Electronic Journal of Differential Equations, Vol. 2007(2007), No. 26, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

STURMIAN COMPARISON RESULTS FOR QUASILINEAR ELLIPTIC EQUATIONS IN \mathbb{R}^{n}

TADIE

Abstract

We obtain Sturmian comparison results for the nonnegative solutions to Dirichlet problems associated with p-Laplacian operators. From Picone-type identities 4, 9, we obtain results comparing solutions of two types of equations. We also present results related to those operators using Piconetype identities.

1. Introduction

In this work Ω denotes an open and bounded subset of $\mathbb{R}^{n}, n \geq 2$ with $\partial \Omega \in C^{\ell}$, $\ell \geq 1$. Also $\left.a \in C^{1}(\bar{\Omega} ; 0, \infty)\right), c \in C(\bar{\Omega} ; \mathbb{R})$ and functions $f, g \in C^{1}(\bar{\Omega} ; \mathbb{R})$. Define in Ω the operators

$$
\begin{gather*}
p u:=\nabla \cdot\{a(x) \Phi(\nabla u)\} \\
P u:=\nabla \cdot\{a(x) \Phi(\nabla u)\}+c(x) \phi(u) . \tag{1.1}
\end{gather*}
$$

Associated with the functions f and g define

$$
\begin{equation*}
F u:=P u+f(x, u), G u:=P u+g(x, u) \tag{1.2}
\end{equation*}
$$

where for $(\zeta, t) \in \mathbb{R}^{n} \times \mathbb{R}, \Phi(\zeta)=|\zeta|^{\alpha-1} \zeta, \phi(t)=|t|^{\alpha-1} t$ and $\alpha>0$. Solutions of (1.1) or 1.2 with regular boundary data
(e.g. $\left.u\right|_{\partial \Omega}=g \in C(\overline{\partial \Omega})$) will be supposed to belong to the space

$$
\begin{equation*}
D_{p}(\Omega):=\left\{w \in C^{1}(\bar{\Omega} ; \mathbb{R}): a(x) \Phi(\nabla w) \in C^{1}(\Omega ; \mathbb{R}) \cap C(\bar{\Omega} ; \mathbb{R})\right\} \tag{1.3}
\end{equation*}
$$

For any other similar domain $E, D_{P}(E)$ is defined similarly.
1.1. Picone-type formulae. Similar to [3, Theorem 1.1], let E be a bounded domain in $\mathbb{R}^{n}(n \geq 2)$ with a regular boundary (e.g. $\partial E \in C^{\ell}, \ell \geq 1$), and define for $\alpha>0$ and $f, g \in C(\bar{E} \times \mathbb{R} ; \mathbb{R})$ the operators

$$
\begin{align*}
F u & :=\nabla \cdot\{a \Phi(\nabla u)\}+c \phi(u)+f(x, u) \\
G v & :=\nabla \cdot\{A \Phi(\nabla v)\}+C \phi(v)+g(x, v) \tag{1.4}
\end{align*}
$$

where $a, A \in C^{1}\left(\bar{E} ; \mathbb{R}_{+}\right), c, C \in C(\bar{E} ; \mathbb{R})$.

[^0]Lemma 1.1. If $u, v \in D_{P}(E)$ with $v \neq 0$ in E, then from

$$
\nabla \cdot\left\{\frac{u}{\phi(v)}[\phi(v) a \Phi(\nabla u)]\right\}=a|\nabla u|^{\alpha+1}+u F u-c|u|^{\alpha+1}-u f(x, u)
$$

and

$$
\begin{aligned}
\nabla \cdot\left\{u \phi(u) \frac{A \Phi(\nabla v)}{\phi(v)}\right\}= & (\alpha+1) A \phi(u / v) \nabla u \cdot \Phi(\nabla v)-\alpha A\left|\frac{u}{v} \nabla v\right|^{\alpha+1} \\
& +\frac{u}{\phi(v)} \phi(u) G v-C|u|^{\alpha+1}-\frac{u}{\phi(v)} \phi(u) g(x, v)
\end{aligned}
$$

we obtain

$$
\begin{align*}
\nabla \cdot & \left\{\frac{u}{\phi(v)}[\phi(v) a \Phi(\nabla u)-\phi(u) A \Phi(\nabla v)]\right\} \\
= & (a-A)|\nabla u|^{\alpha+1}+(C-c)|u|^{\alpha+1} \\
& +A\left\{|\nabla u|^{\alpha+1}-(\alpha+1)\left|\frac{u}{v} \nabla v\right|^{\alpha-1} \nabla u \cdot\left(\frac{u}{v} \nabla v\right)+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}\right\} \tag{1.5}\\
& +\frac{u}{\phi(v)}\{[\phi(v) F u-\phi(u) G v]+[\phi(u) g(x, v)-\phi(v) f(x, u)]\} .
\end{align*}
$$

