POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITIES DEPENDING ON x^{\prime}

YUN CHEN, BAOQIANG YAN, LILI ZHANG

$$
\begin{aligned}
& \text { AbSTRACT. Using a fixed point theorem in cones, this paper shows the exis- } \\
& \text { tence of positive solutions for the singular three-point boundary-value problem } \\
& \qquad x^{\prime \prime}(t)+a(t) f\left(t, x(t), x^{\prime}(t)\right)=0, \quad 0<t<1 \\
& \qquad x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta)
\end{aligned}
$$

where $0<\alpha<1,0<\eta<1$, and f may change sign and may be singular at $x=0$ and $x^{\prime}=0$.

1. Introduction

The study of multi-point boundary value problem (BVP) for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [3, 4]. Since then, many authors studied more general nonlinear multi-point BVPs, for example [2, 5, 6, and references therein. Recently, Liu [5] proved the existence of positive solutions for the three-point BVP

$$
\begin{gathered}
y^{\prime \prime}(t)+a(t) f(y(t))=0, \quad 0<t<1 \\
y^{\prime}(0)=0, \quad y(1)=\beta y(\eta)
\end{gathered}
$$

where $0<\beta<1,0<\eta<1$ and $f:[0,+\infty) \rightarrow[0,+\infty)$ has no singularity at $y=0$. Guo and Ge [2] presented the existence of positive solutions for the three-point BVP

$$
\begin{gathered}
x^{\prime \prime}(t)+f\left(t, x, x^{\prime}\right)=0, \quad 0<t<1, \\
x(0)=0, \quad x(1)=\beta x(\eta),
\end{gathered}
$$

where $\beta \eta \in(0,1), 0<\eta<1$ and $f \in C([0,1] \times[0,+\infty) \times R,[0,+\infty))$ has no singularity at $t=0, x=0$ and $x^{\prime}=0$.

[^0]Motivated by the works of (4, 5], in this paper, we discuss the equation

$$
\begin{gather*}
x^{\prime \prime}(t)+a(t) f\left(t, x(t), x^{\prime}(t)\right)=0, \quad 0<t<1 \\
x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta) \tag{1.1}
\end{gather*}
$$

where $0<\alpha<1,0<\eta<1, f$ may change sign and may be singular at $x=0$ and $x^{\prime}=0$.

The features in this article, that different from those in [2, 5], are as follows: First, the nonlinearity $a(t) f\left(t, x, x^{\prime}\right)$ may be singular at $t=0, t=1, x=0$ and $x^{\prime}=0$; also the degree of singularity in x and x^{\prime} may be arbitrary; i. e., if f contains $\frac{1}{x^{\alpha}}$ and $\frac{1}{\left(-x^{\prime}\right)^{\gamma}}, \alpha$ and γ may be big enough). Second, f is allowed to change sign.

The paper is organized as follows. In the next section, we present some preliminaries. Section 3 is devoted to our main result, Theorem 3.1. An example is also given to illustrate the main result. Some of the idea used here come from [6, 7].

2. Preliminaries

In this paper, we assume the following conditions
(P1) $f(t, x, y) \in C((0,1) \times(0,+\infty) \times(-\infty, 0),(-\infty,+\infty))$;
(P2) $\beta(t), a(t), k(t) \in C((0,1),(0,+\infty)), F(x) \in C((0,+\infty),(0,+\infty)), G(y) \in$ $C((-\infty, 0),(0,+\infty)), a(t) k(t) \in L[0,1] ;$
(P3) $0<\alpha<1,0<\eta<1$ and $|f(t, x, y)| \leq k(t) F(x) G(y)$;
(H1) There exists $\delta>0$ such that $f(t, x, y) \geq \beta(t), y \in(-\delta, 0)$;
(H2) $\sup F[z,+\infty)=\sup \{F(x), z \leq x<+\infty\}<+\infty$ for all fixed $z \in(0,+\infty)$;
(H3) $\frac{1}{G(y)} \notin L(-\infty,-1]$;
Lemma 2.1 ([1]). Let E be a Banach space, K a cone of E, and $B_{R}=\{x \in E$: $\|x\|<R\}$, where $0<r<R$. Suppose that $F: K \cap \overline{B_{R} \backslash B_{r}}=K_{R, r} \rightarrow K$ is a completely continuous operator and the following two conditions are satisfied
(1) $\|F(x)\| \geq\|x\|$ for any $x \in K$ with $\|x\|=r$.
(2) If $x \neq \lambda F(x)$ for any $x \in K$ with $\|x\|=R$ and $0<\lambda<1$.

