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BIFURCATION ANALYSIS ON A DELAYED SIS EPIDEMIC
MODEL WITH STAGE STRUCTURE

LI LIU, XIANGAO LI, KEJUN ZHUANG

Abstract. In this paper, a delayed SIS (Susceptible Infectious Susceptible)

model with stage structure is investigated. We study the Hopf bifurcations and

stability of the model. Applying the normal form theory and the center man-
ifold argument, we derive the explicit formulas determining the properties of

the bifurcating periodic solutions. The conditions to guarantee the global ex-

istence of periodic solutions are established. Also some numerical simulations
for supporting the theoretical are given.

1. Introduction

In this paper, we study the bifurcation properties of Hopf branches in the stage-
structured SIS (Susceptible Infectious Susceptible) model

ẋ1(t) = a1x2(t)− c1x2(t− τ)− rx1(t)− a2x1(t)y(t) + b1y(t),

ẏ(t) = a2x1(t)− b1y(t)− (r + α)y(t),

ẋ2(t) = c1x2(t− τ)− c2x2
2(t),

(1.1)

with time delay τ > 0 as bifurcation parameter, where x1(t) and y(t) denote the
densities of immature susceptible and infectious population, respectively, x2(t) de-
notes the density of mature population which do not contact the disease. All
coefficients but α are positive constant.

System (1.1) was proposed by Xiao et al. [11] who showed the stability properties
of the system. Stage-structured models have long been and will continue to be of
interest to both applied mathematicians and ecologists due to its universal existence
and importance [11]. This is not only because they are much more simple than the
models governed by partial differential equations but also because they can exhibit
phenomena similar to those of partial differential models [1]. Thus, the SIS stage-
structured models have been widely studied in recent years [4, 5, 7].

It is well known that models with complexities such as delays can have periodic
solutions while the corresponding ordinary differential equation model have globally
asymptotically stable equilibrium points, one might expect a more complex behavior
for models with stage structure. Thus it is important to carefully analyze epidemic
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model with stage structure. Our purpose of this paper is to analyze the local and
global Hopf bifurcations on the SIS model to give more knowledge to the dynamics
of the model.

This paper is organized as follows. In the next section, we consider the local Hopf
bifurcation and stability of the positive equilibrium. Section 3 presents the prop-
erties of Hopf bifurcation on the center manifold. The global existence of multiple
periodic solutions is discussed in Section 4. Finally, some numerical simulations are
given.

2. Stability of the positive equilibrium and local Hopf bifurcation

Substituting z(t) by x1(t) + y(t) in system (1.1), system (1.1) becomes

ż(t) = a1x2(t)− c1x2(t− τ)− rz(t)− αy(t),

ẏ(t) = y(t)[−(b1 + r + α)− a2y(t) + a2z(t)],

ẋ2(t) = c1x2(t− τ)− c2x2
2(t).

(2.1)

Define

R0 =
a2c1(a1 − c1)
rc2(b1 + r + α)

> 1, a1 > c1, (2.2)

where R0 has been identified for (2.1) as the basic reproductive number in Xiao et
al. [11]. It has been shown that R0 represents the number of secondary infectious
caused by an average infective during the course of the disease.

If the condition (2.2) holds, then system (2.1) has a unique positive equilibrium
E∗ = (z∗, y∗, x∗2), where

z∗ =
c1(a1 − c1)
c2(r + α)

+
α(b1 + r + α)
a2(r + α)

, y∗ =
c1(a1 − c1)
(r + α)c2

− r(b1 + r + α)
a2(r + α)

, x∗2 =
c1
c2

By the linear transform u1(t) = z(t) − z∗, u2(t) = y(t) − y∗, u3(t) = x2(t) − x∗2,
system (2.1) becomes

u̇1(t) = a1u3(t)− c1u3(t− τ)− ru1(t)− αu2(t),

u̇2(t) = a2y
∗u1(t)− [−(b1 + r + α)− a2z

∗ + 2a2y
∗]u2(t)− a2u

2
2(t) + a2u1(t)u2(t),

u̇3(t) = c1u3(t− τ)− 2c2x2
∗u3(t)− c1u

2
3(t).

(2.3)
The associated characteristic equation of system (2.3) is

λ3 +m2λ
2 +m1λ+m0 + (n2λ

2 + n1λ+ n0)e−λτ = 0, (2.4)

wherem1 = rd+a2αy
∗+2c2x∗2(r+d), m2 = r+d+2c2x∗2, m0 = 2c2x∗2rd+2c2x∗2αy∗,

n2 = −c1, n1 = −c1(r+d), n0 = −c1(rd+a2αy∗), d = −(b1 +r+α)−a2z
∗+2a2y

∗.
Obviously, iω (ω > 0) is a root of (2.4) if and only if ω satisfies

−ω3i−m2ω
2 +m1ωi+m0 + (−n2ω

2 + n1ωi+ n0)(cosωτ − i sinωτ) = 0,

separating the real and imaginary parts, we have

m2ω
2 −m0 = (n0 − n2ω

2) cosωτ + n1ω sinωτ,

−ω3 +m1ω = (n0 − n2ω
2) sinωτ − n1 cosωτ,

(2.5)

which is equivalent to

ω6 + (m2
2 − n2

2 − 2m1)ω4 + [m2
1 − 2m0m2 − n2

1 + 2n0n2]ω2 +m2
0 − n2

0 = 0. (2.6)
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Let z = ω2 and denote p = m2
2 − n2

2 − 2m1, q = m2
1 − 2m0m2 − n2

1 + 2n0n2 and
R = m2

0 − n2
0. Then (2.6) becomes

z3 + pz2 + qz +R = 0. (2.7)

Now, we introduce the following results which was proved by Song and Yuan [9].
Denote

h(z) = z3 + pz2 + qz +R, (2.8)
then

dh(z)
dz

= 3z2 + 2pz + q.

