Electronic Journal of Differential Equations, Vol. 2007(2007), No. 30, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A COMPARISON PRINCIPLE FOR A CLASS OF SUBPARABOLIC EQUATIONS IN GRUSHIN-TYPE SPACES

THOMAS BIESKE

ABSTRACT. We define two notions of viscosity solutions to subparabolic equations in Grushin-type spaces, depending on whether the test functions concern only the past or both the past and the future. We then prove a comparison principle for a class of subparabolic equations and show the sufficiency of considering the test functions that concern only the past.

1. BACKGROUND AND MOTIVATION

In [3], the author considered viscosity solutions to fully nonlinear subelliptic equations in Grushin-type spaces, which are sub-Riemannian metric spaces lacking a group structure. It is natural to consider viscosity solutions to subparabolic equations in this same environment. Our main theorem, found in Section 4, is a comparison principle for a class of subparabolic equations in Grushin-type spaces. We begin with a short review of the key geometric properties of Grushin-type spaces in Section 2 and in Section 3, we define two notions of viscosity solutions to subparabolic equations. Section 4 contains a parabolic comparison principle and the corollary showing the sufficiency of using test functions that concern only the past.

2. Grushin-type Spaces

We begin with \mathbb{R}^n , possessing coordinates $p = (x_1, x_2, \dots, x_n)$ and vector fields

$$X_i = \rho_i(x_1, x_2, \dots, x_{i-1}) \frac{\partial}{\partial x_i}$$

for i = 2, 3, ..., n where $\rho_i(x_1, x_2, ..., x_{i-1})$ is a (possibly constant) polynomial. We decree that $\rho_1 \equiv 1$ so that

$$X_1 = \frac{\partial}{\partial x_1}.$$

A quick calculation shows that when i < j, the Lie bracket is given by

$$X_{ij} \equiv [X_i, X_j] = \rho_i(x_1, x_2, \dots, x_{i-1}) \frac{\partial \rho_j(x_1, x_2, \dots, x_{j-1})}{\partial x_i} \frac{\partial}{\partial x_j}.$$

²⁰⁰⁰ Mathematics Subject Classification. 35K55, 49L25, 53C17.

Key words and phrases. Grushin-type spaces; parabolic equations; viscosity solutions. ©2007 Texas State University - San Marcos.

Submitted November 27, 2006. Published February 14, 2007.

Because the ρ_i 's are polynomials, at each point there is a finite number of iterations of the Lie bracket so that $\frac{\partial}{\partial x_i}$ has a non-zero coefficient. It follows that Hörmander's condition [6] is satisfied by these vector fields.

We may further endow \mathbb{R}^N with an inner product (singular where the polynomials vanish) so that the span of the $\{X_i\}$ forms an orthonormal basis. This produces a sub-Riemannian manifold that we shall call g_n , which is also the tangent space to a generalized Grushin-type space G_n . Points in G_n will also be denoted by $p = (x_1, x_2, \ldots, x_n)$. We observe that if $\rho_i \equiv 1$ for all *i*, then $g_n = G_n = \mathbb{R}^n$.

Given a smooth function f on G_n , we define the horizontal gradient of f as

$$\nabla_0 f(p) = (X_1 f(p), X_2 f(p), \dots, X_n f(p))$$

and the symmetrized second order (horizontal) derivative matrix by

$$((D^2 f(p))^*)_{ij} = \frac{1}{2} (X_i X_j f(p) + X_j X_i f(p))$$

for i, j = 1, 2, ... n.

Definition 2.1. The function $f: G_n \to \mathbb{R}$ is said to be C_{sub}^1 if $X_i f$ is continuous for all i = 1, 2, ..., n. Similarly, the function f is C_{sub}^2 if $X_i X_j f(p)$ is continuous for all i, j = 1, 2, ..., n.