Then F has a fixed point in $K_{R, r}$.
Lemma 2.2. For each natural number $n>0$, there exists $y_{n}(t) \in C[0,1]$ with $y_{n}(t) \leq-\frac{1}{n}$ such that

$$
\begin{equation*}
y_{n}(t)=-\frac{1}{n}+\min \left\{0,-\int_{0}^{t} a(s) f\left(s, A y_{n}(s)+\frac{1}{n}, y_{n}(s)\right) d s\right\}, \quad t \in[0,1] \tag{2.1}
\end{equation*}
$$

Proof. For $y(t) \in P=\{y(t): y(t) \leq 0, y(t) \in C[0,1]\}$, define the operator

$$
\begin{gathered}
T y(t)=-\frac{1}{n}+\min \left\{0,-\int_{0}^{t} a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\} \\
A y(s)=\frac{1}{1-\alpha} \int_{0}^{1}-y(\tau) d \tau-\frac{\alpha}{1-\alpha} \int_{0}^{\eta}-y(\tau) d \tau-\int_{0}^{s}-y(\tau) d \tau
\end{gathered}
$$

where $n>0$ is a natural number. Using the equality $\min \{c, 0\}=\frac{c-|c|}{2}$ and

$$
c(y(t))=-\int_{0}^{t} a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s
$$

it is easy to know that

$$
T y(t)=-\frac{1}{n}+\frac{c(y(t))-\mid c(y(t) \mid}{2}
$$

Let $y_{k}(t), y(t) \in P,\left\|y_{k}-y\right\| \rightarrow 0$, then there exists a constant $h>0$, such that $\left\|y_{k}\right\| \leq h$ and $\|y\| \leq h$, and let

$$
c\left(y_{k}(t)\right)=-\int_{0}^{t} a(s) f\left(s, A y_{k}(s)+\frac{1}{n}, \min \left\{y_{k}(s),-\frac{1}{n}\right\}\right) d s
$$

which yields

$$
\begin{aligned}
\left|T y_{k}(t)-T y(t)\right| & =\frac{1}{2}\left|c\left(y_{k}(t)\right)-c(y(t))-\left|c\left(y_{k}(t)\right)\right|+|c(y(t))|\right| \\
& \leq \frac{1}{2}\left|c\left(y_{k}(t)\right)-c(y(t))+\left|c\left(y_{k}(t)\right)-c(y(t))\right|\right|
\end{aligned}
$$

Assumption (P1) implies that $\left\{a(s) f\left(s, A y_{k}(s)+\frac{1}{n}, \min \left\{y_{k}(s),-\frac{1}{n}\right\}\right.\right.$ converges to $\left\{a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right.\right.$, for $s \in(0,1)$. By the Lebesgue dominated convergence theorem (the dominated function $a(s) k(s) F\left[\frac{1}{n},+\infty\right) G\left[-h-\frac{1}{n},-\frac{1}{n}\right]$), $\left|T y_{k}(t)-T y(t)\right| \rightarrow 0, T$ is a continuous operator in P.

Let C be a bounded set in P, i.e., there exists $h_{1}>0$ such that $\|y\| \leq h_{1}$, for any $y(t) \in C, t_{1}, t_{2} \in[0,1], t_{1}<t_{2}, y(t) \in P$,

$$
\begin{aligned}
\left|T y\left(t_{2}\right)-T y\left(t_{1}\right)\right|= & \frac{1}{2} \left\lvert\,-\int_{t_{1}}^{t_{2}} a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right.\right. \\
& +\int_{t_{1}}^{t_{2}} a(s) f\left(s, A y(s)+\frac{1}{n}, \left.\min \left\{y(s), \left.-\frac{1}{n} \right\rvert\,\right) d s \right\rvert\,\right. \\
\leq & \left\lvert\,-\int_{t_{1}}^{t_{2}} a(s) k(s) d s F\left[\frac{1}{n}+\infty\right) G\left[-h_{1}-\frac{1}{n},-\frac{1}{n}\right]\right. \\
& +\int_{t_{1}}^{t_{2}} a(s) k(s) d s F\left[\frac{1}{n},+\infty\right) G\left[-h_{1}-\frac{1}{n},-\frac{1}{n}\right]| |
\end{aligned}
$$