Thus equation
3z2 + 2pz + q = 0 (2.9)

has two real roots

z∗1 =
−p+

√
∆

3
, z∗2 =

−p−
√

∆
3

(2.10)

Lemma 2.1 ([9]). For the polynomial equation (2.7), we have the following results:
(i) If R < 0,then (2.7) has at least one positive root.
(ii) If R ≥ 0 and ∆ = p2 − 3q ≤ 0.then (2.7) has no positive root.
(iii) If R ≥ 0 and ∆ > 0,then (2.7) have positive roots if and only if z∗1 =

−p+
√

∆
3 > 0 and h(z∗) ≤ 0.

Lemma 2.2 ([9]). Suppose that zk = ω2
k, n0 6= n2ω

2
k, and h′(zk) 6= 0, then

d(Re(λ(τ (j)
k ))

dτ
6= 0

and d(Re(λ(τ (j)
k ))/dτ and h′(zk) have the same sign.

Now we study the characteristic equation (2.4) of system (2.3). As we know
mi, ni (i = 0, 1, 2, 3), we can obtain p = m2

2−n2
2−2m1, q = m2

1−2m0m2−n2
1+2n0n2,

R = m2
0 − n2

0. Thus

∆ = p2 − 3q, h(z) = z3 + pz2 + qz +R, z∗1 =
−p+

√
∆

3
.

Note that when τ = 0, (2.4) becomes

λ3 +m2λ
2 +m1λ+m0 = 0 (2.11)

Applying Lemma 2.1 to (2.4), we obtain the following lemma.

Lemma 2.3. For the third degree transcendental (2.4), we have
(i) if R ≥ 0 and ∆ ≤ 0, then all roots with positive real parts of (2.4) has the

same sum to those of the polynomial (2.11) for all τ ≥ 0;
(ii) if either R < 0 or R ≥ 0,∆ > 0, z∗1 > 0 and h(z∗1) ≤ 0, then all roots with

positive real parts of (2.4) have the same sum to those of the polynomial
(2.11) for τ ∈ [0, τ0).

To state the next lemma we define the hyothesis
(H) m2m1 −m0 > 0 and m0 > 0.

Lemma 2.4. Suppose that R < 0 and the condition holds. Then all roots of (2.4)
have negative real parts when τ ∈ [0, τ0).
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Proof. From (2.11), by the Routh-Huriwz criterion, the real parts of all roots of
(2.11) are negative if and only if (H) is satisfied. Then using the results in Lemma
2.3, we complete the proof. �

Suppose that (2.7) have positive roots, without loss of generality,we assume that
it has three positive roots z1, z2, z3. Then (2.6) has three positive roots ω1 =

√
z1,

ω2 =
√
z2, ω3 =

√
z3. From (2.5), we have

cos(ωτ) =
n1ω

2(ω2 −m1)− (m2ω
2 −m0)(n2ω

2 − n0)
(n2ω2 − n0) + n2

1ω
2

.

Thus, if we denote

τ
(j)
k =

1
ωk
{cos−1(

(n1 −m2n2)ω4
k + (m0n2 +m2n0 −m1n1)ω2

k −m0n0

(n2ω2
k − n0) + n2

1ω
2
k

) + 2jπ},

(2.12)
where k = 1, 2, 3; j = 0, 1, . . . , then ±ωk is a pair of purely imaginary roots of (2.4)
with τ (j)

k . Define

τ0 = τ
(0)
k0 = min{τ (0)

k }, ω0 = ωk0 (2.13)

Let λ(τ) = α(τ) + iω(τ) be the root of (2.4) near τ = τ
(j)
k satisfying α(τ (j)

k ) =
0, ω(τ (j)

k ) = ωk.
Applying Lemmas 2.1–2.4 to (2.4),we have the following theorem about the sta-

bility of the positive equilibrium of system (2.1) and Hopf bifurcations.

Theorem 2.5. Let τ (j)
k and ω0, τ0 be defined by (2.12) and (2.13), respectively.

Suppose that the condition (2.2) and (H) hold.
(i) if R ≥ 0 and ∆ ≤ 0, then the positive equilibrium E∗ of system (4.2) is

asymptotically stable for all τ ≥ 0, that is (2.1) is absolutely stable;
(ii) if either R < 0 or R ≥ 0,∆ > 0, z∗1 > 0 and h(z∗1) ≤ 0, then the positive

equilibrium E∗ of system (2.1) stable for τ ∈ [0, τ0), and unstable when τ > τ0;
(iii) if the conditions of (ii) are satisfied,and p2 < 3q, then system (2.1) under-

goes a Hopf bifurcation at the equilibrium E∗ when τ = τ
(j)
k , where τ (j)

k is defined
by (2.12).