The following important inequality is also from [3, Lemma 2.1]: For all $\alpha>0$ and all $\xi, \eta \in \mathbb{R}^{n}$,

$$
\begin{equation*}
Y(\xi, \eta):=|\xi|^{\alpha+1}+\alpha|\eta|^{\alpha+1}-(\alpha+1)|\eta|^{\alpha-1} \xi \cdot \eta \geq 0 \tag{1.6}
\end{equation*}
$$

The equality holds if and only if $\xi=\eta$. For $u, v \in C^{1}$ define

$$
Z(u, v):=Y(\nabla u, \nabla v)
$$

Some identities. If $a=A, c=C, F u=G v=0$ in E then (1.5) becomes

$$
\begin{align*}
& \nabla \cdot\left\{\frac{u}{\phi(v)} a[\phi(v) \Phi(\nabla u)-\phi(u) \Phi(\nabla v)]\right\} \\
&= a\left\{|\nabla u|^{\alpha+1}-(\alpha+1)\left|\frac{u}{v} \nabla v\right|^{\alpha-1} \nabla u \cdot\left(\frac{u}{v} \nabla v\right)+\alpha\left|\frac{u}{v} \nabla v\right|^{\alpha+1}\right\} \\
&+u \phi(u)\left[\frac{g(x, v)}{\phi(v)}-\frac{f(x, u)}{\phi(u)}\right] \tag{1.7}\\
&:= a Z(u, v)+u \phi(u)\left[\frac{g(x, v)}{\phi(v)}-\frac{f(x, u)}{\phi(u)}\right]
\end{align*}
$$

Define

$$
\chi(x, t):=\frac{f(x, t)}{\phi(t)} .
$$

For the functions u and v above, if $\Omega \subset E$ is open, non empty and $f(x, t) \equiv g(x, t)$, then after integrating (1.6) over Ω we get for positive u and v

$$
\begin{align*}
& \int_{\partial \Omega} a u\left\{|\nabla u|^{\alpha-1} \frac{\partial u}{\partial \nu_{\Omega}}-\phi\left(\frac{v}{u}\right)|\nabla v|^{\alpha-1} \frac{\partial v}{\partial \nu_{\Omega}}\right\} d s \tag{1.8}\\
& =\int_{\Omega}\left[a Z(u, v)+|u|^{\alpha+1}\{\chi(x, v)-\chi(x, u)\}\right] d x
\end{align*}
$$

After interchanging u and v,

$$
\begin{align*}
& \int_{\partial \Omega} a v\left\{|\nabla v|^{\alpha-1} \frac{\partial v}{\partial \nu_{\Omega}}-\phi\left(\frac{u}{v}\right)|\nabla u|^{\alpha-1} \frac{\partial u}{\partial \nu_{\Omega}}\right\} d s \tag{1.9}\\
& =\int_{\Omega}\left[a Z(v, u)+|v|^{\alpha+1}\{\chi(x, u)-\chi(x, v)\}\right] d x
\end{align*}
$$

where ν_{Ω} denotes the outward normal unit vector to $\partial \Omega$.
For the operators F and G in (1.1)-1.2), if u and v satisfy respectively $F u=$ $G v=0$ in Ω, Equation 1.6 leads to

$$
\begin{align*}
& \nabla \cdot\left\{\frac{u}{\phi(v)} a[\phi(v) \Phi(\nabla u)-\phi(u) \Phi(\nabla v)]\right\} \\
& :=a Z(u, v)+u \phi(u) \chi(x, v) \quad \text { if } v>0 \text { in } \Omega, \\
& \nabla \cdot\left\{\frac{v}{\phi(u)} a[\phi(u) \Phi(\nabla v)-\phi(v) \Phi(\nabla u)]\right\} \tag{1.10}\\
& :=a Z(v, u)-v \phi(v) \chi(x, v) \quad \text { if } u>0 \text { in } \Omega .
\end{align*}
$$