According to the absolute continuity of the Lebesgue integral, for any $\epsilon>0$, there exists $\delta>0$ such that, when $\left|t_{2}-t_{1}\right|<\delta, \mid \int_{t_{1}}^{t_{2}} a(s) k(s) d s<\epsilon$ holds. Therefore, $\{T y(t), y(t) \in P\}$ is equicontinuous. Hence T is a completely continuous operator in P.

By (H3), we may choose a sufficiently large $R_{n}>1$ to fit

$$
\int_{-R_{n}}^{-1} \frac{d y}{G(y)} \geq \int_{0}^{t} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)
$$

For any fixed n, we prove that

$$
\begin{equation*}
y(t) \neq \lambda T y(t)=\frac{-\lambda}{n}+\lambda \min \left\{0,-\int_{0}^{t} a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\} \tag{2.2}
\end{equation*}
$$

for any $y(t) \in P$ with $\|y\|=R_{n}$ and $0<\lambda<1$.
In fact, if there exist $y(t) \in P$ with $\|y\|=R_{n}$ and $0<\lambda<1$, such that

$$
\begin{equation*}
y(t)=\frac{-\lambda}{n}+\lambda \min \left\{0,-\int_{0}^{t} a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\} \tag{2.3}
\end{equation*}
$$

First, we prove an important fact: for $t, z \in[0,1], t>z, y(t)<y(z) \leq-\frac{1}{n}$,

$$
\begin{equation*}
\int_{y(t)}^{y(z)} \frac{d y}{G(y)} \leq \int_{z}^{t} a(s) k(s) d s \sup F\left[A y(t)+\frac{1}{n},+\infty\right) \tag{2.4}
\end{equation*}
$$

Let $t^{\prime} \in(0, t]$ such that $y\left(t^{\prime}\right)=y(t), y(s) \geq y\left(t^{\prime}\right), s \in\left(0, t^{\prime}\right]$. We may choose $\left\{t_{i}\right\}(i=1,2, \ldots, 2 m)$ to fit

1) $t^{\prime}=t_{1}>t_{2} \geq t_{3}>t_{4} \geq t_{5}>\cdots \geq t_{2 m-1}>t_{2 m}=z \geq 0$;
(1) $y\left(t_{1}\right)=y\left(t^{\prime}\right), y\left(t_{2 i}\right)=y\left(t_{2 i+1}\right), i=1,2, \ldots m-1, y\left(t_{2 m}\right)=y(z)$;
(2) $y(t)$ is decreasing in $\left[t_{2 i}, t_{2 i-1}\right], i=1,2, \ldots m$. (if $y(t)$ is decreasing in $\left[0, t^{\prime}\right]$. Let $m=1$, i.e. $\left[t_{2}, t_{1}\right]=\left[0, t^{\prime}\right]$.)
Note that $y(t)<-\frac{1}{n}, t \in\left(t_{2 i}, t_{2 i-1}\right]$, which implies

$$
-\int_{0}^{t} a(s) f\left(s, A y(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s<0, \quad t \in\left(t_{2 i}, t_{2 i-1}\right]
$$

Differentiating 2.3) and using (H2), we obtain

$$
\begin{gathered}
-y^{\prime}(t)=\lambda a(t) f\left(t, A y(t)+\frac{1}{n}, y(t)\right) \\
\frac{-y^{\prime}(t)}{G(y(t))} \leq a(t) k(t) \sup F\left[A y(t)+\frac{1}{n},+\infty\right) \leq a(t) k(t) \sup F\left[\frac{1}{n},+\infty\right)
\end{gathered}
$$

for $t \in\left(t_{2 i}, t_{2 i-1}\right], i=1,2, \ldots m$. Integrating from $t_{2 i}$ to $t_{2 i-1}$, we have

$$
\int_{y\left(t_{2 i-1}\right)}^{y\left(t_{2 i}\right)} \frac{d y}{G(y)} \leq \int_{t_{2 i}}^{t_{2 i-1}} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right), \quad i=1,2, \ldots m
$$