3. Direction and stability of the Hopf bifurcation

From section 2, we obtained a set of conditions for system (2.1) to undergo Hopf
bifurcation. In this section, we shall derive the explicit formulae determining the
direction, stability and period of the bifurcating non-trivial periodic solutions at
τ = τ

(j)
k . To accomplish this, we use the normal form and center manifold theory

developed by Hassard et al. [3].
Let u1(t) = z− z∗, u2(t) = y− y∗, u3(t) = x2(t)− x∗2, ūi(t) = ui(τt), τ = τk + µ

and drop the bar for simplification, system (2.1) is transformed into an FDE in
C = C([−1, 0], R3) as

u̇(t) = Lµ(ut) + f(µ, ut), (3.1)

where u(t) = (u1(t), u2(t), u3(t))T ∈ R3, and Lµ : C → R, f : R×C → R are given
respectively by

Lµφ = (τk + µ)B1φ(0) + (τk + µ)B2φ(−1),
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where B1 and B2 are defined as

B1 =

 −r −α a1

a2y
∗ −d 0

0 0 2c1

 , B2 =

0 0 −c1
0 0 0
0 0 c1


and

f(µ, φ) = (τk + µ)

 0
−a2φ

2
2(0) + a2φ1(0)φ2(0)
−c21φ2

3(0).

 (3.2)

By the Riesz representation theorem, there exist a matrix whose components are
bounded variation functions η(θ, µ) in θ ∈ [−1, 0] such that

Lµφ =
∫ 0

−1

dη(θ, µ)φ(θ) for φ ∈ C. (3.3)

In fact, if we choose

η(θ, µ) =

{
B1δ(θ), θ = 0,
−B2δ(θ + 1), θ ∈ [−1, 0),

(3.4)

where δ is a Dirac Delta function, then (3.3) is satisfied. For φ = (φ1, φ2)T ∈ C,
define:

A(µ)φ =

{
dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)φ(s), θ = 0,

R(µ)φ =

{
0, θ ∈ [−1, 0),
f(µ, φ), θ = 0.

Hence, we can rewrite (3.1) as

u̇t = A(µ)ut +R(µ)ut, (3.5)

where u = (u1, u2, u3)T , ut = u(t+ θ), for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

{
−dψ(s)

ds , s ∈ (0, 1],∫ 0

−1
dη(t, 0)ψ(−t), s = 0.

(3.6)

For φ ∈ C1([−1, 0], R2), and ψ ∈ C1([0, 1], (R2)∗), define the bilinear form

〈ψ, φ〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.7)

where η(θ) = η(θ, 0). Obviously A∗ and A are adjoint operators.
By the results in section 2, we know that ±iτ̃ω are eigenvalues of A(0). Thus,

they are also eigenvalues of A∗. Let q(θ) = (1, β, γ)T eiθωτk is the eigenvector of
A(0) corresponding to iτ̃ω and q∗(s) = D(1, β∗, γ∗)eisωτk is the eigenvector of A∗

corresponding to −iτ̃ω. Moreover, by a direct computation, we can show that

q(θ) =

 1
iω+d
a2y∗

a2y
∗r+αb1+αr+α

2+2αa2y
∗−αa2z

∗+(ωα+ωa2y
∗)i

a2y∗(a1−c1eiωτk )

 eiθωτk ,
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and

q∗(s) = D

 1
a2y

∗(c1e
iωτk+2c1)

−r(c1e−iωτk−2c1)+iω

−iω+dc1e
iωτk−2c1d

d(c1e
iωτk−a1)

+ αa2y
∗(c1e

iωτk−2c1)
2

r(c1e
−iωτk−2c1)−iω


T

eiωτks.

To assure < q∗(s), q(θ) >= 1, we need to determine the value of D. From (3.7),we
have

〈q∗(s), q(θ)〉 = D̄(1, β∗, γ∗)(1, β, γ)T

−
∫ 0

−1

∫ θ

ξ=0

(1, β̄∗, γ̄∗)e−i(ξ−θ)ωτkdη(θ)(1, β, γ)T eiξωτkdξ

= D̄{1 + ββ∗ + γγ∗ −
∫ 0

−1

(1, β̄∗, γ̄∗)θeiθωτkdη(θ)(1, β, γ)T }

= D̄{1 + ββ∗ + γγ∗ − τke
−iωτk(c1r − c1rr̄

∗)}.

Thus, we can choose D as

D =
1

1 + ββ∗ + γγ∗ − τkeiωτk(c1r − c1rr̄∗)
.

Using the same notation as in Hassard et al. [3], we first compute the coordinates
to describe the center manifold C0 at µ = 0. Let ut be the solution of (3.1) when
µ = 0. Define

z(t) = 〈q∗, ut〉, w(t, θ) = ut − 2 Re{z(t)q(θ)}. (3.8)

On the center manifold C0 we have

w(t, θ) = w(z(t), z̄(t), θ),

where

w(z(t), z̄(t), θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02

z̄2

2
+ . . . , (3.9)

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗.
Note that w is real if ut is real.We consider only real solutions.For solution ut ∈ C0

of (3.1), since µ = 0,

ż(t) = iωτ̃z + 〈q̄∗(θ), f(0, w(z, z̄, θ) + 2 Re{z(t)q(θ)})〉
= iωτ̃z + q̄∗(0)f0(z, z̄);

(3.10)

that is,

ż(t) = iωτ̃z(t) + g(z, z̄), (3.11)