Remark 1.2. It is a classical result that if u and v are continuous and piecewise- C^{1} in $\bar{\Omega}$ and for $p w:=\nabla \cdot\{a(x) \Phi(\nabla w)\}$ satisfies weakly

$$
\begin{gathered}
G_{1} u:=p u+g(x, u) \geq 0 \geq p v+g(x, v) \quad \text { in } \Omega ; \\
u \leq v \quad \text { in } \bar{\Omega},
\end{gathered}
$$

then if $g \in C(\Omega \times \mathbb{R})$ is non decreasing in its second argument, the existence of such u and v leads to the existence of a solution $w \in D_{P}(\Omega)$ of $p w+g(x, w)=0$ in $\Omega ;\left.w\right|_{\partial \Omega}=w_{0}$ for any continuous w_{0} satisfying $u \leq w_{0} \leq v$ on $\partial \Omega$.

Remark 1.3. Let Ω be bounded, Ω^{\prime} be an open subset of $\Omega, c \in C(\bar{\Omega})$ and $h \in$ $C(\bar{\Omega} \times \mathbb{R})$. It is known (e.g. [1, 7]) that if $u, v \in D_{p}(\Omega)$ satisfy (weakly) for $H(w):=\nabla \cdot\{a(x) \Phi(\nabla w)\}+c(x) \phi(w)+h(x, w)$,

$$
\begin{equation*}
H u \geq H v \quad \text { in } \Omega ;\left.\quad(u-v)\right|_{\partial \Omega^{\prime}} \leq 0 \tag{1.11}
\end{equation*}
$$

then $(u-v) \leq 0$ in Ω^{\prime} provided that $\forall x \in \Omega, c(x) \phi(w)+h(x, w)$ is non increasing in w for $|w| \leq \max \left\{|u|_{L^{\infty}(\Omega)},|v|_{L^{\infty}(\Omega)}\right\}$.

2. Main Results

Let a, c, \ldots be as defined in the Introduction. Define in Ω the equations:

$$
\begin{gather*}
P u:=\nabla \cdot\{a(x) \Phi(\nabla u)\}+c(x) \phi(u)=0, \tag{2.1}\\
F v:=\nabla \cdot\{a(x) \Phi(\nabla v)\}+c(x) \phi(v)+f(x, v)=0, \tag{2.2}\\
G_{1} w:=\nabla \cdot\{a(x) \Phi(\nabla w)\}+g(x, w)=0 . \tag{2.3}
\end{gather*}
$$

Following the Remarks $1.2,1.3$ we have the following result for the problem

$$
\begin{equation*}
G_{1} w:=p w+g(x, w)=0 \quad \text { in } \Omega ;\left.\quad w\right|_{\partial \Omega}=0 \tag{2.4}
\end{equation*}
$$

Theorem 2.1. (1) Assume that for all x in Ω, g is increasing in the second argument and that $a(x)>0$ is constant in Ω. Then if there is a strictly positive $v \in D_{P}(\Omega)$ which satisfies $G_{1} v \leq 0$ in Ω and $\left.v\right|_{\partial \Omega} \geq 0$, then 2.4 has a solution $u \in D_{P}(\Omega)$ which satisfies $0 \leq u \leq v$ in Ω.
(2) If for all x in Ω, g is non increasing in the second argument then 2.4 has at most one solution in $D_{P}(\Omega)$.
Theorem 2.2. Assume that Ω is bounded and connected and $c \in C(\bar{\Omega})$ is non positive.
(1) Let $u \in D_{p}(\Omega)$ be a solution of

$$
\begin{gathered}
P u:=\nabla \cdot\{a(x) \Phi(\nabla u)\}+c(x) \phi(u)=0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 .
\end{gathered}
$$

Then $u>0$ in Ω if meas $\{x \in \Omega: u(x)>0\}>0$.
(2) For the solutions $w \in D_{p}(\Omega)$ of

$$
\begin{gathered}
F u:=\nabla \cdot\{a(x) \Phi(\nabla w)\}+c(x) \phi(w)+f(x, w)=0 \quad \text { in } \Omega \\
\left.w\right|_{\partial \Omega}=0
\end{gathered}
$$

the same conclusion holds provided that in $\bar{\Omega}, f(x, t) \leq 0$ for $t \geq 0$.