Summing from m to 1 , we have

$$
\int_{y(t)}^{y(z)} \frac{d y}{G(y)} \leq \int_{z}^{t} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)
$$

Set $y(z)=-\frac{1}{n}, y(t)=-R_{n}$ in 2.4, we have

$$
\int_{-R_{n}}^{-1} \frac{d y}{G(y)} \leq \int_{-R_{n}}^{-\frac{1}{n}} \frac{d y}{G(y)} \leq \int_{0}^{t} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)
$$

which contradicts

$$
\int_{-R_{n}}^{-1} \frac{d y}{G(y)} \geq \int_{0}^{t} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)
$$

Hence 2.2 holds. Put $r=\frac{1}{n}$, Lemma 2.1 leads to the desired result.

3. Main Results

Main result in this paper is as follows.
Theorem 3.1. Let (H1)-(H3) hold. Then the three-point boundary-value problem 1.1) has at least one positive solution.

Proof. Put $M_{n}=\min \left\{y_{n}(t): t \in[0, \eta]\right\}$. (H1) implies $\gamma=\sup \left\{M_{n}\right\}<0$. Set $\tau=\max \{\gamma,-\delta\}, n>-\frac{1}{\tau}$.
(1) First, we prove that

$$
\begin{equation*}
y_{n}(t)=-\frac{1}{n}-\int_{0}^{t} a(s) f\left(s, A y_{n}(s)+\frac{1}{n}, y_{n}(s)\right) d s, \quad t \in[0,1] \tag{3.1}
\end{equation*}
$$

Set $y_{n}\left(t_{n}\right)=\tau, t_{n} \in(0, \eta], y_{n}(t) \geq \tau, t \in\left[0, t_{n}\right]$. We easily check that $y_{n}(t)$ is decreasing in $\left(0, t_{n}\right]$. We only need to prove that

$$
\begin{equation*}
y_{n}(t) \leq \tau, \quad t \in\left[t_{n}, 1\right] \tag{3.2}
\end{equation*}
$$

If there exist $t \in\left(t_{n}, 1\right]$ such that $y_{n}(t)>\tau$, then we may choose $t^{\prime}, t^{\prime \prime} \in\left[t_{n}, 1\right], t^{\prime}<$ $t^{\prime \prime}$ to fit $y_{n}\left(t^{\prime}\right)=\tau, \tau<y_{n}(t)<-\frac{1}{n}, t \in\left(t^{\prime}, t^{\prime \prime}\right]$, we have from 2.1)

$$
0<\int_{t^{\prime}}^{t^{\prime \prime}} a(s) f\left(s, A y_{n}(s)+\frac{1}{n}, y_{n}(s)\right) d s=y_{n}\left(t^{\prime}\right)-y_{n}\left(t^{\prime \prime}\right)<0
$$

This contradiction implies (3.2).
Using $y_{n}(t), 1$ and 0 in place of $y(t), \lambda$ and z in 2.3) in Lemma 2.2, we notice that

$$
\begin{aligned}
A y_{n}(t)+\frac{1}{n} & =\frac{1}{1-\alpha} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\alpha}{1-\alpha} \int_{0}^{\eta}-y_{n}(\tau) d \tau-\int_{0}^{t}-y_{n}(\tau) d \tau+\frac{1}{n} \\
& >\frac{\alpha}{1-\alpha} \int_{\eta}^{1}-y_{n}(\tau) d \tau \\
& \geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta), \quad t \in[0,1]
\end{aligned}
$$

From 2.4, putting $t=t_{n}$, we know that

$$
\begin{equation*}
\int_{y_{n}\left(t_{n}\right)}^{-\frac{1}{n}} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{t_{n}} a(s) k(s) d s \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right) \tag{3.3}
\end{equation*}
$$

Equation (3.3) shows $t_{0}=\inf \left\{t_{n}\right\}>0$. Also, $y_{n}(t)$ is decreasing for $t \in\left(0, t_{0}\right]$ and (H1) imply that $W(t)=\sup \left\{y_{n}(t)\right\}<0, t \in\left(0, t_{0}\right]$.
(2) We show that $\left\{y_{n}(t)\right\}$ is equicontinuous on $\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]$, for a natural number $k \geq 1$, and uniformly bounded on $[0,1]$.

