
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 31, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ON A CONVEX COMBINATION OF SOLUTIONS TO ELLIPTIC
VARIATIONAL INEQUALITIES

MAHDI BOUKROUCHE, DOMINGO A. TARZIA

Abstract. Let ugi the unique solutions of an elliptic variational inequal-

ity with second member gi (i = 1, 2). We establish necessary and sufficient
conditions for the convex combination tug1 + (1 − t)ug2 , to be equal to the

unique solution of the same elliptic variational inequality with second member

tg1 + (1− t)g2. We also give some examples where this property is valid.

1. Introduction

In the linear problems for partial differential equations this property leads to the
well known superposition principle which is classically used for example in Fourier
series, variational equalities, etc. In these cases the linear combination (and also a
convex combination) of two solutions of a linear problem, associated to two data,
is also solution of the same problem with linear (convex) combination of the two
data.

However, in general, this property is not true for the solutions of nonlinear prob-
lems, for example for the variational inequalities. The variational inequality theory
is fundamental in order to solve free boundary problems for partial differential
equations, e.g. the dam problem [1]; the one-phase Stefan problem [2]; the obstacle
problem [3, 4, 5]; the mathematical foundation of the finite element method [6] and
its corresponding numerical analysis [7].

The goal of this paper is to give necessary and sufficiently condition to obtain
that this property in valid for a convex combination of the solutions of elliptic
variational inequalities.

Let V be an Hilbert space, V ′ its topological dual, K be a closed convex non
empty set in V , gi in V ′ for i = 1 and 2, and a bilinear form a : V × V → R, which
is

• symmetric: a(u, v) = a(v, u) for all (v, u) ∈ V × V ,
• continuous: there exists M > 0 such that |a(v, u)| ≤ M‖v‖V |u‖V for all

(v, u) ∈ V × V ,
• coercive: there exists m > 0 such that |a(v, v)| ≥ m‖v‖2V for all v ∈ V .
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It is known [8, 9, 10] that for each gi ∈ V ′ there exists a unique solution ui ∈ K,
namely

a(ui, v − ui) ≥ 〈gi, v − ui〉 ∀v ∈ K i = 1, 2 , (1.1)

where < u , v > denotes the duality brackets between u ∈ V ′ and v ∈ V . Then we
can consider gi 7→ ui = ugi

as function from V ′ to V .
We want to establish necessary and sufficiently conditions for the convex com-

bination u3(t) = tu1 + (1 − t)u2, with t ∈ [0, 1], to be the unique solution of the
elliptic variational inequality (1.1) with second member g3(t) = tg1 +(1− t)g2, such
that

utg1+(1−t)g2 = tug1 + (1− t)ug2 ∀t ∈ [0, 1] (1.2)

if and only if

a(ug1 , ug2 − ug1)− 〈g1, ug2 − ug1〉 = 0, (1.3)

a(ug2 , ug1 − ug2)− 〈g2, ug1 − ug2〉 = 0. (1.4)

This means also that if g1 and g2 are two points in V ′ and ug1 and ug2 are the cor-
responding closest points in the closed convex K then the closest point utg1+(1−t)g2

to tg1 +(1− t)g2 is equal to tug1 +(1− t)ug2 for all t ∈ [0, 1] if and only if ug1 −ug2

is orthogonal to both ug1 − g1 and ug2 − g2.
This paper is organized as follows. In Section 2 we establish some preliminary

results which allow us, in Section 3, to prove our main result that (1.2) is equivalent
to (1.3) and (1.4). We also give in Section 4 some examples where this property is
valid.

2. Preliminary results

For t ∈ [0, 1] and v ∈ K, we define the function f : [0, 1]×K → R, by

f(t, v) = a(u3(t), v − u3(t))− 〈g3(t), v − u3(t)〉 (2.1)

with u3(t) = tu1 + (1− t)u2 and g3(t) = tg1 + (1− t)g2.

