)|Ω|.

(2.9)

Since

p(s) ≤
(1

2
− 1

q + 1

)
(AK2)−2/(q−1)λ−2/(q−1) (2.10)

for s ∈ [0,∞), there exists a positive constant c such that for λ > 0 sufficiently
small

J(sv1) ≤ cλ−2/(q−1) for all s ∈ [0,∞). (2.11)

Since J(uλ) ≤ max{J(sv1); s ∈ [0, s1]} we have

J(uλ) ≤ cλ−2/(q−1), (2.12)

for λ > 0 sufficiently small.
From (2.3), for λ small we have

‖u‖2
W 1,2

0 (Ω)
≤ 2cλ−2/(q−1) + 2

∫
Ω

Hλ(uλ)dx

≤ 2cλ−2/(q−1) +
2
θ1

∫
Ω

uλhλ(uλ)dx + 2θ2|Ω|

= 2cλ−2/(q−1) +
2
θ1
‖u‖2

W 1,2
0 (Ω)

+ 2θ2|Ω|.

(2.13)
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Since θ1 > 2, from (2.13) we see that there exists c > 0 such that for λ small

‖uλ‖W 1,2
0 (Ω) ≤ cλ−1/(q−1). (2.14)

This, (2.3), and the fact that uλ is a critical point of J also give∫
Ω

uλhλ(uλ)dx ≤ cλ−2/(q−1) and
∫

Ω

Hλ(uλ)dx ≤ cλ−2/(q−1). (2.15)

From (2.14) and the Sobolev imbedding theorem, for λ > 0 small, ‖uλ‖L2n/(n−2) ≤
Kcλ−1/(q−1) where K > 0 is the positive constant given in this imbedding. Hence
using (2.4) and letting a1 = |Ω|

(q−1)(n−2)
2n , a2 = |Ω|

q(n−2)
(2n) we have

‖hλ(uλ)‖L2∗/q ≤ θ3

( ∫
Ω

(λ|uλ|q + µ|uλ|+ (λ + µ))
2n

(q(n−2)) dx
) q(n−2)

(2n)

≤ θ3

(
λ‖uλ‖q

L2∗ + µa1‖uλ‖L2∗ + (λ + µ)a2

)
≤ θ3 (λKq‖uλ‖q

W + µa1K‖uλ‖W + (λ + µ)a2) ,

(2.16)

Since the constants θ3,K, µ, a1, a2 in (2.16) are independent of λ, from (2.14) we
see that there exists a positive constant c such that for λ small enough

‖hλ(uλ)‖L2∗/q ≤ cλ−1/(q−1). (2.17)

By a priori estimates for elliptic boundary-value problems (see [1]) ‖uλ‖2 ≤ cλ−1/(q−1),
where ‖ ‖2 denotes the norm in the Sobolev space W 2,2(Ω) and c is a constant in-
dependent of λ. Since W 2,2(Ω) may be imbedded into L2n/(n−4) repeating the
argument in (2.16) and (2.17) we see that

‖hλ(uλ)‖L2n/(q(n−4)) ≤ cλ−1/(q−1) and ‖uλ‖2, 2n
q(n−2)

≤ cλ−1/(q−1), (2.18)

where ‖ · ‖2, 2n
q(n−2)

denotes the norm in the Sobolev space W 2, 2n
q(n−2) (Ω). Iterating

this argument we conclude that

‖uλ‖2,r ≤ cλ−1/(q−1), (2.19)

with r > n/2. Since for such r′s, W 2,r is continuously imbedded in L∞, we have
‖uλ‖ ≤ cλ−1/(q−1), which proves the lemma. �

Proof of Theorem 1.1. From the definition of g we see that G is bounded from
below. We let Ĝ = inf{G(s); s ∈ R}. This, Lemma 2.2, and (2.7) give∫

Ω

hλ(uλ)uλdx = ‖uλ‖2W

≥ 2J(uλ) + 2(Ĝ + F (β))|Ω|

≥ C2

4
λ−2/(q−1) + 2(Ĝ + F (β))|Ω|

≥ C2

8
λ−2/(q−1),

(2.20)

for λ > 0 small. Let γ > 0 be such that |Ω|θ3γ[(γq + γµ) = C2/(32|Ω|) with C as
in (2.20), and Ωλ = {x;uλ(x) ≥ γλ−1/(q−1)}. From Lemma 2.3, (2.20), and (2.4)
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we have
C2