Using $y_{n}(t), 1$ and 0 instead of $y_{(}(t), \lambda$ and z in 2.3 in Lemma 2.2, we notice that

$$
A y_{n}(t)+\frac{1}{n} \geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta), \quad t \in[0,1]
$$

We know from 2.4,

$$
\begin{equation*}
\int_{y_{n}(t)}^{-\frac{1}{n}} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{t} a(s) k(s) d s \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right), \quad t \in[0,1] \tag{3.4}
\end{equation*}
$$

Now we use (H3) and (3.4) show that $\omega(t)=\inf \left\{y_{n}(t)\right\}>-\infty$ is bounded on $[0,1]$. On the other hand, it follows from (3.1) and (3.2) that
$\left|y_{n}^{\prime}(t)\right| \leq k(t) a(t) \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right) \sup G\left[\omega_{k}, \max \left\{\tau, W\left(\frac{1}{k}\right)\right\}\right],(n \geq k)$.
Where $\omega_{k}=\inf \left\{\omega(t), t \in\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]\right\}$. Thus 3.5 and the absolute continuity of Lebesgue integral show that $\left\{y_{n}(t)\right\}$ is equicontinuous on $\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]$. Now the Arzela-Ascoli theorem guarantees that there exists a subsequence of $\left\{y_{n}(t)\right\}$, which converges uniformly on $\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]$. When $k=1$, there exists a subsequence $\left\{y_{n}^{(1)}(t)\right\}$ of $\left\{y_{n}(t)\right\}$, which converges uniformly on $\left[\frac{1}{3}, \frac{2}{3}\right]$. When $k=2$, there exists a subsequence $\left\{y_{n}^{(2)}(t)\right\}$ of $\left\{y_{n}^{(1)}(t)\right\}$, which converges uniformly on $\left[\frac{1}{6}, \frac{5}{6}\right]$. In general, there exists a subsequence $\left\{y_{n}^{(k+1)}(t)\right\}$ of $\left\{y_{n}^{(k)}(t)\right\}$, which converges uniformly on $\left[\frac{1}{3(k+1)}, 1-\frac{1}{3(k+1)}\right]$. Then the diagonal sequence $\left\{y_{k}^{(k)}(t)\right\}$ converges everywhere in $(0,1)$ and it is easy to verify that $\left\{y_{k}^{(k)}(t)\right\}$ converges uniformly on any interval $[c, d] \subseteq(0,1)$. Without loss of generality, let $\left\{y_{k}^{(k)}(t)\right\}$ be itself of $\left\{y_{n}(t)\right\}$ in the
rest. Put $y(t)=\lim _{n \rightarrow \infty} y_{n}(t), t \in(0,1)$. Then $y(t)$ is continuous in $(0,1)$ and $y(t)<0, t \in(0,1)$.
(3) Now (3.4) shows that

$$
\sup \left\{\max \left\{-y_{n}(t), t \in[0,1]\right\}\right\}<+\infty
$$

We have

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \sup \left\{\int_{0}^{t}-y_{n}(s) d s\right\}=0, \quad \lim _{t \rightarrow 1-} \sup \left\{\int_{t}^{1}-y_{n}(s) d s\right\}=0 \tag{3.6}
\end{equation*}
$$

and we obtain

$$
\begin{align*}
A y_{n}(t) & =\frac{1}{1-\alpha} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\alpha}{1-\alpha} \int_{0}^{\eta}-y_{n}(\tau) d \tau-\int_{0}^{t}-y_{n}(\tau) d \tau \tag{3.7}\\
& <\frac{1}{1-\alpha} \int_{0}^{1}-y_{n}(\tau) d \tau<+\infty, \quad t \in[0,1]
\end{align*}
$$