Theorem 2.3.

(1) Assume that for all $x \in \Omega, f(x, t) \geq 0$ for $t \geq 0$. Then if 2.1) has a strictly positive solution u which satisfies $\left.u\right|_{\partial \Omega}=0$, 2.2) cannot have a solution strictly positive in Ω. Consequently if (2.1) has a positive solution u with the boundary condition $\left.u\right|_{\partial \Omega}=0$ then any non negative solution v of $\sqrt{2.2)}$ has a zero inside Ω.
(2) If (2.1) has a solution strictly positive in Ω then if for all $x \in \Omega, f(x, t) \leq 0$ for $t \geq 0$, 2.2 has no nontrivial and nonnegative solution v satisfying $\left.v\right|_{\partial \Omega}=0$.

Theorem 2.4. Let $f \in C(\bar{\Omega} \times \mathbb{R} ; \mathbb{R})$ and let $u, v \in D_{p}(\Omega)$ be two solutions of

$$
F w:=\nabla \cdot\{a \Phi(\nabla w)\}+c \phi(w)+f(x, w)=0 ; \quad w>0 \quad \text { in } \Omega ;\left.\quad w\right|_{\partial \Omega}=0 .
$$

(1) If for all x in $\Omega, t \mapsto \chi(x, t)=f(x, t) / \phi(t)$ is strictly increasing and positive in $t>0$ then
(i) the two solutions intersect in Ω;
(ii) if for some open $D \subset \Omega, v \geq u$ in D then

$$
\begin{equation*}
\int_{\partial D} a u\left\{|\nabla u|^{\alpha-1} \frac{\partial u}{\partial \nu_{D}}-\phi\left(\frac{u}{v}\right)|\nabla v|^{\alpha-1} \frac{\partial v}{\partial \nu_{D}}\right\} d s \geq 0 \tag{2.5}
\end{equation*}
$$

and if in addition $u=v$ on ∂D, then

$$
\begin{gather*}
\int_{D}\left\{a Z(v, u)+|v|^{\alpha+1} X(x, u: v)\right\} d x \leq 0 \quad \text { and } \\
\int_{D}\left\{a Z(u, v)+|u|^{\alpha+1} X(x, v: u)\right\} d x \geq 0 \tag{2.6}
\end{gather*}
$$

where $X(x, w: z):=\chi(x, w)-\chi(x, z)$.
(2) If for all x in Ω
(i) $t \mapsto \chi(x, t)=f(x, t) / \phi(t)$ is positive and strictly decreasing in $t>0$ or
(ii) if f is positive and decreasing in $t>0$ then the two solutions coincide.
(3) For connected Ω, the problem

$$
P w=\nabla \cdot\{a \Phi(\nabla w)\}+c \phi(w)=0 \quad \text { in } \Omega ;\left.\quad w\right|_{\partial \Omega}=0
$$

has at most one non negative solution in $D_{P}(\Omega)$.
This problem has at most one strictly positive solution even if Ω is not connected.

3. Proofs of the main results

Proof of Theorem 2.1. (1) Taking in account remark 1.2, we just need to build a subsolution $w \in D_{P}(\Omega)$, such that

$$
G_{1} w \geq 0 \geq G_{1} v \quad \text { and } \quad 0 \leq w \leq v \quad \text { in } \Omega
$$

Because $v>0$ in Ω we consider any nonnegative $U \in C(\bar{\Omega})$ which is piecewise afine; i.e., there exists $\mathcal{N}:=\left\{\eta_{i} ; i=1,2, \ldots, M\right\}$ and some finite number (pairwise disjoint) of subsets $B_{i}, 1 \leq i \leq N$ of Ω such that with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega$
(i) $B:=\bigcup_{i=1}^{N} B_{i} \subset \Omega$;
(ii) $\forall i, U(x)=\sum_{i=1}^{n} \eta_{i} x_{i}<v(x)$ for $x \in B_{i}$;
(iii) $\left.U\right|_{\partial B}=0$ and is extended by 0 outside B in Ω.