Though G_n is not a Lie group, it is a metric space with the natural metric being the Carnot-Carathéodory distance, which is defined for points p and q as follows:

$$d_C(p,q) = \inf_{\Gamma} \int_0^1 \|\gamma'(t)\| dt.$$

Here Γ is the set of all curves γ such that $\gamma(0) = p, \gamma(1) = q$ and

$$\gamma'(t) \in \operatorname{span}\{\{X_i(\gamma(t))\}_{i=1}^n\}.$$

By Chow's theorem (see, for example, [1]) any two points can be joined by such a curve, which means $d_C(p,q)$ is an honest metric. Using this metric, we can define Carnot-Carathéodory balls and bounded domains in the usual way.

The Carnot-Carathéodory metric behaves differently at points where the polynomials ρ_i vanish. Fixing a point p_0 , consider the *n*-tuple $r_{p_0} = (r_{p_0}^1, r_{p_0}^2, \ldots, r_{p_0}^n)$ where $r_{p_0}^i$ is the minimal number of Lie bracket iterations required to produce

$$[X_{j_1}, [X_{j_2}, [\cdots [X_{j_{r_{p_0}}}, X_i] \cdots](p_0) \neq 0.$$

Note that though the minimal length is unique, the iteration used to obtain that minimum is not. Note also that

$$\rho_i(p_0) \neq 0 \leftrightarrow r_{p_0}^i = 0.$$

Setting $R^i(p_0) = 1 + r^i_{p_0}$ we obtain the local estimate at p_0

$$d_C(p_0, p) \sim \sum_{i=1}^n |x_i - x_i^0|^{\frac{1}{R^i(p_0)}}$$
(2.1)

as a consequence of [1, Theorem 7.34]. Using this local estimate, we can construct a local smooth Grushin gauge at the point p_0 , denoted $\mathcal{N}(p_0, p)$, that is comparable to the Carnot-Carathéodory metric. Namely,

$$(\mathcal{N}(p_0, p))^{2\mathcal{R}} = \sum_{i=1}^{n} (x_i - x_i^0)^{\frac{2\mathcal{R}}{R^i(p_0)}}$$
(2.2)

 $\mathrm{EJDE}\text{-}2007/30$

with

$$\mathcal{R}(p_0) = \prod_{i=1}^n R^i(p_0).$$

3. Subparabolic Jets and Solutions to Subparabolic Equations

In this section, we define and compare various notions of solutions to parabolic equations in Grushin-type spaces, in the spirit of [5, Section 8]. We begin by letting u(p,t) be a function in $G_n \times [0,T]$ for some T > 0 and by denoting the set of $n \times n$ symmetric matrices by S^n . We consider parabolic equations of the form

$$u_t + F(t, p, u, \nabla_0 u, (D^2 u)^*) = 0$$
(3.1)

for continuous and proper $F : [0,T] \times G_n \times \mathbb{R} \times g_n \times S^n \to \mathbb{R}$. Recall that F is proper means

$$F(t, p, r, \eta, X) \le F(t, p, s, \eta, Y)$$

when $r \leq s$ and $Y \leq X$ in the usual ordering of symmetric matrices. [5] We note that the derivatives $\nabla_0 u$ and $(D^2 u)^*$ are taken in the space variable p. We call such equations *subparabolic*. Examples of subparabolic equations include the subparabolic *P*-Laplace equation for $2 \leq P < \infty$ given by

$$u_t + \Delta_P u = u_t - \operatorname{div}(\|\nabla_0 u\|^{P-2} \nabla_0 u) = 0$$

and the subparabolic infinite Laplace equation

$$u_t + \Delta_{\infty} u = u_t - \langle (D^2 u)^* \nabla_0 u, \nabla_0 u \rangle = 0.$$