Since (3.6) and (3.7) hold, Fatou's theorem of the Lebesgue integral implies $A y(t)<$ $+\infty$, for any fixed $t \in(0,1)$.
(4) $y(t)$ satisfies

$$
y(t)=-\int_{0}^{t} a(s) f(s, A y(s), y(s)) d s, \quad t \in(0,1)
$$

Since $y_{n}(t)$ converges uniformly on $[a, b] \subset(0,1),(3.6)$ leads that $A y_{n}(s)$ converges to $A y(s)$ for any $s \in(0,1)$. For each fixed $t \in(0,1)$, thee exists $d>0$ such that $0<d<t$, then

$$
y_{n}(t)-y_{n}(d)=-\int_{d}^{t} a(s) f\left(s, A y_{n}(s)+\frac{1}{n}, y_{n}(s)\right) d s
$$

for all $n>k$. Since $y_{n}(s) \leq \max \{\tau, W(d)\}, A y_{n}(s)+\frac{1}{n} \geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta), s \in[d, t]$, the set $\left\{A y_{n}(s)\right\}$ or $\left\{y_{n}(s)\right\}$ is bounded and equicontinuous on $[d, t]$. Let $n \rightarrow \infty$

$$
\begin{equation*}
y(t)-y(d)=-\int_{d}^{t} a(s) f(s, A y(s), y(s)) d s \tag{3.8}
\end{equation*}
$$

Putting $t=d$ in (3.4), we have

$$
\int_{y_{n}(d)}^{-\frac{1}{n}} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{d} a(s) k(s) d s \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right)
$$

Let $n \rightarrow \infty$ and $d \rightarrow 0+$, we obtain

$$
y(0+)=\lim _{d \rightarrow 0+} y(d)=0
$$

Letting $d \rightarrow 0+$ in (3.8), we have

$$
\begin{equation*}
y(t)=-\int_{0}^{t} a(s) f(s, A y(s), y(s)) d s, \quad t \in(0,1) \tag{3.9}
\end{equation*}
$$

and $A y(1)=\alpha A y(\eta)$. Hence $x(t)=A y(t)$ is a positive solution of 1.1.
Corollary 3.2. Suppose that (H1)-(H3) hold, then the set of positive solutions of (1.1) is compact.

Proof. Let $M=\{y \in C[0,1]: A y(t)$ is a positive solution of 1.1) $\}$. First we show that M is compact. Note that (1) M is not empty; (2) M is relatively compact(bounded, equicontinuous). (3) M is closed.

Obviously Theorem 3.1 implies M is not empty.
First we show that $M \in C[0,1]$ is relatively compact. For any $y(t) \in M$, differentiating (3.9) and using (H2), we obtain

$$
\begin{aligned}
& \quad-y^{\prime}(t)=\lambda a(t) f(t, A y(t), y(t)) \\
& \frac{-y^{\prime}(t)}{G(y(t))} \leq a(t) k(t) \sup F[A y(t),+\infty) \\
& \leq a(t) k(t) \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right), \quad t \in[0,1]
\end{aligned}
$$

Integrating from 0 to t, we have

$$
\begin{equation*}
\int_{y(t)}^{0} \frac{d y}{G(y)} \leq \int_{0}^{1} a(s) k(s) d s \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right), \quad t \in[0,1] \tag{3.10}
\end{equation*}
$$

Now (H3) and 3.10 show that for any $y(t) \in M$, there exists $K>0$ such that $|y(t)|<K$, for all $t \in[0,1]$. Then M is bounded.

For each $y(t) \in M$, we obtain from (3.9),

$$
\begin{aligned}
-y^{\prime}(t) & =a(t) f(t, A y(t), y(t)) \\
& \leq a(t)|f(t, A y(t), y(t))| \\
& \leq a(t) k(t) F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right) G(y(t)), \quad t \in(0,1)
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime}(t) & =-a(t) f(t, A y(t), y(t)) \\
& \leq a(t)|f(t, A y(t), y(t))| \\
& \leq a(t) k(t) F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right) G(y(t)), \quad t \in(0,1)
\end{aligned}
$$

which yields

$$
\begin{align*}
& \frac{-y^{\prime}(t)}{G(y(t))+1} \leq a(t) k(t) \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right), \quad t \in(0,1), \tag{3.11}\\
& \frac{y^{\prime}(t)}{G(y(t))+1} \leq a(t) k(t) \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right), \quad t \in(0,1) \tag{3.12}
\end{align*}
$$

