Electron. J. Diff. Eqns., Vol. 2007(2007), No. 67, pp. 1-21.

Radial selfsimilar solutions of a nonlinear Ornstein-Uhlenbeck equation

Arij Bouzelmate, Abdelilah Gmira, Guillermo Reyes

Abstract:
This paper concerns the existence, uniqueness and asymptotic properties (as $r=|x|\to\infty$) of radial self-similar solutions to the nonlinear Ornstein-Uhlenbeck equation
$$
 v_t=\Delta_p  v+x\cdot\nabla (|v|^{q-1}v)
 $$
in $\mathbb{R}^N\times (0, +\infty)$. Here q greater than p-1 greater than 1, $N\geq 1$, and $\Delta_p$ denotes the $p$-Laplacian operator. These solutions are of the form
$$
 v(x,t)=t^{-\gamma} U(cxt^{-\sigma}),
 $$
where $\gamma$ and $\sigma$ are fixed powers given by the invariance properties of differential equation, while $U$ is a radial function, $U(y)=u(r)$, $r=|y|$. With the choice $c=(q-1)^{-1/p}$, the radial profile $u$ satisfies the nonlinear ordinary differential equation
$$
 (|u'|^{p-2}u')'+\frac{N-1}r |u'|^{p-2}u'+\frac{q+1-p}{p} r u'+(q-1)
 r(|u|^{q-1}u)'+u=0
 $$
in $\mathbb{R}_+$. We carry out a careful analysis of this equation and deduce the corresponding consequences for the Ornstein-Uhlenbeck equation.

Submitted January 11, 2007. Published May 9, 2007.
Math Subject Classifications: 34L30, 35K55, 35K65.
Key Words: p-laplacian; Ornstein-Uhlenbeck diffusion equations; self-similar solutions; shooting technique.

Show me the PDF file (337K), TEX file, and other files for this article.

Arij Bouzelmate
Département de Mathématiques et Informatique
Faculté des Sciences, BP 2121, Tétouan, Maroc
email: bouzelmatearij@yahoo.fr
Abdelilah Gmira
Département de Mathématiques et Informatique
Faculté des Sciences, BP 2121, Tétouan, Maroc
email: gmira@fst.ac.ma or gmira.i@menara.ma
  Guillermo Reyes
Departamento de Matemáticas
Universidad Carlos III de Madrid, Leganés, Madrid 28911, Spain
email: greyes@math.uc3m.es

Return to the EJDE web page