Let $\mathcal{O} \subset G_n$ be an open set containing the point p_0 . We define the parabolic set $\mathcal{O}_T \equiv \mathcal{O} \times (0,T)$. Following the definition of Grushin jets in [3], we can define the subparabolic superjet of u(p,t) at the point $(p_0,t_0) \in \mathcal{O}_T$, denoted $P^{2,+}u(p_0,t_0)$, by using triples $(a,\eta,X) \in \mathbb{R} \times g_n \times S^n$ with $\eta = \sum_{i=1}^n \eta_j X_j$ and the *ij*-th entry of X denoted X_{ij} . We then have that $(a,\eta,X) \in P^{2,+}u(p_0,t_0)$ if

$$\begin{split} u(p,t) &\leq u(p_0,t_0) + a(t-t_0) + \sum_{j \notin \mathcal{N}} \frac{1}{\rho_j(p_0)} (x_j - x_j^0) \eta_j \\ &+ \frac{1}{2} \sum_{j \notin \mathcal{N}} \frac{1}{(\rho_j(p_0))^2} (x_j - x_j^0)^2 X_{jj} \\ &+ \sum_{\substack{i,j \notin \mathcal{N} \\ i < j}} (x_i - x_i^0) (x_j - x_j^0) (\frac{1}{\rho_j(p_0)\rho_i(p_0)} X_{ij} - \frac{1}{2} \frac{1}{(\rho_j(p_0))^2} \frac{\partial \rho_j}{\partial x_i} (p_0) \eta_j) \\ &+ \sum_{k \in \mathcal{N}} \frac{1}{\beta} \sum_{j=1}^n (x_k - x_k^0) \frac{2}{\rho_j(p_0)} (\frac{\partial \rho_k}{\partial x_j} (p_0))^{-1} X_{jk} + o(|t-t_0| + d_C(p_0, p)^2). \end{split}$$

Here, as in [3], β is the number of non-zero terms in the final sum and we understand that if $\rho_j(p_0) = 0$ or $\frac{\partial \rho_{im}}{\partial x_i}(p_0) = 0$ then that term in the final sum is zero.

We define the subjet $P^{2,-}u(p_0,t_0)$ by

$$P^{2,-}u(p_0,t_0) = -P^{2,+}(-u)(p_0,t_0)$$

We also define the set theoretic closure of the superjet, denoted $\overline{P}^{2,+}u(p_0,t_0)$, by requiring $(a,\eta,X) \in \overline{P}^{2,+}u(p_0,t_0)$ exactly when there is a sequence

$$(a_n, p_n, t_n, u(p_n, t_n), \eta_n, X_n) \to (a, p_0, t_0, u(p_0, t_0), \eta, X)$$

with the triple $(a_n, \eta_n, X_n) \in P^{2,+}u(p_n, t_n)$. A similar definition holds for the closure of the subjet.

As in the subelliptic case, we may also define jets using the appropriate test functions. Namely, we consider the set $\mathcal{A}u(p_0, t_0)$ by

 $\mathcal{A}u(p_0, t_0) = \{ \phi \in C^2_{\rm sub}(\mathcal{O}_T) : u(p, t) - \phi(p, t) \le u(p_0, t_0) - \phi(p_0, t_0) = 0 \}$

consisting of all test functions that touch from above. We define the set of all test functions that touch from below, denoted $\mathcal{B}u(p_0, t_0)$, by

 $\mathcal{B}u(p_0, t_0) = \{ \phi \in C^2_{\text{sub}}(\mathcal{O}_T) : u(p, t) - \phi(p, t) \ge u(p_0, t_0) - \phi(p_0, t_0) = 0 \}.$

The following lemma is proved in the same way as the Euclidean version ([4] and [7]) except we replace the Euclidean distance $|p - p_0|$ with the local Grushin gauge $\mathcal{N}(p_0, p)$.

Lemma 3.1. With the above notation, we have

$$P^{2,+}u(p_0,t_0) = \{(\phi_t(p_0,t_0), \nabla_0\phi(p_0,t_0), (D^2\phi(p_0,t_0))^*) : \phi \in \mathcal{A}u(p_0,t_0)\}$$

and

$$P^{2,-}u(p_0,t_0) = \{(\phi_t(p_0,t_0), \nabla_0\phi(p_0,t_0), (D^2\phi(p_0,t_0))^*) : \phi \in \mathcal{B}u(p_0,t_0)\}.$$

We may now relate the traditional Euclidean parabolic jets found in [5] to the Grushin subparabolic jets via the following lemma.