Lemma 2.1. For all t ∈ [0, 1] and all v ∈ K there exist A, B(v), and C(v) such
that

f(t, v) = At2 +B(v)t+ C(v) (2.2)

where, for ui is the unique solution of (1.1) with given data gi ∈ V ′ (i = 1, 2)

A = a(u1 − u2, u1 − u2)− 〈g1 − g2, g1 − g2〉 ≥ 0, (2.3)

B(v) = a(u1 − u2, v − 2u2)− 〈g1 − g2, v − u2〉 − 〈g2, u1 − u2〉, (2.4)

C(v) = a(u2, v − u2)− 〈g2, v − u2〉 ≥ 0 ∀v ∈ K (2.5)

Moreover, we have

A+B(v) + C(v) ≥ 0 ∀v ∈ K. (2.6)
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Proof. Since v = tv + (1− t)v for all t in [0, 1], we can write f as

f(t, v) = a(tu1 + (1− t)u2, t(v − u1) + (1− t)(v − u2))

− 〈tg1 + (1− t)g2, t(v − u1) + (1− t)(v − u2)〉
= t2[a(u1, v − u1) + a(u1, v − u2)− a(u2, v − u1)

+ a(u2, v − u2)− 〈g1, v − u1〉+ 〈g1, v − u2〉
+ 〈g2, v − u1〉 − 〈g2, v − u2〉]
+ t[(a(u1, v − u2) + a(u2, v − u1)− 2a(u2, v − u2)

− 〈g1, v − u2〉 − 〈g2, v − u1〉+ 2〈g2, v − u2〉]
+ [a(u2, v − u2)− 〈g2, v − u2〉]

= At2 +B(v)t+ C(v).

So we have

A = [a(u1, v − u1)− 〈g1, v − u1〉]− a(u2, v − u1) + 〈g2, v − u1〉
+ [a(u2, v − u2)− 〈g2, v − u2〉]− a(u1, v − u2) + 〈g1, v − u2〉

= a(u1 − u2, v − u1)− 〈g1 − g2, v − u1〉+ a(u2 − u1, v − u2)

− 〈g2 − g1, v − u2〉
= a(u1 − u2, u2 − u1)− 〈g1 − g2, u2 − u1〉

and we remark that

A = [a(u1, u2 − u1)− 〈g1, u2 − u1〉] + [a(u2, u1 − u2)− 〈g2, u1 − u2〉]

as ui (i = 1, 2) is solution of (1.1) with gi then A ≥ 0 and does not depend on v.
So (2.3) holds.

B(v) = a(u1, v − u2) + a(u2, v − u1)− 2a(u2, v − u2)

− 〈g1, v − u2〉 − 〈g2, v − u1〉+ 2〈g2, v − u2〉
= a(u1 − u2, v − u2) + a(u2, (v − u1)− (v − u2))

− 〈g1 − g2, v − u2〉 − 〈g2, (v − u1)− (v − u2)〉
= a(u1 − u2, v − u2) + a(u2, u2 − u1)

− 〈g1 − g2, v − u2〉 − 〈g2, u2 − u1〉
= a(u1 − u2, v − 2u2)− 〈g1 − g2, v − u2〉 − 〈g2, u2 − u1〉

So (2.4) holds. Also

C(v) = a(u2, v − u2)− 〈g2, v − u2〉 ≥ 0,

so as u2 is the solution of the variational inequality (1.1) with second member g2,
then we have (2.5). Moreover

A+B(v) + C(v) = f(1, v) = a(u1, v − u1)− 〈g1, v − u1〉 ≥ 0 ∀v ∈ K,

then (2.6) holds. �

Now we define

α = a(u1, u2 − u1)− 〈g1, u2 − u1〉, (2.7)

β = a(u2, u1 − u2)− 〈g2, u1 − u2〉. (2.8)
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Lemma 2.2. Let α and β be defined by (2.7) and (2.8) respectively. Then α ≥ 0,
β ≥ 0, and for all λ ∈ [0, 1] we have

C(λu1 + (1− λ)u2) = λβ ≥ 0, (2.9)

A = α+ β ≥ 0, (2.10)

B(λu1 + (1− λ)u2) = −λα− (1 + λ)β ≤ 0. (2.11)

Proof. As ui is a solution of (1.1) with gi (i = 1, 2) then α ≥ 0 and β ≥ 0. Taking,
in (2.5), v = λu1 + (1− λ)u2 with λ in [0, 1], we obtain

C(v) = a(u2, λu1 + (1− λ)u2 − u2)− 〈g2, λu1 + (1− λ)u2 − u2〉
= λ[a(u2, u1 − u2)− 〈g2, u1 − u2〉] = λβ ≥ 0.

