Arij Bouzelmate, Abdelilah Gmira, Guillermo Reyes
Abstract:
This paper concerns the existence, uniqueness and
asymptotic properties (as
) of radial self-similar
solutions to the nonlinear Ornstein-Uhlenbeck equation
in
. Here
,
,
and
denotes the
-Laplacian operator.
These solutions are of the form
where
and
are fixed powers given by the
invariance properties of differential equation, while
is a radial
function,
,
.
With the choice
,
the radial profile
satisfies the nonlinear ordinary differential
equation
in
.
We carry out a careful analysis of this equation and
deduce the corresponding consequences for the Ornstein-Uhlenbeck equation.
Submitted January 11, 2007. Published May 9, 2007.
Math Subject Classifications: 34L30, 35K55, 35K65.
Key Words: p-laplacian; Ornstein-Uhlenbeck diffusion equations;
self-similar solutions; shooting technique.
Show me the PDF file (337K), TEX file, and other files for this article.
Arij Bouzelmate Département de Mathématiques et Informatique Faculté des Sciences, BP 2121, Tétouan, Maroc email: bouzelmatearij@yahoo.fr | |
Abdelilah Gmira Département de Mathématiques et Informatique Faculté des Sciences, BP 2121, Tétouan, Maroc email: gmira@fst.ac.ma or gmira.i@menara.ma | |
Guillermo Reyes Departamento de Matemáticas Universidad Carlos III de Madrid, Leganés, Madrid 28911, Spain email: greyes@math.uc3m.es |
Return to the EJDE web page