Lemma 3.2. Let the coordinates of the points $p, p_0 \in \mathbb{R}^n$ be $p = (x_1, x_2, \ldots, x_n)$ and $p_0 = (x_1^0, x_2^0, \ldots, x_n^0)$. Let $P_{\text{eucl}}^{2,+}u(p_0, t_0)$ be the traditional Euclidean parabolic superjet of u at the point (p_0, t_0) and let $(a, \eta, X) \in \mathbb{R} \times \mathbb{R}^n \times S^n$ with $\eta = (\eta_1, \eta_2, \ldots, \eta_n)$. Then

$$(a,\eta,X) \in \overline{P}_{eucl}^{2,+}u(p_0,t_0)$$

gives the element

$$(a, \tilde{\eta}, \mathcal{X}) \in \overline{P}^{2,+} u(p_0, t_0)$$

where the vector $\tilde{\eta}$ is defined by

$$\tilde{\eta} = \sum_{i=1}^{n} \rho_i(p_0) \eta_i X_i$$

and the symmetric matrix \mathcal{X} is defined by

$$\mathcal{X}_{ij} = \begin{cases} \rho_i(p_0)\rho_j(p_0)X_{ij} + \frac{1}{2}\frac{\partial\rho_j}{\partial x_i}(p_0)\rho_i(p_0)\eta_j & \text{if } i \le j\\ \mathcal{X}_{ji} & \text{if } i > j. \end{cases}$$

The proof matches the subelliptic case in Grushin-type spaces as found in [3].

We then use these jets to define subsolutions and supersolutions to Equation (3.1).

Definition 3.3. Let $(p_0, t_0) \in \mathcal{O}_T$ be as above. The upper semicontinuous function u is a viscosity subsolution in \mathcal{O}_T if for all $(p_0, t_0) \in \mathcal{O}_T$ we have $(a, \eta, X) \in P^{2,+}u(p_0, t_0)$ produces

$$a + F(t_0, p_0, u(p_0, t_0), \eta, X) \le 0.$$
 (3.2)

A lower semicontinuous function u is a viscosity supersolution in \mathcal{O}_T if for all $(p_0, t_0) \in \mathcal{O}_T$ we have $(b, \nu, Y) \in P^{2, -}u(p_0, t_0)$ produces

$$b + F(t_0, p_0, u(p_0, t_0), \nu, Y) \ge 0.$$
 (3.3)

EJDE-2007/30

A continuous function u is a viscosity solution in \mathcal{O}_T if it is both a viscosity subsolution and viscosity supersolution.

We observe that the continuity of the function F allows Equations (3.2) and (3.3) to hold when $(a, \eta, X) \in \overline{P}^{2,+}u(p_0, t_0)$ and $(b, \nu, Y) \in \overline{P}^{2,-}u(p_0, t_0)$, respectively. We also wish to define what [8] refers to as parabolic viscosity solutions. We

first need to consider the sets

$$\mathcal{A}^{-}u(p_{0},t_{0}) = \{\phi \in C^{2}_{\text{sub}}(\mathcal{O}_{T}) : u(p,t) - \phi(p,t) \le u(p_{0},t_{0}) - \phi(p_{0},t_{0}) = 0 \text{ for } t < t_{0}\}$$

consisting of all functions that touch from above only when $t < t_0$ and the set

$$\mathcal{B}^{-}u(p_{0},t_{0}) = \{\phi \in C^{2}_{\rm sub}(\mathcal{O}_{T}) : u(p,t) - \phi(p,t) \ge u(p_{0},t_{0}) - \phi(p_{0},t_{0}) = 0 \text{ for } t < t_{0}\}$$

consisting of all functions that touch from below only when $t < t_0$. Note that $\mathcal{A}^{-}u$ is larger than $\mathcal{A}u$ and $\mathcal{B}^{-}u$ is larger than $\mathcal{B}u$. These larger sets correspond physically to the past alone playing a role in determining the present.

We then have the following definition.