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ . . . . (3.12)
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Then from (3.12), we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄ ∗ (0)f(0, ut)

= τkD̄(1, β̄∗, γ̄∗)

 0
−a2u2t(0)2 + a2u1t(0)

−c1u2
3t(0)


= τkD̄[−a2u

2
2t(0) + a2u1t(0)u2t(0)β̄∗ − γ̄∗c1u

2
3t(0)]

= τkD̄β̄∗{−a2[βz + β̄z̄ + w
(2)
20 (0)

z2

2
+ w2

11(0)zz̄ + w2
02(0)

z̄2

2
+ o(|(z, z̄)|3)]2

+ a2[z + z̄ + w
(1)
20 (0)

z2

1
+ w1

11(0)zz̄ + w1
02(0)

z̄2

2
+ o(|(z, z̄)|3)]

× [βz + β̄z̄ + w
(2)
20 (0)

z2

2
+ w

(2)
11 (0)zz̄ + w2

02(0)
z̄2

2
+ o(|(z, z̄)|3)]}

− τkD̄γ̄∗c1[rz + r̄z̄ + w
(3)
20 (0)

z2

3
+ w3

11(0)zz̄ + w3
02(0)

z̄2

2
+ o(|(z, z̄)|3]2.

Comparing the coefficients with (3.12), we obtain

g20 = 2τkD̄β̄∗a2(β − β2)− 2τkD̄γ̄∗γ2,

g11 = 2τkD̄β̄∗a2(−|β|2 + 2 Reβ)− 2τkD̄γ̄∗c1|γ̄2|2,
g02 = 2τkD̄β̄∗a2(β̄ − β̄2)− 2τkD̄γ̄∗γ2,

g21 = τkD̄β̄∗a2(−w(2)
20 (0)β̄ − w2

11(0)β̄ + w2
11(0)

+ w
(2)
20 (0) + w1

11(0)β̄ + w1
11(0)β)− τkD̄γ̄∗c1(γω

(3)
11 + γ̄ω

(3)
20 ).

(3.13)

We still need to compute w20(θ) and w11(θ). From (3.5) and (3.8) ,we have

ẇ = u̇t − żq − ˙̄z ˙̄z =

{
Aw − 2 Re q̄∗(0)f0q(θ), θ ∈ [−1, 0),
Aw − 2 Re q̄∗(0)f0q(0) + f0, θ = 0,

= Aw +H(z, z̄, θ),

(3.14)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
. (3.15)

Expanding the above series and comparing the coefficients, we obtain

(A− 2iωτk)w20(θ) = −H20(θ), Aw11(θ) = −H11(θ). (3.16)

From (3.14) we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (3.17)

Comparing the coefficients with (3.15), we obtain

H20 = −g20q(θ)− ḡ02q̄(θ), (3.18)

H11 = −g11q(θ)− ḡ11q̄(θ). (3.19)

From (3.16) and (3.18), we obtain

ẇ20 = 2iωτ̃w20(θ) + g20q(θ) + ḡ02q̄(θ).

Note that q(θ) = (1, α, β)T eiθωτk , hence

w20(θ) =
ig20
ωτk

q(0)eiωτkθ +
iḡ02
3ωτk

q̄(0)e−iωτkθ.+ E1e
2iωτkθ. (3.20)
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Similarly, from (3.16) and (3.19), we have

ẇ11 = g11q(θ) + q̄11q̄(θ),

ω11(θ) = − ig20
ω, τk

q(0)eiωτkθ +
iḡ11
ωτk

q̄(0)e−iωτkθ + E2,
(3.21)

where E1 and E2 are both 3-dimensional vectors, and can be determined by setting
θ = 0 in H. In fact, from the definition of A and (3.16) that∫ 0

−1

dη(θ)w20(θ) = 2iωτkw20(0)−H20(0), (3.22)∫ 0

−1

dη(θ)w11(θ) = −H11(0), (3.23)

where η(θ) = η(0, θ). From (3.14), we have

H20 = −g20q(0)− ḡ02q̄(0) + 2

 0
−a2β

2 + a2β
−c1γ2

 , (3.24)

H11 = −g11q(0)− ḡ11q̄(0) + 2

 0
−a2|β|2 + a2 Reβ

−c1|γ|2

 . (3.25)

Substituting (3.20) and (3.24) into (3.22), and noticing that

(iωτkI −
∫ 0

−1

eiθωτkdη(θ))q(0) = 0,

(−iωτkI −
∫ 0

−1

e−iθωτkdη(θ))q̄(0) = 0,

we obtain

(2iωτkI −
∫ 0

−1

e2iθωτkdη(θ))E1 = 2τk

 0
−a2β

2 + a2β
−c1γ2

 ; (3.26)

that is,2iω + r α −a+ c1e
−2iωτk

−a2y
∗ 2iω + d 0

0 0 2iωc1 − c1e
−2iωτk

E1 = 2

 0
−a2β

2 + a2β
−c1γ2

 . (3.27)

Similarly, substituting (3.21) and (3.25) into (3.23), we have∫ 0

−1

dη(θ)E2 = 2

 0
−a2|β|2 + a2 Reβ

−c1|γ|2

 ,

which leads to r α −a+ c1
−a2y

∗ d 0
0 0 c1

E2 = 2

 0
−a2|β|2 + a2 Reβ

−c1|γ|2

 . (3.28)
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Thus, g21 can be computed. Then, we can compute the following values:

c1(0) =
i

2ωτ̃
(g11g20 − 2|g11|2 −

|g02|2

3
) +

g21
2
,

µ2 =
Re c1(0)
Reλ′0(τ̃)