From (2.3) we deduce that A = α + β ≥ 0. Taking, in (2.4) v = λu1 + (1 − λ)u2

with λ in [0, 1], we have

B(v) = a(u1, λu1 + (1− λ)u2 − u2) + a(u2, λu1 + (1− λ)u2 − u1)

− 2a(u2, λu1 + (1− λ)u2 − u2)− 〈g1, λu1 + (1− λ)u2 − u2〉
− 〈g2, λu1 + (1− λ)u2 − u1〉+ 2〈g2, λu1 + (1− λ)u2 − u2〉

= −λ[a(u1, u2 − u1)− 〈g1, u2 − u1〉]
− (1 + λ)[a(u2, u1 − u2)− 〈g2, u1 − u2〉]

= −λα− (1 + λ)β ≤ 0.

�

3. Main result

In this section we give a positive answer to our question when the equality (1.2)
is valid.

Theorem 3.1. We have

utg1+(1−t)g2 = tug1 + (1− t)ug2 ∀t ∈ [0, 1] (3.1)

if and only if
α = a(ug1 , ug2 − ug1)− 〈g1, ug2 − ug1〉 = 0 (3.2)

and
β = a(ug2 , ug1 − ug2)− 〈g2, ug1 − ug2〉 = 0, (3.3)

where u4(t) = utg1+(1−t)g2 is the unique solution of the inequality (1.1) with the
second member g3(t) = tg1 + (1 − t)g2 and u3(t) = tug1 + (1 − t)ug2 is the convex
combination for t ∈ [0, 1], of ug1 and ug2 which are solutions of the variational
inequality (1.1), respectively with second members g1 and g2.

Proof. Suppose that α = β = 0. Therefore, A = α+ β = 0, so

f(t, v) = B(v)t+ C(v),

and from (2.5) and (2.6) we have

f(0, v) = C(v) ≥ 0 and f(1, v) = B(v) + C(v) ≥ 0 ∀v ∈ K,
then we deduce that f(t, v) ≥ 0 for all (t, v) ∈ [0, 1] × K. Therefore u3(t) =
tug1 + (1 − t)ug2 is the unique solution of (1.1) with the second member g3(t) =
tg1 +(1− t)g2, so we get (3.1), by the uniqueness of the variational inequality (1.1)
for a given g3(t).
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Suppose now that u3(t) = u4(t), ∀t ∈ [0, 1]. Then from (2.1) and (2.2) we have

f(t, v) = At2 +B(v)t+ C(v) ≥ 0, ∀t ∈ [0, 1], ∀v ∈ K.
Taking v = u1 = ug1 (i.e. λ = 1 in Lemma 2.2), we obtain

A = α+ β ≥ 0, B(u1) = −α− 2β ≤ 0, C(u1) = β ≥ 0 .

Thus the discriminant ∆(u1) = B(u1)2 − 4AC(u1) of the quadratic function t 7→
f(t, v) is equal to α2. Then there exist two roots t1 ≥ 0, t2 ≥ 0 with

min(t1, t2) ≥ 1 or max(t1, t2) ≤ 0.

Then the two roots t1 = 1 and t2 = β
α+β must not be in ]0, 1[ so t2 must be equal

to 1, which gives α = 0.
Taking now v = u2 = ug2 (i.e. λ = 0 in Lemma 2.2) we obtain

A = α+ β ≥ 0, B(u2) = −β ≤ 0, C(u2) = 0

thus the corresponding discriminant is ∆(u2) = B(u1)2 − 4AC(u1) = β2. Then
there exist two roots t1 ≥ 0, t2 ≥ 0 with

min(t1, t2) ≥ 1 or max(t1, t2) ≤ 0.

Then the two roots t1 = 0 and t2 = β
α+β must not be in ]0, 1[ so t2 = β

α+β must be
equal to 0, which give β = 0. �

Corollary 3.2. For K = V the variational inequality (1.1) becomes the following
variational equality

u ∈ V : a(u, v) = 〈g, v〉 ∀v ∈ V
thus α = β = 0 so

utg1+(1−t)g2 = tug1 + (1− t)ug2 ∀t ∈ [0, 1]. (3.4)

Remark 3.3. Property (3.4) has been used in [11] to prove the strict convexity of
the cost functional for optimal control problems.