Thus as $a(x)$ is positive and constant in Ω,

$$
G U=g(x, U) \geq 0 \geq G v \quad \text { and } \quad 0 \leq U \leq v \quad \text { in } \Omega
$$

The solution u of $p u+g(x, U)=0$ in $\Omega ;\left.u\right|_{\partial \Omega}=0$ is in $D_{P}(\Omega)$ and satisfies $G_{1} u=$ $p u+g(x, u) \geq 0 \geq G_{1} v$ and $0 \leq u \leq v$ in Ω. Thus from Remark 1.2 this leads to the existence of such a required solution.
(2) Let g be decreasing in the second argument. Suppose that there are two distinct solutions u and $v \in D_{P}(\Omega)$ such that for some subset B of Ω whose measure is strictly positive $v>u$ in B and $\left.(u-v)\right|_{\partial B}=0$. In that case, as g is decreasing,

$$
p u-p v=g(x, v)-g(x, u) \leq 0 \quad \text { in } B \quad \text { and }\left.\quad(u-v)\right|_{\partial B} \geq 0
$$

This leads to $u \geq v$ in B, conflicting with the assumption. Therefore any such two solutions have to coincide in Ω.

The proof of Theorem 2.2 , follows from the lemma below.
Lemma 3.1. (1) Let $u \in D_{p}(\Omega)$ be a solution of

$$
\begin{gather*}
p u:=\nabla \cdot\{a(x) \Phi(\nabla u)\}=0 \quad \text { in } \Omega ; \\
\left.u\right|_{\partial \Omega}=0 ; \quad \operatorname{meas}\left\{\Omega^{+}\right\}>0 \tag{3.1}
\end{gather*}
$$

where $\Omega^{+}:=\{x \in \Omega: u(x)>0\}$ and $\Omega^{-}:=\{x \in \Omega: u(x)>0\}$. Then $u \geq 0$ a.e. in Ω. Moreover if in addition Ω is connected then $u>0$ in Ω.
(2) The same conclusions hold for the problems

$$
\begin{gather*}
P u:=\nabla \cdot\{a(x) \Phi(\nabla u)\}+c(x) \phi(u)=0 \quad \text { in } \Omega ; \\
\left.u\right|_{\partial \Omega}=0 ; \quad \operatorname{meas}\left\{\Omega^{+}\right\}>0 \tag{3.2}
\end{gather*}
$$

where $c \in C(\bar{\Omega} ; \mathbb{R})$ remains non positive in Ω.
The same conclusion holds for the operator F if in $\bar{\Omega} \times \mathbb{R}_{+}$the function f is non positive.

Proof. (1) Let $k:=\max _{\Omega^{-}}|u(x)|$ and the function $v(x):=u(x)_{+}+k$.
As $\left.(\nabla u-\nabla v)\right|_{\Omega^{+}} \equiv 0, Z(u, v)=0$ and weakly in Ω^{+},
$\nabla \cdot\left\{\frac{u}{\phi(v)} a[\phi(v) \Phi(\nabla u)-\phi(u) \Phi(\nabla v)]\right\}=\frac{u}{\phi(v)}\{\phi(v)-\phi(u)\} \nabla[a(x) \Phi(\nabla u)]=0$
by (1.5) and (3.1). So, as v is constant in Ω^{-},

$$
\nabla \cdot\left\{\frac{u}{\phi(v)} a[\phi(v) \Phi(\nabla u)-\phi(u) \Phi(\nabla v)]\right\}= \begin{cases}a Z(u, k) & \text { in } \Omega^{-} \\ 0 & \text { otherwise }\end{cases}
$$

This implies after integration over Ω that

$$
0=\int_{\Omega^{-}} a(x) Z(u, k) d x=\int_{\Omega^{-}} a(x)|\nabla u|^{\alpha+1} d x>0
$$

which is absurd unless meas $\left\{\Omega^{-}\right\}=0$. The fact that $a \in C^{1}(\bar{\Omega} ;(0, \infty))$ makes the operator p here satisfy the conditions required for the case of the following maximum principle.
[1. Theorem 2.2] If the bounded domain Ω is connected, $p \in(1, \infty)$
and $u \in W_{\mathrm{loc}}^{1, p}(\Omega) \bigcap C^{0}(\Omega)$ satisfies $-\operatorname{div} A(x, D u)+\Lambda|u|^{p-2} u \geq 0$, $u \geq 0$ in Ω for a constant $\Lambda \in \mathbb{R}$ then either $u \equiv 0$ or $u>0$ in Ω.
(2) If $c \leq 0$ in Ω and meas $\left\{\Omega^{-}\right\}>0$ proceeding as above with v defined as before,