Definition 3.4. An upper semicontinuous function u on \mathcal{O}_T is a *parabolic viscosity* subsolution in \mathcal{O}_T if $\phi \in \mathcal{A}^- u(p_0, t_0)$ produces

$$\phi_t(p_0, t_0) + F(t_0, p_0, u(p_0, t_0), \nabla_0 \phi(p_0, t_0), (D^2 \phi(p_0, t_0))^*) \le 0.$$

A lower semicontinuous function u on \mathcal{O}_T is a parabolic viscosity supersolution in \mathcal{O}_T if $\phi \in \mathcal{B}^- u(p_0, t_0)$ produces

$$\phi_t(p_0, t_0) + F(t_0, p_0, u(p_0, t_0), \nabla_0 \phi(p_0, t_0), (D^2 \phi(p_0, t_0))^*) \ge 0.$$

A continuous function is a *parabolic viscosity solution* if it is both a parabolic viscosity supersolution and subsolution.

It is easily checked that parabolic viscosity sub(super-)solutions are viscosity sub(super-)solutions. The reverse implication will be a consequence of the comparison principle proved in the next section.

4. Comparison Principle

To prove our comparison principle, we will consider the function introduced in [3] given by $\varphi: G_n \times G_n \to \mathbb{R}$ given by

$$\varphi(p,q) = \sum_{i=1}^{n} \frac{1}{2^{i}} (x_{i} - y_{i})^{2^{i}}$$

and show the existence of parabolic Grushin jet elements when considering subsolutions and supersolutions in G_n . This theorem is based on [5, Thm. 8.2], which details the Euclidean case.

Theorem 4.1. Let u be a viscosity subsolution to Equation (3.1) and v be a viscosity supersolution to Equation (3.1) in the bounded parabolic set $\Omega \times (0,T)$ where Ω is a bounded domain. Let τ be a positive real parameter and let $\varphi(p,q)$ be as above. Suppose the local maximum of

$$M_{\tau}(p,q,t) \equiv u(p,t) - v(q,t) - \tau \varphi(p,q)$$

occurs at the interior point $(p_{\tau}, q_{\tau}, t_{\tau})$ of the parabolic set $\Omega \times \Omega \times (0, T)$. Then, for each $\tau > 0$, there are elements $(a, \tau \Upsilon_{p_{\tau}}, \mathcal{X}^{\tau}) \in \overline{P}^{2,+}u(p_{\tau}, t_{\tau})$ and $(a, \tau \Upsilon q_{\tau}, \mathcal{Y}^{\tau}) \in \overline{P}^{2,-}v(q_{\tau}, t_{\tau})$ where

$$(\Upsilon_{p_{\tau}})_{i} \equiv \rho_{i}(p_{\tau})\frac{\partial\varphi(p_{\tau},q_{\tau})}{\partial x_{i}} = \rho_{i}(p_{\tau})(x_{i}^{\tau}-y_{i}^{\tau})^{2^{i}-1},$$

$$(\Upsilon_{q_{\tau}})_{i} \equiv -\rho_{i}(q_{\tau})\frac{\partial\varphi(p_{\tau},q_{\tau})}{\partial y_{i}} = \rho_{i}(q_{\tau})(x_{i}^{\tau}-y_{i}^{\tau})^{2^{i}-1}$$

so that if

$$\lim_{\tau \to \infty} \tau \varphi(p_\tau, q_\tau) = 0,$$

then we have

$$|\|\Upsilon_{q_{\tau}}\|^{2} - \|\Upsilon_{p_{\tau}}\|^{2}| = O(\varphi(p_{\tau}, q_{\tau})^{2}),$$
(4.1)

$$\mathcal{X}^{\tau} \leq \mathcal{Y}^{\tau} + \mathcal{R}^{\tau} \quad where \quad \lim_{\tau \to \infty} \mathcal{R}^{\tau} = 0.$$
 (4.2)

We note that Equation (4.2) uses the usual ordering of symmetric matrices.