8
λ−2/(q−1) ≤

∫
Ω

hλ(uλ)uλdx

=
∫

Ωλ

hλ(uλ)uλdx +
∫

Ω−Ωλ

hλ(uλ)uλdx

≤ |Ωλ|θ3c1λ
−1/(q−1)[(cq

1 + c1µ)λ−1/(q−1) + λ + µ]

+ |Ω|θ3γλ−1/(q−1)[(γq + γµ)λ−1/(q−1) + λ + µ]

≤ 2θ3λ
−2/(q−1)(|Ωλ|c1(c

q
1 + c1µ) + |Ω|γ(γq + γµ)),

(2.21)

for λ > 0 small. Now by the definition of γ we conclude

|Ωλ| ≥
C2

32θ3c1(c
q
1 + c1µ)

≡ k1. (2.22)

Let z : Ω̄ → R be the solution to
−∆z = 1 in Ω
z = 0 on ∂Ω

(2.23)

Since Ω is assumed to be of class C2, from regularity theory for elliptic boundary-
value problems it is well know (see [18]) that there exist a positive constants σ1, σ2

such that
σ1d(x, ∂Ω) ≤ z(x) ≤ σ2d(x, ∂Ω), (2.24)

where d(x, ∂Ω) denotes the distance from x to the boundary of Ω.
Let η(x) denote the inward unit normal to Ω at x ∈ ∂Ω. Since Ω is a smooth

region, there exist an ε > 0 such that

Nε(∂Ω) = {x + βη(x) : β ∈ [0, ε), x ∈ ∂Ω}
is an open neighborhood of ∂Ω relative to Ω. Also (see [19]), this ε can be chosen
small enough so that if y = x + βη(x) then d(y, ∂Ω) = |β|. Since |Nε(∂Ω)| =
O(ε) → 0 as ε → 0, we can without loss of generality assume that

|Nε(∂Ω)| ≤ k1

2
.

Letting Kλ = Ωλ −Nε(∂Ω), we have that

|Kλ| ≥
k1

2
.

Let G denote the Green’s function of the Laplacian operator, −∆, in Ω, with
Dirichlet boundary condition. For x ∈ Kλ and ξ ∈ ∂Ω we have, by Hopf’s maximum
principle,

∂G

∂η
(x, ξ) > 0.

Since Kλ × ∂Ω is compact there exists ε1 ∈ (0, ε) and b > 0 such that if x ∈ Kλ

and ξ ∈ Nε1(∂Ω) then
∂G

∂η
(x, ξ) ≥ b.

In particular, for x ∈ Kλ and d(ξ, ∂Ω) < ε1 we have G(x, ξ) ≥ bd(ξ, ∂Ω). For ξ
such that d(ξ, ∂Ω) < ε1 we have

uλ(ξ) =
∫

Ω

G(x, ξ)hλ(uλ)dx =
∫

Ω

G(x, ξ)λg(uλ)dx +
∫

Ω

G(x, ξ)µf(uλ)dx.
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Since g(uλ) > 0 for all uλ

uλ(ξ) ≥
∫

Kλ

G(x, ξ)λg(uλ)dx +
∫

Ω

G(x, ξ)µf(uλ)dx

≥
∫

Kλ

G(x, ξ)λg(uλ)dx + µf(0)z(ξ).

Therefore, for λ small enough by (1.2) and (2.24),

uλ(ξ) ≥
∫

Kλ

bd(ξ, ∂Ω)λ Auq
λdx + µf(0)z(ξ)

≥ bd(ξ, ∂Ω)Aγqλ
−1

q−1 |Kλ|+ µf(0)σ2d(ξ, ∂Ω)

≥ c̃d(ξ, ∂Ω)λ
−1

q−1 ,

(2.25)

where c̃ > 0 is independent of λ.
We define wλ(x) and zλ(x) such that

−∆wλ = λg(uλ) + µf+(uλ) in Ω
wλ = 0 on ∂Ω

and

−∆zλ = µf−(uλ) in Ω
zλ = 0 in ∂Ω

where

f+(x) =

{
f(x) x ≥ β

0 x < β
and f−(x) =

{
f(x) x ≤ β

0 x > β .

It is clear that uλ = wλ + zλ. Also, note that

zλ(x) =
∫

Ω

G(x, y)µf−(uλ(y))dy

so clearly zλ ≤ 0 and since f−(uλ(y)) ≥ f(0) we have

zλ(x) ≥
∫

Ω

G(x, y)µf(0)dy = µf(0)
∫

Ω

G(x, y)dy.