4. Applications

Let Ω be an open set in Rn, V = L2(Ω), so V ′ = V and the duality brackets
< · , · > becomes the scalar product in V denoted by (· , ·)V . We use the usual
notation G+ = max(G, 0) and G− = (−G)+, and

G ⊥ F ⇐⇒ (G,F )V = 0.

We have a preliminary result.

Lemma 4.1. Let Gi ∈ L2(Ω) for i = 1, 2, then we have

G−
1 ⊥ G+

2 and G−
2 ⊥ G+

1 ⇐⇒ G1(x)G2(x) ≥ 0 a.e. in Ω

Proof. Suppose that G1(x)G2(x) ≥ 0 a.e. in Ω.
If G1(x) > 0 which means G−

1 (x) = 0 and G+
1 (x) = G1(x), then G2(x) ≥ 0

implies
G−

2 (x) = 0 and G+
2 (x) = G2(x);

thus
G−

1 (x)G+
2 (x) = 0 and G−

2 (x)G+
1 (x) = 0.

If G1(x) < 0 which means G+
1 (x) = 0 and G−

1 (x) = G1(x), then G2(x) ≤ 0 implies

G+
2 (x) = 0 and G−

2 (x) = G2(x);
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thus we have also

G−
1 (x)G+

2 (x) = 0 and G−
2 (x)G+

1 (x) = 0.

So we have

(G−
1 , G

+
2 )V =

∫
Ω

G−
1 (x)G+

2 (x)dx

=
∫

Ω∩{G1>0}
G−

1 (x)G+
2 (x)dx+

∫
Ω∩{G1<0}

G−
1 (x)G+

2 (x)dx

+
∫

Ω∩{G1=0}
G−

1 (x)G+
2 (x)dx = 0 ⇒ G−

1 ⊥ G+
2 ,

and

(G−
2 , G

+
1 )V =

∫
Ω

G−
2 (x)G+

1 (x)dx

=
∫

Ω∩{G1>0}
G−

2 (x)G+
1 (x)dx+

∫
Ω∩{G1<0}

G−
2 (x)G+

1 (x)dx

+
∫

Ω∩{G1=0}
G−

2 (x)G+
1 (x)dx = 0 ⇒ G−

2 ⊥ G+
1 .

Conversely we have

0 = (G−
1 , G

+
2 )V =

∫
Ω

G−
1 (x)G+

2 (x)dx =
∫

Ω∩{G1<0}
(−G1)(x)G+

2 (x)dx

=
∫

Ω∩{G1<0}∩{G2>0}
(−G1)(x)G2(x)dx

then

(G−
1 , G

+
2 )V = 0 =⇒


|{G1 < 0} ∩ {G2 > 0}| = 0,
G1 < 0 ⇒ G+

2 = 0 ⇒ G2 ≤ 0 ⇒ G1G2 ≥ 0
G2 > 0 ⇒ G−

1 = 0 ⇒ G1 ≥ 0 ⇒ G1G2 ≥ 0

where |ω| is the measure of the set ω. We have also

0 = (G−
2 , G

+
1 )V =

∫
Ω

G−
2 (x)G+

1 (x)dx =
∫

Ω∩{G1>0}
G1(x)G−

2 (x)dx

=
∫

Ω∩{G1>0}∩{G2<0}
G1(x)(−G2)(x)dx

then

(G−
2 , G

+
1 )V = 0 =⇒


|{G2 < 0} ∩ {G1 > 0}| = 0,
G2 < 0 ⇒ G+

1 = 0 ⇒ G1 ≤ 0 ⇒ G2G1 ≥ 0
G1 > 0 ⇒ G−

2 = 0 ⇒ G2 ≥ 0 ⇒ G1G2 ≥ 0.

This completes the proof. �

Example 4.2. Let ψ ∈ L2(Ω), V = L2(Ω), and

K = {v ∈ L2(Ω) : v ≥ ψ}, a(u , v) = (u , v)V .