$$
\begin{align*}
& \nabla \cdot\left\{\frac{u}{\phi(v)} a[\phi(v) \Phi(\nabla u)-\phi(u) \Phi(\nabla v)]\right\} \\
& = \begin{cases}u\{p u+c \phi(u)\}-u \phi\left(\frac{u}{v}\right)\{p u+c \phi(v)\} & \text { in } \Omega^{+} \\
a Z(u, k)+u\{p u+c \phi(u)\}-u \phi\left(\frac{u}{v}\right) c \phi(v) & \text { in } \Omega^{-} .\end{cases} \tag{3.3}\\
& = \begin{cases}u p u\left\{1-\phi\left(\frac{u}{v}\right)\right\} & \text { in } \Omega^{+} \\
a Z(u, k)+u p u & \text { in } \Omega^{-} .\end{cases}
\end{align*}
$$

From (3.2), upu $=-c \phi(u) \geq 0$ in Ω provided that c is non positive there.
For the operator $F,(3.3$ reads

$$
\begin{align*}
& \nabla \cdot\left\{\frac{u}{\phi(v)} a[\phi(v) \Phi(\nabla u)-\phi(u) \Phi(\nabla v)]\right\} \\
& = \begin{cases}-c(x) u \phi\left(\frac{u}{v}\right) \phi(v)\{\phi(v)-\phi(u)\}-u \phi\left(\frac{u}{v}\right)\{f(x, v)-f(x, u)\} & \\
+u \phi\left(\frac{u}{v}\right) f(x, v)-u f(x, u) & \text { in } \Omega^{+} \\
a Z(u, k)+\frac{u}{\phi(k)}\{-\phi(u)[c(x) \phi(k)+f(x, k)] & \\
+\phi(u) f(x, k)-\phi(k) f(x, u)\} & \text { in } \Omega^{-}\end{cases} \tag{3.4}\\
& = \begin{cases}-c(x) u \phi(u)\left\{1-\phi\left(\frac{u}{v}\right)\right\}+u f(x, u)\left\{\phi\left(\frac{u}{v}\right)-1\right\} & \text { in } \Omega^{+} \\
a Z(u, k)-c(x) u \phi(u)-u f(x, u) & \text { in } \Omega^{-} .\end{cases}
\end{align*}
$$

Integrating of both sides of (3.3) and (3.4) over Ω provides an absurdity as the left would be zero while the right would be strictly positive, unless Ω^{-}has measure zero. This completes the proof.

Proof of Theorem 2.3. (1) If v and u are respectively solutions of

$$
\begin{gather*}
F v=0 ; \quad v>0 \quad \text { in } \Omega \quad \text { and } \\
P u=0 ; \quad u \geq 0 \quad \text { in } \Omega ;\left.\quad u\right|_{\partial \Omega}=0 \tag{3.5}
\end{gather*}
$$

with $f \in C(\bar{\Omega} \times \mathbb{R} ;[0, \infty))$. As in 1.5 we have

$$
\nabla \cdot\left\{\frac{u}{\phi(v)}[\phi(v) a \Phi(\nabla u)-\phi(u) a \Phi(\nabla v)]\right\}=a Z(u, v)+u \phi\left(\frac{u}{v}\right) f(x, v)>0 .
$$

Then integrating both sides of the equation leads to a contradiction.
(2) Similarly if in 3.5, $u>0$ in Ω and $\left.v\right|_{\partial \Omega}=0$ after interchanging u and v in (1.5) we get to

$$
\nabla \cdot\left\{\frac{v}{\phi(u)} a[\phi(u) \Phi(\nabla v)-\phi(v) \Phi(\nabla u)]\right\}=a Z(v, u)-v f(x, v)>0
$$

Then we complete as above.