Proof. We first need to check that condition 8.5 of [5] is satisfied, namely that there exists an r > 0 so that for each M, there exists a C so that $b \leq C$ when $(b, \eta, X) \in P_{\text{eucl}}^{2,+}u(p,t), |p-p_{\tau}|+|t-t_{\tau}| < r$, and $|u(p,t)|+||\eta||+||X|| \leq M$ with a similar statement holding for -v. If this condition is not met, then for each r > 0, we have an M so that for all C, b > C when $(b, \eta, X) \in P_{\text{eucl}}^{2,+}u(p,t)$. By Lemma 3.2 we would have

$$(b, \tilde{\eta}, \mathcal{X}) \in P^{2,+}u(p, t)$$

contradicting the fact that u is a subsolution. A similar conclusion is reached for -v and so we conclude that this condition holds. We may then apply Theorem 8.3 of [5] and obtain, by our choice of φ ,

$$(a, \tau D_p \varphi(p_\tau, q_\tau), X^\tau) \in \overline{P}_{\text{eucl}}^{2,+} u(p_\tau, t_\tau), (a, -\tau D_q \varphi(p_\tau, q_\tau), Y^\tau) \in \overline{P}_{\text{eucl}}^{2,-} v(q_\tau, t_\tau).$$

Using Lemma 3.2 we define the vectors $\Upsilon_{p_{\tau}}(p_{\tau},q_{\tau})$ and $\Upsilon_{q_{\tau}}(p_{\tau},q_{\tau})$ by

$$\begin{split} \Upsilon_{p_{\tau}}(p_{\tau},q_{\tau}) &= \widetilde{D_{p}\varphi}(p_{\tau},q_{\tau}), \\ \Upsilon_{q_{\tau}}(p_{\tau},q_{\tau}) &= -\widetilde{D_{q}\varphi}(p_{\tau},q_{\tau}) \end{split}$$

and we also define the matrices \mathcal{X} and \mathcal{Y} as in Lemma 3.2. Then by Lemma 3.2,

$$(a, \tau \Upsilon_{p_{\tau}}(p_{\tau}, q_{\tau}), \mathcal{X}^{\tau}) \in \overline{P}^{2, +} u(p_{\tau}, t_{\tau}),$$
$$(a, \tau \Upsilon_{q_{\tau}}(p_{\tau}, q_{\tau}), \mathcal{Y}^{\tau}) \in \overline{P}^{2, -} v(q_{\tau}, t_{\tau}).$$

Equations (4.1) and (4.2) are in [3, Lemma 4.2].

Using this theorem, we now define a class of parabolic equations to which we shall prove a comparison principle.

Definition 4.2. We say the continuous, proper function

$$F: [0,T] \times \Omega \times \mathbb{R} \times g_n \times S^n \to \mathbb{R}$$

EJDE-2007/30

is admissible if for each $t \in [0,T]$, there is the same function $\omega : [0,\infty] \to [0,\infty]$ with $\omega(0+) = 0$ so that F satisfies

$$F(t,q,r,\nu,\mathcal{Y}) - F(t,p,r,\eta,\mathcal{X}) \le \omega \big(d_C(p,q) + \big| \|\nu\|^2 - \|\eta\|^2 \big| + \|\mathcal{Y} - \mathcal{X}\| \big).$$
(4.3)

We now formulate the comparison principle for the following problem.

$$u_t + F(t, p, u, \nabla_0 u, (D^2 u)^*) = 0 \quad \text{in } (0, T) \times \Omega$$
(4.4)

$$u(p,t) = h(p,t) \quad p \in \partial\Omega, \ t \in [0,T)$$

$$(4.5)$$

$$u(p,0) = \psi(p) \quad p \in \overline{\Omega} \tag{4.6}$$

Here, $\psi \in C(\overline{\Omega})$ and $h \in C(\overline{\Omega} \times [0,T))$. We also adopt the convention in [5] that a subsolution u(p,t) to Problem (4.4)–(4.6) is a viscosity subsolution to (4.4), $u(p,t) \leq h(p,t)$ on $\partial\Omega$ with $0 \leq t < T$ and $u(p,0) \leq \psi(p)$ on $\overline{\Omega}$. Supersolutions and solutions are defined in an analogous matter.