We have here easily the existence and uniqueness of u ∈ K such that

[a(u, v − u) ≥ (g , v − u)V ∀v ∈ K] ⇔ [(u− g , v − u)V ≥ 0 ∀v ∈ K]
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which is also equivalent to

u = PK(g) = max(g, ψ) = g + (ψ − g)+ = ψ + (g − ψ)+. (4.1)

Proof. From (4.1), following [10], we have

u− g = (ψ − g)+ and v − u = v − ψ − (g − ψ)+

so

(u− g, v − u)V = ((ψ − g)+, (v − ψ)− (g − ψ)+)V

= ((ψ − g)+, v − ψ)V − ((ψ − g)+, (g − ψ)+)V

as
((ψ − g)+, (g − ψ)+)V = ((g − ψ)−, (g − ψ)+)V = 0

then

(u− g, v − u)V = ((ψ − g)+, v − ψ)V =
∫

Ω

(ψ − g)+(v − ψ)dx ≥ 0, ∀v ∈ K.

�

Theorem 4.3. Let V = L2(Ω), ψ ∈ V , K = {v ∈ V : v ≥ ψ}, a(u, v) = (u, v)V .
For a given gi ∈ V , i = 1, 2, we associate

ui = ugi = gi + (ψ − gi)+ = max(ψ, gi).

Then we have

utg1+(1−t)g2 = tug1 +(1−t)ug2 ∀t ∈ [0, 1] ⇔ (g1−ψ)(g2−ψ) ≥ 0 a.e. in Ω. (4.2)

Proof. ¿From the definition of α we have

α = a(u1, u2 − u1)− (g1, u2 − u1)V = (u1 − g1, u2 − u1)V .

From
u1 − g1 = (ψ − g1)+, u2 − u1 = (g2 − ψ)+ − (g1 − ψ)+,

we have

α = ((ψ − g1)+, (g2 − ψ)+ − (g1 − ψ)+)V

= ((ψ − g1)+, (g2 − ψ)+)V − ((ψ − g1)+, (g1 − ψ)+)V

=
∫

Ω

(ψ − g1)+(x)(g2 − ψ)+(x)dx

=
∫

Ω

(g1 − ψ)−(x)(g2 − ψ)+(x)dx,

then we deduce that

α = 0 ⇔
∫

Ω

(g1 − ψ)−(x)(g2 − ψ)+(x)dx = 0 ⇔ (g1 − ψ)− ⊥ (g2 − ψ)+.

We have also from the definition of β that

β = a(u2, u1 − u2)− (g2, u1 − u2)V = (u2 − g2, u1 − u2)V

and from

u2 − g2 = (ψ − g2)+ u1 − u2 = (g1 − ψ)+ − (g2 − ψ)+
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we have

β = ((ψ − g2)+, (g1 − ψ)+ − (g2 − ψ)+)V

= ((ψ − g2)+, (g1 − ψ)+)V − ((ψ − g2)+, (g2 − ψ)+)V

=
∫

Ω

(ψ − g2)+(x)(g1 − ψ)+(x)dx

=
∫

Ω

(g2 − ψ)−(x) · (g1 − ψ)+(x)dx,

then we deduce that

β = 0 ⇔
∫

Ω

(g2 − ψ)−(x)(g1 − ψ)+(x)dx = 0 ⇔ (g2 − ψ)− ⊥ (g1 − ψ)+.

Using now Lemma 4.1, with Gi = gi − ψ, we deduce that

(g2 − ψ)− ⊥ (g1 − ψ)+

and
(g1 − ψ)− ⊥ (g2 − ψ)+

 ⇔ (g1 − ψ)(g2 − ψ) ≥ 0 a.e. in Ω.

Moreover

(g2 − ψ)− ⊥ (g1 − ψ)+ and (g1 − ψ)− ⊥ (g2 − ψ)+ ⇔ α = β = 0,

and with Theorem 3.1 we have

α = β = 0 ⇔ utg1+(1−t)g2 = tug1 + (1− t)ug2 ∀t ∈ [0, 1],

which gives us the equivalence (4.2) and completes the proof. �

Example 4.4. Let us consider the following free boundary problem of obstacle
type [10],

V = H1(Ω), V0 = H1
0 (Ω), H = L2(Ω), K = {v ∈ V0 : v ≥ 0},

L(v) = (g , v)H , and a(u , v) =
∫

Ω

∇u∇vdx,

u ∈ K : a(u , v − u) ≥ (g , v − u)H ∀v ∈ K.