Proof of Theorem 2.4. The statement (2.5) follows from (1.8). Adding (1.8) and (1.9), we get

$$
\begin{aligned}
& \int_{\partial D} a(u-v)\{\Phi(\nabla u)-\Phi(\nabla v)\} \cdot \nu_{D} d s \\
& =\int_{D}\left\{a Z(u, v)+a Z(v, u)+\left[|u|^{\alpha+1}-|v|^{\alpha+1}\right](\chi(x, v)-\chi(x, u))\right\} d x
\end{aligned}
$$

leading to 2.6. For the two solutions, 1.6) (and interchanging u and v) leads (after integration over Ω) to

$$
\begin{align*}
0 & \leq \int_{\Omega} a Z(u, v) d x \\
& =-\int_{\Omega} u \phi(u)\left\{\frac{f(x, v)}{\phi(v)}-\frac{f(x, u)}{\phi(u)}\right\} d x \tag{3.6}\\
& =-\int_{\Omega}|u|^{\alpha+1}\{\chi(x, v)-\chi(x, u)\} d x
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \int_{\Omega} a Z(v, u) d x \\
& =-\int_{\Omega} v \phi(v)\left\{\frac{f(x, u)}{\phi(u)}-\frac{f(x, v)}{\phi(v)}\right\} d x \tag{3.7}\\
& =\int_{\Omega}|v|^{\alpha+1}\{\chi(x, v)-\chi(x, u)\} d x
\end{align*}
$$

Assume that $\chi(x, t)$ is increasing: If we suppose that $v>u$ in Ω then (3.6) provides a contradiction and if we suppose that $u>v, 3.7$ would lead to a contradiction. Assume that $\chi(x, t)$ is decreasing and define $\Omega_{+}:=\{x \in \Omega: X(x):=\chi(x, v)-$ $\chi(x, u)>0\}$ and $\Omega_{-}:=\{x \in \Omega: X(x):=\chi(x, v)-\chi(x, u)<0\}$. Then (without loss of generality) $0<v<u$ in Ω_{+}and $v>u>0$ in Ω_{-}whence

$$
\begin{align*}
& \int_{\Omega_{+}}|v|^{\alpha+1} X(x) d x \leq \int_{\Omega_{+}}|u|^{\alpha+1} X(x) d x \\
& \int_{\Omega_{-}}|v|^{\alpha+1} X(x) d x \leq \int_{\Omega_{-}}|u|^{\alpha+1} X(x) d x \tag{3.8}
\end{align*}
$$

This implies from (3.6) and (3.7) that

$$
0 \leq \int_{\Omega}|v|^{\alpha+1} X(x) d x \leq \int_{\Omega}|u|^{\alpha+1} X(x) d x \leq 0
$$

whence $\int_{\Omega} Z(u, v) d x=0$, leading to $v \equiv u$ in Ω by 1.6). If f is nonnegative and decreasing in t, χ is decreasing in t and the same conclusion is reached.
(3) The statement follows immediately from (1.8) or 1.9 as we would get for any such two solutions $0=\int_{\Omega} a(x) Z(u, v) d x$ the right hand side being strictly positive unless $u \equiv v$ in Ω.

References

[1] Damascelli, L.; Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. Henri Poincaré, Vol. 4 (1998), 493-516.
[2] T. Idogawa, M. Otani; The First Eigenvalues of Some Abstract Elliptic Operators, Funkcial. Ekvacioj, , Vol. 38 (1995), 1-9.
[3] K. Kreith; Piconne's identity and generalizations, Rend. Mat. , Vol. 8 (1975), 251-261.
[4] T. Kusano, J. Jaros, N. Yoshida; A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order, Nonlinear Analysis , Vol. 40 (2000), 381-395.
[5] M. Otani; Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Functional Anal., Vol. 76 (1988), 140-159.
[6] M. Picone; Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, Ann. Scuola Norm. Pisa, Vol. 11 (1910), 1-141.
[7] S. Sakaguchi; Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa (1987), 404-421.
[8] Tadié; Uniqueness results for decaying solutions of semilinear P-Laplacian, Int. J. Appl. Math., Vol. 2 No. 10 (2000), 1143-1152.
[9] Tadié; Comparison results for quasilinear elliptic equations via Picone-type identity, Dynamical Systems and Applications, Proceedings; pp. 660-670 Antalya 2004 , Turkey.

Tadie
Mathematics Institut, Universitetsparken 5, 2100 Copenhagen, Denmark.
Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda
E-mail address: tad@math.ku.dk

[^0]: 2000 Mathematics Subject Classification. 35B05, 35B50, 35J70.
 Key words and phrases. p-Laplacian; Picone's identity; comparison methods; maximum principle.
 (C) 2007 Texas State University - San Marcos.

 Submitted October 19, 2006. Published February 12, 2007.