,

β2 = 2Re c1(0),

T2 = −Im(c1(0)) + µ2Im(λ′0(τ̃))
ω

,

(3.29)

which determine the quantities of bifurcating periodic solutions in the center mani-
fold at the critical value τk. we know that (see Hassard et.al. [3]) (i) µ2 determines
the directions of the Hopf bifurcation:if µ2 > 0 (< 0), then the Hopf bifurca-
tion is supercritical(subcritical) meaning that bifurcated periodic solution exists
for τ > τk(τ < τk); (ii) β2 determines the stability of the bifurcating periodic solu-
tions:the bifurcating periodic solutions in the center manifold are stable(unstable)if
β2 < 0(β2 > 0); and T2 determines the period of the bifurcating periodic solu-
tions:the period increase(decrease)if T2 > 0 (T2 < 0).

4. Existence of global Hopf bifurcation

In this section, we will study the global existence of non-trivial periodic solution
using global Hopf bifurcation theorem given by Wu [10].

At first, we introduce some notation: Letu1(t) = z(t), u2(t) = y(t), u3(t) = x2(t),
then system (2.1) can be written as

u̇(t) = F (ut, τ, p), (4.1)

where u(t) = (u1(t), u2(t), u3(t)) ∈ R3, denote u∗ = (u∗1, u
∗
2, u

∗
3) as the positive

equilibrium and ut = (u1t, u2t, u3t).
Let X = C([−τ, 0], R3), N = {(ū, τ, p);F (ū, τ̄ , p̄) = 0},

Σ = Cl{(u, τ, p) ∈ X ×R×R+;u is a p-periodic solution of (2.1)},

and `(u∗, τ (j)
k , 2π

ω0
) denotes the connected component through (u∗, τ (j)

k , 2π
ω0

) in Σ.
First we present a global Hopf bifurcation result from Wu [10, Theorem 3.3].

Proposition 4.1. Assume that (A1)-(A6) hold. Let Σ(F ) = Cl{(x, α, p) ∈ X ×
R × R+;uis a p-periodic solution of (4.1)} which is a sub set of X × R × R. Let
N(F ) = {(x̂, α, p);F (x̂, α, p) = 0}. Let C(x̂0, α0, p0) be the connected component in
Σ(F ) of an isolated center (x̂0, α0, p0). Then either

(i) C(x̂0, α0, p0) is unbounded, or
(ii) C(x̂0, α0, p0) is bounded, C(x̂0, α0, p0) ∩N(F ) is finite and∑

(x̂,α,p)∈C(x̂0,α0,p0)∩N(F )

γm(x̂, α, p) = 0 (4.2)

for all m = 1, 2, . . .,where γm(x̂, α, p) is the mth crossing number of (x̂, α, p)
if m ∈ J(x̂0, α0, p0) or it is zero if otherwise.

Another technical issue when applying proposition 4.1 is to prove that (4.1)
with τ = 0 has non-constant periodic solutions. This will be done by applying a
high-dimensional Bendixson’s criterion of Li and Muldowney [8], which we briefly
summarize in the following.



10 L. LIU, X. LI, K. ZHUANG EJDE-2007/77

Consider a system of ordinary differential equations

ẋ = f(x), x ∈ Rn, f ∈ C1 (4.3)

for any finite n. Denote

z′(t) =
∂f [2]

∂x
(x(t, x0))z(t) (4.4)

as the second compound equation with respect to a solution x(t, x0) ∈ D to (4.5)
(see Fiedler [2] and Muldowney [8]).

Proposition 4.2. Let D ⊂ Rn be a simply connected region. Assume that the
family of linear systems

z′(t) =
∂f [2]

∂x
(x(t, x0))z(t), x0 ∈ D

is equi-uniformly asymptotically stable. Then (a) D contains no simple closed in-
variant curves including periodic orbits, homoclinic orbits,heteroclinic cycles; (b)
each semi-orbit in D converges to a single equilibrium.

In particular, if D is positively invariant and contains an unique equilibrium x̄,
the x̄ is globally asymptotically stable in D.

To investigate the global properties of the solution, now we present some basic
results of system (4.1).

Lemma 4.3. Non-constant periodic solutions of (4.1) are uniformly bounded.

Proof. For periodic functions u1(t), u2(t), u3(t), we define

u1(ξ1) = min{u1(t)}, u1(η1) = max{u1(t)},
u2(ξ2) = min{u2(t)}, u2(η2) = max{u2(t)},
u3(ξ3) = min{u2(t)}, u3(η3) = max{u3(t)},

(4.5)

Let (u1(t), u2(t), u3(t)) be a nonconstant periodic solution of (4.1). Then we know
either ui(t) ≡ 0 or ui(t) 6= 0 (i = 1, 2, 3). Thus, there are four cases to be considered.
Case 1. When u3(t) > 0, we have, from the third equation of (4.1),

0 = c1u3(η3 − τ)− c2u
2
3(η3) ≤ c1u3(η3)− c2u

2
3(η3),

which leads to
u3(η3) ≤

c1
c2
.