Theorem 4.3. Let Ω be a bounded domain in G_n . Let F be admissible. If u is a viscosity subsolution and v a viscosity supersolution to Problem (4.4)–(4.6) then $u \leq v$ on $[0,T) \times \Omega$.

Proof. Our proof follows that of [5, Thm. 8.2] and so we discuss only the main parts.

For $\epsilon > 0$, we substitute $\tilde{u} = u - \frac{\varepsilon}{T-t}$ for u and prove the theorem for

$$u_t + F(t, p, u, \nabla_0 u, (D^2 u)^*) \le -\frac{\varepsilon}{T^2} < 0,$$

$$\lim_{t \uparrow T} u(p, t) = -\infty \quad \text{uniformly on } \overline{\Omega}$$

and take limits to obtain the desired result. Assume the maximum occurs at $(p_0, t_0) \in \Omega \times (0, T)$ with

$$u(p_0, t_0) - v(p_0, t_0) = \delta > 0.$$

Let

$$M_{\tau} = u(p_{\tau}, t_{\tau}) - v(q_{\tau}, t_{\tau}) - \tau \varphi(p_{\tau}, q_{\tau})$$

with $(p_{\tau}, q_{\tau}, t_{\tau})$ the maximum point in $\overline{\Omega} \times \overline{\Omega} \times [0, T)$ of $u(p, t) - v(q, t) - \tau \varphi(p, q)$. Using the same proof as [2, Lemma 5.2] we conclude that

$$\lim_{\tau \to \infty} \tau \varphi(p_\tau, q_\tau) = 0.$$

If $t_{\tau} = 0$, we have

$$0 < \delta \le M_{\tau} \le \sup_{\overline{\Omega} \times \overline{\Omega}} (\psi(p) - \psi(q) - \tau \varphi(p, q))$$

leading to a contradiction for large τ . We therefore conclude $t_{\tau} > 0$ for large τ . Since $u \leq v$ on $\partial\Omega \times [0, T)$ by Equation (4.5), we conclude that for large τ , we have $(p_{\tau}, q_{\tau}, t_{\tau})$ is an interior point. That is, $(p_{\tau}, q_{\tau}, t_{\tau}) \in \Omega \times \Omega \times (0, T)$. Using Lemma 3.2, we obtain

$$(a, \tau \Upsilon_{p_{\tau}}(p_{\tau}, q_{\tau}), \mathcal{X}^{\tau}) \in \overline{P}^{2,+} u(p_{\tau}, t_{\tau}),$$
$$(a, \tau \Upsilon_{q_{\tau}}(p_{\tau}, q_{\tau}), \mathcal{Y}^{\tau}) \in \overline{P}^{2,-} v(q_{\tau}, t_{\tau})$$

satisfying the equations

$$a + F(t_{\tau}, p_{\tau}, u(p_{\tau}, t_{\tau}), \tau \Upsilon(p_{\tau}, q_{\tau}), \mathcal{X}^{\tau}) \leq -\frac{\varepsilon}{T^2},$$

$$a + F(t_{\tau}, q_{\tau}, v(q_{\tau}, t_{\tau}), \tau \Upsilon(p_{\tau}, q_{\tau}), \mathcal{Y}^{\tau}) \geq 0.$$

T. BIESKE

Using the fact that F is proper, the fact that $u(p_{\tau}, t_{\tau}) \ge v(q_{\tau}, t_{\tau})$ (otherwise $M_{\tau} < 0$), and Equations (4.1) and (4.2), we have

$$0 < \frac{\varepsilon}{T^2} \le F(t_\tau, q_\tau, v(q_\tau, t_\tau), \tau \Upsilon_{q_\tau}(p_\tau, q_\tau), \mathcal{Y}^\tau) - F(t_\tau, p_\tau, u(p_\tau, t_\tau), \tau \Upsilon_{p_\tau}(p_\tau, q_\tau), \mathcal{X}^\tau) \le \omega(d_C(p_\tau, q_\tau) + \tau | \|\Upsilon_q(p, q)\|^2 - \|\Upsilon_p(p, q)\|^2 | + \|\mathcal{Y}^\tau - \mathcal{X}^\tau\|) = \omega(d_C(p_\tau, q_\tau) + C\tau\varphi(p_\tau, q_\tau) + \|\mathcal{R}_\tau\|).$$

We arrive at a contradiction as $\tau \to \infty$.