Note that the right-hand sides of the above inequalities are always positive. Let $I(y(t))=\int_{0}^{y(t)} \frac{d y}{G(y)+1}$, for any $t_{1}, t_{2} \in[0,1]$. Integration from t_{1} to t_{2} in (3.11) and (3.12) yields

$$
\begin{equation*}
\left|I\left(y\left(t_{1}\right)\right)-I\left(y\left(t_{2}\right)\right)\right| \leq \int_{t_{1}}^{t_{2}} a(t) k(t) F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right) d t \tag{3.13}
\end{equation*}
$$

Since I^{-1} is uniformly continuous on $[I(-K), 0]$, for any $\bar{\epsilon}>0$, there is a $\epsilon^{\prime}>0$ such that

$$
\begin{equation*}
\left|I^{-1}\left(s_{1}\right)-I^{-1}\left(s_{2}\right)\right|<\bar{\epsilon}, \forall\left|s_{1}-s_{2}\right|<\epsilon^{\prime}, s_{1}, s_{2} \in[I(-K), 0] \tag{3.14}
\end{equation*}
$$

Inequality 3.13 guarantees that for $\epsilon^{\prime}>0$, there is a $\delta^{\prime}>0$ such that

$$
\left|I\left(y\left(t_{1}\right)\right)-I\left(y\left(t_{2}\right)\right)\right|<\epsilon^{\prime}, \forall\left|t_{1}-t_{2}\right|<\delta^{\prime}, \quad t_{1}, t_{2} \in[0,1] .
$$

This inequality and 3.14 imply

$$
\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|=\mid I^{-1}\left(I\left(y\left(t_{1}\right)\right)-I^{-1}\left(I\left(y\left(t_{2}\right)\right) \mid<\bar{\epsilon}, \quad t_{1}, t_{2} \in[0,1]\right.\right.
$$

which means that M is equicontinuous. So M is relatively compact.
Second, we show that M is closed. Suppose that $\left\{y_{n}\right\} \subseteq M$ and

$$
\lim _{n \rightarrow+\infty} \max _{t \in[0,1]}\left|y_{n}(t)-y_{0}(t)\right|=0
$$

Obviously $y_{0} \in C[0,1]$ and $\lim _{n \rightarrow+\infty} A y_{n}(t)=A y_{0}(t), t \in[0,1]$. Moreover,

$$
\begin{aligned}
A y_{n}(t) & =\frac{1}{1-\alpha} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\alpha}{1-\alpha} \int_{0}^{\eta}-y_{n}(\tau) d \tau-\int_{0}^{t}-y_{n}(\tau) d \tau \\
& <\frac{1}{1-\alpha} \int_{0}^{1}-y_{n}(\tau) d \tau \\
& <\frac{K}{1-\alpha}, \quad t \in[0,1]
\end{aligned}
$$

For $y_{n}(t) \in M$, from (3.9) we obtain

$$
y_{n}(t)=-\int_{0}^{t} a(s) f\left(s, A y_{n}(s), y_{n}(s)\right) d s, \quad t \in(0,1)
$$

For fixed $t \in(0,1)$, there exists $d>0$ such that $0<d<t$, then

$$
y_{n}(t)-y_{n}(d)=-\int_{d}^{t} a(s) f\left(s, A y_{n}(s), y_{n}(s)\right) d s
$$

Since $y_{n}(s) \leq \max \{\tau, W(d)\}, A y_{n}(s) \geq \frac{\alpha}{1-\alpha}(-\tau)(1-\eta), s \in[d, t]$, the Lebesgue dominated convergence theorem yields

$$
\begin{equation*}
y_{0}(t)-y_{0}(d)=-\int_{d}^{t} a(s) f\left(s, A y_{0}(s), y_{0}(s)\right) d s, \quad t \in(0,1) \tag{3.15}
\end{equation*}
$$