So we have −M1 ≤ z(x) ≤ 0 where M1 = −µf(0)maxx∈Ω

∫
Ω

G(x, y)dy > 0. For x
such that d(x, ∂Ω) = ε1 we have

wλ(ξ) = uλ(ξ)− zλ(ξ) ≥ uλ(ξ) ≥ ε1c̃λ
−1

q−1 ,

and by the maximum principle we have wλ(x) ≥ ε1c̃λ
−1

q−1 for all x ∈ Ω−Nε1(∂Ω).
This implies that uλ(x) = wλ(x)+zλ(x) ≥ ε1c̃λ

−1
q−1−M1 and so uλ(x) ≥ (ε1c̃/2)λ

−1
q−1

for all x ∈ Ω\Nε1(∂Ω) for small λ. This and (2.25) imply that for λ small enough
uλ(x) > 0 on Ω, which proves Theorem 1.1. �
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3. Proof of Theorem 1.2

In this section we prove a multiplicity result for µ > µ0 and λ small using a sub
and super solution method. According to [11] there exists a µ0 > 0 such that for
µ ≥ µ0 there exists a w such that

−∆w = µf(w) in Ω
w = 0 on ∂Ω

where w > 0 on Ω. Since λ > 0 and g > 0 it follows that

−∆w ≤ λg(w) + µf(w) in Ω
w ≤ 0 on ∂Ω,

which implies that w is a sub solution of (1.1).
Let z be as in (2.23). Define φ = σz where σ > 0, independent of λ, is large

enough so φ > w in Ω and

µ
f(σz)

σ
<

1
2
.

This is possible since f is a sublinear function (see (1.4)). Next let λ > 0 be so
small that

λ
g(σz)

σ
<

1
2
.

Thus

−∆φ = σ ≥ λg(σz) + µf(σz) = λg(φ) + µf(φ) in Ω.

Hence φ is a supersolution of (1.1) and there exists a solution ũλ (say) of (1.1)
such that w ≤ ũλ ≤ φ for µ ≥ µ0 and λ > 0 small. However, from Theorem 1.1,
for λ small, we have the existence of a positive solution, uλ, such that ‖uλ‖∞ ≥
c0λ

− 1
q−1 . Hence λ. small ũλ and uλ are two distinct positive solutions of (1.1).

4. Proof of Theorem 1.3

Let u be a positive solution to (1.1). There exist σ > 0 and ε > 0 such that
g(u) ≥ (σu + ε) for all u ≥ 0. So for λ > 0, it follows that

λg(u) + µf(u) ≥

{
λ(σu + ε) for u ≥ β

λ(σu + ε) + µf(0) for u ≤ β .

Choosing λ large enough so that λε + µf(0) ≥ λε
2 , we have

λg(u) + µf(u) ≥ λσu +
λε

2

for u ≥ 0 and λ large. Now let λ1 be the first eigenvalue and φ > 0 be a correspond-
ing eigenfunction of −∆ with Dirichlet boundary condition. Multiplying both sides
of (1.1) by φ and integrating we get∫

Ω

(−∆u)φdx =
∫

Ω

(λg(u) + µf(u))φdx
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which implies ∫
Ω

uλ1φdx =
∫

Ω

(λg(u) + µf(u))φdx,∫
Ω

uλ1φdx ≥
∫

Ω

(λσu +
λε

2
)φdx,∫

Ω

[λ1 − λσ]uφdx ≥
∫

Ω

λε

2
φdx.

For λ > λ1
σ we obtain a contradiction. So for a given µ > 0, (1.1) has no positive

solution for large λ.

Appendix A. (see also [9] and [25]) Let 1 < q < n+2
n−2 and α0 = 2n/(n − 2). If

{αj} is the sequence defined by

αj =
αj−1n

qn− 2αj−1

then there exists an integer k ≥ 0 such that qn− 2αk ≤ 0.

Proof. Assume 2αj < qn for j = 0, 1, 2, . . . , p, for all p ≥ 0. Then

αj − αj−1 =
αj−1n

qn− 2αj−1
− αj−1

=
αj−1n− αj−1qn + 2(αj−1)2

qn− 2αj−1

= αj−1[
n− qn + 2αj−1

qn− 2αj−1
]

for j = 0, 1, 2, . . . , p, for all p ≥ 0. Hence

α1 − α0 = α0[
n

qn− 2α0
− 1] = A(q, n) > 0

since 1 < q < n+2
n−2 , and α1 > α0. Similarly,

α2 − α1 = α1[
n

qn− 2α1
− 1] > α0[

n

qn− 2α0
− 1],

so α2 > α1 and α2 ≥ α0 +2A(q, n). Repeating this argument p times we have αp ≥
α0 + pA(q, n) and (αj) to be increasing in constant increments, which contradicts
2αp < qn for all p ≥ 0. �
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