We then have the following corollary, showing the equivalence of parabolic viscosity solutions and viscosity solutions.

Corollary 4.4. For admissible F, we have the parabolic viscosity solutions are exactly the viscosity solutions.

Proof. We showed above that parabolic viscosity sub(super-)solutions are viscosity sub(super-)solutions. To prove the converse, we will follow the proof of the subsolution case found in [8], highlighting the main details. Assume that u is not a parabolic viscosity subsolution. Let $\phi \in \mathcal{A}^- u(p_0, t_0)$ have the property that

$$\phi_t(p_0, t_0) + F(t_0, p_0, \phi(p_0, t_0), \nabla_0 \phi(p_0, t_0), (D^2 \phi(p_0, t_0))^*) \ge \epsilon > 0$$

for a small parameter ϵ . Let r > 0 be sufficiently small so that the gauge $\mathcal{N}(p_0, p)$ is comparable to the distance $d_C(p_0, p)$. Define the gauge ball $B_{\mathcal{N}(p_0)}(r)$ by

$$B_{\mathcal{N}(p_0)}(r) = \{ p \in G_n : \mathcal{N}(p_0, p) < r \}$$

and the parabolic gauge ball $S_r = B_{\mathcal{N}(p_0)}(r) \times (t_0 - r, t_0)$ and let ∂S_r be its parabolic boundary. Then the function

$$\tilde{\phi}_r(p,t) = \phi(p,t) + |t_0 - t|^{16R} - r^{16R} + (\mathcal{N}(p_0,p))^{16R}$$

is a classical supersolution for sufficiently small r. We then observe that $u \leq \tilde{\phi}_r$ on ∂S_r but $u(p_0, t_0) > \tilde{\phi}(p_0, t_0)$. Thus, the comparison principle, Theorem 4.3, does not hold. Thus, u is not a viscosity subsolution. The supersolution case is identical and omitted.

References

- Bellaïche, André. The Tangent Space in Sub-Riemannian Geometry. In Sub-Riemannian Geometry; Bellaïche, André., Risler, Jean-Jacques., Eds.; Progress in Mathematics; Birkhäuser: Basel, Switzerland. 1996; Vol. 144, 1–78.
- [2] Bieske, Thomas. On Infinite Harmonic Functions on the Heisenberg Group. Comm. in PDE. 2002, 27 (3&4), 727–762.
- Bieske, Thomas. Lipschitz Extensions on Grushin-type Spaces. Mich Math J. 2005, 53 (1), 3–31.
- [4] Crandall, Michael. Viscosity Solutions: A Primer; Lecture Notes in Mathematics 1660; Springer-Verlag: Berlin, 1997.
- [5] Crandall, Michael.; Ishii, Hitoshi.; Lions, Pierre-Louis. User's Guide to Viscosity Solutions of Second Order Partial Differential Equations. Bull. of Amer. Math. Soc. 1992, 27 (1), 1–67.

EJDE-2007/30

- [6] Hörmander, Lars. Hypoelliptic second-order differential equations. Acta Math. 1967, 119, 147–171.
- [7] Ishii, Hitoshii. Viscosity Solutions of Nonlinear Partial Differential Equations. Sugaku Exp. 1996, 9 (2), 135–152.
- [8] Juutinen, Petri. On the Definition of Viscosity Solutions for Parabolic Equations. Proc. Amer. Math. Soc. 2001, 129 (10), 2907–2911.

THOMAS BIESKE

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TAMPA, FL 33620, USA *E-mail address:* tbieske@math.usf.edu