(1) u1(t) > 0, u2(t) < 0. From the second equation of (4.1),

0 = −(b1 + r + α)− a2u2(ξ2) + a2u1(ξ2) > −(b1 + r + α)− a2u2(ξ2),

which implies

u2(ξ2) > −b1 + r + α

a2
.

From the first equation of (4.1), we get

0 = a1u3(η1)− c1u3(η1− τ)− ru1(η1)−αu2(η1) ≤ a1 ·
c1
c2
− ru1(η1)+α · b1 + r + α

a2

which induces

u1(η1) ≤
a1c1
rc2

+
α(b1 + r + α)

ra2
.
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(2) u1(t) > 0, u2(t) > 0,

u̇1(t) = a1u3(t)− c1u3(t− τ)− ru1(t)− αu2(t) ≤ a1
c1
c2
− ru1(t).

Consider the comparison equation

v(t) = a1
c1
c2
− rv(t), (4.6)

since a1c1/rc2 is the unique positive equilibrium of (4.6), and it is globally asymp-
totically stable. Let u1(0) ≤ v(0), then by comparison principle, u1(t) ≤ v(t) for
t ≥ 0. Furthermore,

lim
t→∞

supu1(t) ≤ lim
t→∞

sup v(t) =
a1c1
rc2

Hence, there exists a M > 0, such that for t > M ,

u1(t) ≤
a1c1
rc2

.

For t ∈ [0,M ], there exists a M ′ > 0, such that u1(t) ≤ M ′. Then, we can choose
M1 = max{M ′, a1c1

rc2
}, for t ≥ 0, u1(t) ≤M1.

Similarly, we can prove there exists a M2 > 0, such that u2(t) ≤M2.

u̇2(t) = u2(t)[−(b1 + r + α)− a2u2(t) + a2u1(t)]

≤ [−(b1 + r + α) + a2M1 − a2u2(t)]u2(t)

Let N = −(b1 + r + α) + a2M1, and the comparison equation is

v̇(t) = v(t)(N − a2v(t)).

Then similar to the proof of u1(t), there exists a M2 > 0, such that u2(t) ≤ M2.
This completes the proof.
(3) u1(t) < 0, u2(t) > 0. From the second equation of (4.1),

0 = −(b1 + r + α)− a2u2(η2) + a2u1(η2) < −(b1 + r + α)− a2u2(η2),

which means

u2(η2) < −b1 + r + α

a2
< 0.

Obviously, it is a contradiction. Also,

0 = a1u3(ξ1)− c1u3(ξ1−τ)−ru1(ξ1)−αu2(ξ1) ≥ −c1
c1
c2
−ru1(ξ1)+

α(b1 + r + α)
a2

,

which leads to

u1(ξ1) ≥
α(b1 + r + α)

ra2
− c21
ra2

.

Clearly, it is also a contradiction. Thus, there are no nontrivial periodic solution
to (4.1) in this case.
(4) u1(t) < 0, u2(t) < 0. From the first and second equation of (4.1), we get

u̇1(t) = a1u3(t)− c1u3(t− τ)− ru1(t)− αu2(t) ≥ −c1
c1
c2
− ru1(t),

and

u̇2(t) = u2(t)[−(b1 + r + α)− a2u2(t) + a2u1(t)] > u2(t)[−(b1 + r + α)− a2u2(t)].

Then we can use the comparison principle similar to (2), we get the results.
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Case 2. When u3(t) < 0, from the third equation of (4.1), we have

0 = c1u3(ξ3 − τ)− c2u
2
3(ξ3) ≥ c1u3(ξ3)− c2u

2
3(ξ3)

which implies
u3(ξ3) ≥

c1
c2
.

Under the assumption u3(t) < 0, by the similar analysis of Case 1, we can prove
the nontrivial periodic solution of (4.1) is uniformly bounded.
Case 3. ui(t) ≡ 0, uj(t) 6= 0 (i = 1, 2, 3, j = 1, 2, 3, i 6= j).
Case 4. ui(t) 6= 0, uj(t) ≡ 0 (i = 1, 2, 3, j = 1, 2, 3, i 6= j).

The method for proving these two cases is similar to that of Cases 1 and 2.
Mainly use the comparison principle and analyze the sign of ui(t)(i = 1, 2, 3). We
omit their proofs. �

For the next lemma, we define the hypothesis
(H’) There exist N1, N2 such that

sup
x∈R

{[−r − (b1 + r + α)] +N1(c1 − a1) + 2a2|u2|,

(−r + c1)|u2(t)|+ 2N2c2|u2(t)|+N2α,

(c1 − b1 − r − α) + (a2/N2)|u2(t)|+ 2c2|u3(t)|+ 2a2|u2(t)|} < 0.

(4.7)

Lemma 4.4. When the condition (H’) hold, system (4.1) has no nontrivial τ -
periodic solution.