(4.3)

We recall here some usual notation. a is a bilinear symmetric, coercive and
continuous form, there exist m,M , such that

m‖v‖2V ≤ ‖|v‖|2V = a(v , v) ≤M‖v‖2V
and ((· , ·)) : V × V → R such that

((u, v)) = a(u, v) ∀(u, v) ∈ V × V

is the inner scalar product in V . L is linear and continuous form on a Hilbert space
V , and also on V0. Then by Riesz theorem there exists a unique g? ∈ V such that

(g , v)H = ((g?, v))V ∀v ∈ V.
then (4.3) is equivalent to

u ∈ K : ((u, v − u))V ≥ ((g?, v − u))V ∀v ∈ K. (4.4)

Therefore, u = PK(g?) is the projection of g? on K with the norm ‖| · ‖|V .
Remark that V0 ↪→ H ↪→ V ′ so this exemple is a particular cas of (1.1).

Lemma 4.5. With the above notation, we have

g ≥ 0 in Ω =⇒ g? ≥ 0 in Ω =⇒ u = PK(g?) = g?+ = g?.
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Proof. As g? = g?+ − g?−, then

((g?+ − g?, v − g?+))V = ((g?−, v − g?+))V = ((g?−, v))V − ((g?−, g?+))V

= a((g?−, v)V − a((g?−, g?+)V =
∫

Ω

∇g?−∇vdx.

From ∫
Ω

∇g?∇vdx = ((g?, v))V = (g , v)H ∀v ∈ V0 and g ∈ H(Ω),

by Green formula we have the representation of g? given by

−∆g? = g in Ω and g?
|∂Ω = 0. (4.5)

Since g ≥ 0 in Ω, by the maximum principle we have g? ≥ 0 thus g?− ≡ 0, so

((g?+ − g?, v − g?+))V =
∫

Ω

∇g?−∇vdx = 0

which gives u = g?+. �

Theorem 4.6. Let V = H1(Ω), H = L2(Ω), K = {v ∈ V : v ≥ 0}, a(u, v) =
(∇u,∇v)Hn . For a given gi ≥ 0 in H, i = 1, 2, we have ui = ugi

= g?
i and

utg1+(1−t)g2 = tug1 + (1− t)ug2 ∀t ∈ [0, 1]. (4.6)

Proof. As gi ≥ 0 in H, then ui = ugi
= g?

i , for i = 1, 2. Moreover

α = a(u1, u2 − u1)− (g1, u2 − u1)H = a(g?
1 , g

?
2 − g?

1)− (g1, g?
2 − g?

1)H

= ((g?
1 , g

?
2 − g?

1))V − (g1, g?
2 − g?

1)H

and by the Riesz theorem

α = ((g?
1 , g

?
2 − g?

1))V − (g?
1 , g

?
2 − g?

1)V = 0.

We have

β = a(u2, u1 − u2)− (g2, u1 − u2)H = a(g?
2 , g

?
1 − g?

2)− (g2, g?
1 − g?

2)H

= ((g?
2 , g

?
1 − g?

2))V − (g2, g?
1 − g?

2)H

and also by the Riesz theorem

β = ((g?
2 , g

?
1 − g?

2))V − (g?
2 , g

?
1 − g?

2)V = 0.

So by Theorem 3.1 we obtain (4.6) and we finish the proof. �

Remark 4.7. In the case Ω =]0, 1[⊂ R, (4.5) becomes

−g?′′(x) = g(x) in ]0, 1[, g?(0) = g?(1) = 0.

and we can obtain the explicit expression of

g?(x) = x

∫ 1

x

g(t)(1− t)dt+ (1− x)
∫ 1

x

tg(t)dt

so we have
g(t) ≥ 0 in [0, 1] =⇒ g?(x) ≥ 0 in [0, 1].

From Lemma 4.5 and Theorem 4.6 we deduce that ug = g?. Moreover if g(t) = g
constant then

g?(x) =
x(1− x)

2
g.
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Conclusion. The idea in the Theorem 3.1 is simple, rigourously proved, and is
very useful for establishing the strict convexity of cost functionals in optimal control
problems from elliptic variational inequalities. To the best of our knowledge this
idea is new and can not be found in the literature of elliptic variational inequalities
and control theory; see for example [12, 14, 13].
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