From (3.9), we have

$$
-y_{n}^{\prime}(t)=a(t) f\left(t, A y_{n}(s), y_{n}(s)\right) \leq a(t) k(t) F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right) G\left(y_{n}(t)\right)
$$

which yields

$$
\frac{-y_{n}^{\prime}(t)}{G\left(y_{n}(t)\right)} \leq a(t) k(t) d s \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right), \quad t \in(0,1)
$$

integrating from 0 to d,

$$
\int_{y_{n}(d)}^{0} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{d} a(s) k(s) d s \sup F\left[\frac{\alpha}{1-\alpha}(-\tau)(1-\eta),+\infty\right)
$$

Let $n \rightarrow \infty$ and $d \rightarrow 0+$, we obtain $y_{0}(0+)=\lim _{d \rightarrow 0+} y_{0}(d)=0$. Letting $d \rightarrow 0+$ in (3.15), we have

$$
y_{0}(t)=-\int_{0}^{t} a(s) f\left(s, A y_{0}(s), y_{0}(s)\right) d s, t \in(0,1), A y_{0}(1)=\alpha A y_{0}(\eta)
$$

then $x_{0}(t)=A y_{0}(t)$ is a positive solution of 1.1). So $y_{0}(t) \in M$ and M is a closed set. Hence $\{A y(t), y(t) \in M\} \in C^{1}[0,1]$ is compact.

Example 3.3. In (1.1), let

$$
f(t, x, y)=k(t)\left[1+x^{-\gamma}+(-y)^{-\sigma}-(-y) \ln (-y)\right], a(t)=t^{-\frac{1}{3}}
$$

and $k(t)=t^{-\frac{1}{2}}, 0<t<1$, where $\gamma>0, \sigma \geq 0$, and let $F(x)=1+x^{-\gamma}, G(y)=$ $1+(-y)^{-\sigma}+(-y) \ln (-y)$. Then

$$
\begin{gathered}
f(t, x, y) \leq k(t) F(x) G(y), \quad \delta=-1, \quad \beta(t)=k(t) \\
\int_{-\infty}^{-1} \frac{d y}{G(y)}=+\infty
\end{gathered}
$$

By Theorem 3.1, equation (1.1) has at least a positive solution and Corollary 3.2 implies the set of solutions is compact.

References

[1] K. Deimling; Nonlinear Functional Analysis, Spring-Verlag, Berlin, 1985.
[2] Y. Guo, W. Ge; Positive solutions for three-point boundary value problems with dependence on the first order derivative, J. Math. Anal. Appl., 290, (2004), pp291-301.
[3] V. A. Il'in, E. I. Moiseev; Nonlocal boundary value problem of the second kind for a SturmLiouvile operator, Differential Equation 23 (8) (1987), pp. 979-987.
[4] V. A. Il'in, E. I. Moiseev; Nonlocal value problem of the first kind for a Sturm-Liouvile operator in its differential and finite difference aspects, Differential Equations, 23 no. 7 (1987), pp. 803-810.
[5] B. Liu; Positive solutions of a nonlinear three-point boundary value problem, Applied Mathematics and Computation 132 (2002), pp. 11-28.
[6] R. Ma; Positive solutions for a nonlinear three-point boundary value problem, Electron. J. Differential Equations 1999, no. 34 (1999), pp. 1-8.
[7] G. Yang; Positive solutions of some second order nonlinear singular differential equations, Computers Math. Appl. 45 (2003), pp. 604-615.
[8] G. Yang; Second order singular boundary value problems with sign-changing nonlinearities on infinity intervals. Nonlinear Analysis Forum, 9 (2)(2004), pp. 169-174.

Yun Chen
Department of Mathematics, Shandong Normal University, Jinan, 250014, China
E-mail address: chenyun001982@126.com
Baoqiang Yan
Department of Mathematics, Shandong Normal University, Jinan, 250014, China
E-mail address: yanbqcn@yahoo.com.cn
Lili Zhang
Department of Mathematics, Shandong Normal University, Jinan, 250014, China
E-mail address: kuaile100@163.com

[^0]: 2000 Mathematics Subject Classification. 34B15, 34B10.
 Key words and phrases. Three-point boundary value problem; singularity; positive solutions; fixed point theorem.
 (C) 2007 Texas State University - San Marcos.

 Submitted September 15, 2006. Published April 25, 2007.
 Supported by grants 10571111 from the National Natural Science, and Y2005A07 from the
 Natural Science of Shandong Province.