Proof. Denote u = (u1, u2, u3)T . Then system (4.1) with τ = 0 becomes

f(u1, u2, u3) =

u̇1

u̇2

u̇3

 =

 (a1 − c1)u3(t)− ru1(t)− αu2(t)
u2(t)[−(b1 + r + α)− a2u2(t) + a2u1(t)]

c1u3(t)− c2u3
2(t)

 . (4.8)

We have

∂f

∂u
=

 −r −α a1 − c1
a2u2(t) −(b1 + r + α)− 2a2u2(t) 0

0 0 c1 − 2c2u3(t)


and

∂f [2]

∂u
=

a11 0 c1 − a1

0 −r + c1 − 2c2u3(t) −α
0 a2u2(t) a23


where a11 = −r−(b1+r+α)−2a2u2(t), a23 = −(b1+r+α)−2a2u2(t)+c1−2c2u3(t).
The second compound system u̇1

u̇2

u̇3

 =
∂f [2]

∂u

u1

u2

u3


is

u̇1(t) = [−r − (b1 + r + α)− 2a2u2(t)]u1(t) + (c1 − a1)u3(t)

u̇2(t) = u2(t)[−r + c1 − 2c2u3(t)]− αu3(t)

u̇3(t) = a2u2
2(t)− [−(b1 + r + α)− 2a2u2(t) + c1 − 2c2u3(t)]u3(t)

(4.9)

Set
W (u) = max{N1|u1|, N2|u2|, |u3|} (4.10)
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where N1, N2 are constants. Then direct calculation leads to the equation

d+

dt
N1|u1(t)| ≤ [−r − (b1 + r + α)]N1|u1(t)| − 2a2N1|u1(t)||u2(t)|

+N1||u1|(t)|+N1(c1 − a1)|u3(t)|
d+

dt
N2|u2(t)| ≤ |u2(t)|(−r + c1)N2|u2(t)| − 2N2c2|u2(t)||u3(t)| −N2α|u3(t)|

d+

dt
|u3(t)| ≤

a2

N2
|u2(t)|N2|u2(t)|+ (c1 − b1 − r − α)|u3(t)|

− 2a2|u2(t)||u3(t)| − 2c2|u3(t)|2

where d+

dt denotes the right-hand derivative. Therefore,

d+

dt
W (u) ≤ µ(t)W (u(t))

with

µ(t) = max
{
[−r − (b1 + r + α)] +N1(c1 − a1) + 2a2|u2|,

(−r + c1)|u2(t)|+ 2N2c2|u2(t)|+N2α,

(c1 − b1 − r − α) + (a2/N2)|u2(t)|+ 2c2|u3(t)|+ 2a2|u2(t)|
}

Thus, under the hypothesis (H’), and by the boundedness of solution to (4.8), there
exists a δ > 0 such that µ(t) ≤ −δ < 0, and

W (u(t)) ≤W (u(t))e−δ(t−s), t ≥ s > 0.

This implies that the second compound system (4.8) is equi-uniform asymptotically
stable, and hence the system (4.1) has no non-constant periodic solutions when
τ = 0 follows from proposition 4.2. �

Theorem 4.5. Assume that
(i) the condition (2.2), (H) and (H’) hold;
(ii) the condition (iii) of Theorem 2.5 hold.

Then, for every τ > τ
(j)
k , system (4.1) has a p-periodic solution.

Proof. We regard (τ, p) as parameters and apply proposition 4.1. It is sufficient to
prove that the projection of `(u∗, τ (j)

k , 2π
ω0

) onto τ -space is unbounded.
The characteristic matrix of (4.1) at an equilibrium ū = (ū(1), ū(2), ū(3)) ∈ R3

takes the following form

∆(ū, λ, τ) = λId−DF (ū, τ̄ , p̄)(eλId) (4.11)

By (2.1), we can easily show that (ūi, τ, p)(i = 1, 2) are the stationary solution of
(4.1)(where ū1 = (0, 0, 0), ū2 = ( c1(a1−c1)

rc2
, 0, c1c2 )) and the corresponding character-

istic matrices are

∆(ū1,τ,p)(λ) =

λ+ r1 α −a1 + c1e
−λτ

0 λ+ (b1 + r + α) 0
0 0 λ− c1e

−λτ

 , (4.12)

∆(ū2,τ,p)(λ) =

λ+ r1 α −a1 + c1e
−λτ

0 λ+ (b1 + r + α) 0
0 0 λ− c1e

−λτ + 2c1.

 (4.13)
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The point (ū, τ̄ , p̄) is called a center if F (ū, τ̄ , p̄) = 0 and det(∆(ū,τ̄ ,p̄)(λ))( 2π
p i) = 0.

A center (ū, τ̄ , p̄) is said to be isolated if it is the only center in some neighborhood
of (ū, τ̄ , p̄).

It follows from (4.12) and (4.13) that

det(∆(ū1,τ,p)(λ)) = (λ+ r1)(λ+ b1 + r + α)(λ− c1e
−λτ ) = 0 (4.14)

det(∆(ū1,τ,p)(λ)) = (λ+ r1)(λ+ b1 + r + α)(λ− c1e
−λτ + 2c1) = 0. (4.15)

Obviously, (4.15) has no purely imaginary roots. Thus, we conclude that (4.1) has
no center of the form (ū2, τ, p).

For ω > 0, iω is a root of (4.14) if and only if

iω − c1(cosωτ − i sinωτ) = 0

Separating the real and imaginary parts, we have

c1 cosωτ = 0, sinωτ = ω

which implies

ω = c1, τk =
π

2c1
+

2kπ
c1

.

Thus, when τk = π
2c1

+ 2kπ
c1

, Equation (4.14) has a pair of simple imaginary roots
±ic1. By direct computation, we may obtain that

Re{dλ
dτ
|τ=τk

} =
c21

1 + c21τ
2
k

> 0

Therefore, we conclude that (ū1, τk,
2π
c1

) is an isolated center stated as above.
On the other hand, from the discussion about the local Hopf bifurcation in

Section 2, it is easy to verify that (u∗, τ (j)
k , 2π

ω0
) is also an isolated center, and there

exist ε > 0, δ > 0 and a smooth curve λ : (τ (j)
k − δ, τ

(j)
k + δ) → C such that

det(∆(λ(τ))) = 0, |λ(τ)− iω0| < ε for all τ ∈ [τ (j)
k − δ, τ

(j)
k + δ], and

λ(τ (j)
k ) = iω0,

d

dτ
Reλ(τ)|

τ=τ
(j)
k

6= 0.

Let

Ωε = {(v, p); 0 < v < ε, |p− 2π
ω0
| < ε}.

It is easy to verify that on [τ (j)
k − δ, τ

(j)
k + δ]× ∂Ωε, 2π

ω0
,det(∆(u∗,τ,p)(v + i2πp ) = 0)

if and only if τ = τ
(j)
k , v = 0 and p = 2π

ω0
. Therefore, the hypotheses (A1)-(A4) in

[8] are satisfied. Moreover, if we define

H±(u∗, τ, p)(v, p) = det∆
(u∗,τ

(j)
k ±δ,p)(v + im

2π
p

).

At m = 1, we have the first crossing number of isolated center (u∗, τ (j)
k , 2π

ω0
) as

follows

γm(u∗, τ (j)
k ,

2π
ω0

) = degB(H−(u∗, τ (j)
k ,

2π
ω0

),Ωε,p0)− degB(H+(u∗, τ (j)
k ,

2π
ω0

),Ωε,p0)

= −1
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For the isolated center (ū1, τk,
2π
c1

), a similar argument shows that γm(ū1, τk,
2π
c1

) =
−1. Thus we have ∑

(ū,τ̄ ,p̄)∈C(u∗,τ
(j)
k , 2π

ω0
)∩N(F )

γm(ū, τ̄ , p̄) < 0 (4.16)

where (ū, τ̄ , p̄), in fact, take the form of either (u∗, τ (j)
k , 2π

ω0
) or (ū1, τk,

2π
c1

), (k =
0, 1, 2, . . . ). By proposition 4.1, we conclude that the connected component for
τ > τ

(j)
k , there exists an integer m such that τ/m < 2π

ω0
< τ . Since system (4.1) has

no periodic solution when τ = 0, it has no τ/n-periodic solution for any integer n.
Thus, the period p of a periodic solution on the connected component `(u∗, τ (j)

k , 2π
ω0

)

satisfies τ/m < p < τ , through (u∗, τ (j)
k , 2π

ω0
) is unbounded.

Now we prove that the projection of `(u∗, τ (j)
k , 2π

ω0
) onto τ−space is unbounded.

Lemma 4.3 implies that the projection of `(u∗, τ (j)
k , 2π

ω0
) onto the u-space is

bounded. Aslo, note that Lemma 4.4 shows that the system (4.1) with τ = 0
has no non-constant periodic solution. Therefore, the projection of `(u∗, τ (j)

k , 2π
ω0

)

onto the τ -space is bounded below. The definition of τ (j)
k in (2.12) implies that

2π
ω0

< τ
(j)
k , k = 1, 2, . . . and applying Lemma 4.4, we know that for τ > τ

(j)
k , there

exists an integer m such that τ/m < 2π
ω0

< τ . Since system (4.1) has no periodic
solution when τ = 0, it has no τ/n-periodic solution for any integer n. Thus, the
period p of a periodic solution on the connected component `(u∗, τ (j)

k , 2π
ω0

) satisfies

τ/m < p < τ . This shows that in order for `(u∗, τ (j)
k , 2π

ω0
) to be unbounded, the pro-

jection of `(u∗, τ (j)
k , 2π

ω0
) onto τ−space must be unbounded. Consequently, the pro-

jection of `(u∗, τ (j)
k , 2π

ω0
)onto τ−space must be an interval [α,∞] with 0 < α < τ

(j)
k .

This shows for each τ > τ
(j)
k , system (4.1) has a p-periodic solution. This completes

the proof. �

5. An example

We consider the system

ẋ(t) = 2z(t)− 1.2z(t− τ)− 0.8x(t)− 0.16x(t)y(t) + 0.75y(t),

ẏ(t) = 0.16x(t)− 0.75y(t)− 0.98y(t),

ż(t) = 1.2z(t− τ)− 0.03z2(t).

(5.1)

which has a positive equilibrium E∗ = (27.9622, 2.5861, 40). It follows from section
2 that z1 = 1.5812, τ0 = 1.0441, τ = 1.0441 + 3.9736j(j = 0, 1, 2, . . . ) and h(z1) =
−25.8025 6= 0. By Theorem 2.5, we know that the positive equilibrium is stable
when τ < τ0. Figure 1 shows that the positive equilibrium is asymptotically stable
when τ = 0.4.

By section 2,we know that a Hopf bifurcation occurs when τ = τ0, the positive
equilibrium loses its stability and a periodic solution bifurcating from the positive
equilibrium exists for τ = 1.1 > τ0. The bifurcation is supercritical and the bifur-
cating periodic solution is orbitally asymptotically stable,as depicted in Figure 2.
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