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EXISTENCE OF SOLUTIONS FOR A SECOND ORDER
ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATION WITH

STATE-DEPENDENT DELAY

EDUARDO HERNÁNDEZ M.

Abstract. In this paper we study the existence of mild solutions for abstract

partial functional differential equation with state-dependent delay.

1. Introduction

In this note we study the existence of mild solutions for a second order abstract
Cauchy problem with state dependent delay described in the form

x′′(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], x0 = ϕ ∈ B, (1.1)

x′(0) = ζ0 ∈ X, (1.2)

where A is the infinitesimal generator of a strongly continuous cosine function of
bounded linear operator (C(t))t∈R defined on a Banach space (X, ‖·‖); the function
xs : (−∞, 0] → X, xs(θ) = x(s + θ), belongs to some abstract phase space B
described axiomatically and f : I × B → X, ρ : I × B → (−∞, a] are appropriate
functions.

Functional differential equations with state-dependent delay appear frequently
in applications as model of equations and for this reason the study of this type
of equations has received great attention in the last years. The literature devoted
to this subject is concerned fundamentally with first order functional differential
equations for which the state belong to some finite dimensional space, see among
another works, [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 19, 24, 23]. The problem of the
existence of solutions for first order partial functional differential equations with
state-dependent delay have been treated in the literature recently in [14, 15, 16].
To the best of our knowledge, the existence of solutions for second order abstract
partial functional differential equations with state-dependent delay is an untreated
topic in the literature and this fact is the main motivation of the present work.

2. Preliminaries

In this section, we review some basic concepts, notations and properties needed
to establish our results. Throughout this paper, A is the infinitesimal generator of
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a strongly continuous cosine family (C(t))t∈R of bounded linear operators on the
Banach space (X, ‖ · ‖). We denote by (S(t))t∈R the associated sine function which
is defined by S(t)x =

∫ t

0
C(s)xds, for x ∈ X, and t ∈ R. In the sequel, N and Ñ

are positive constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ , for every t ∈ I.
In this paper, [D(A)] represents the domain of A endowed with the graph norm

given by ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A), while E stands for the space formed by
the vectors x ∈ X for which C(·)x is of class C1 on R. We know from Kisińsky
[18], that E endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E, (2.1)

is a Banach space. The operator-valued function

H(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of bounded linear operators on the space E × X

generated by the operator A =
[
0 I
A 0

]
defined on D(A) × E. It follows from

this that AS(t) : E → X is a bounded linear operator and that AS(t)x → 0, as
t → 0, for each x ∈ E. Furthermore, if x : [0,∞) → X is locally integrable, then
y(t) =

∫ t

0
S(t− s)x(s)ds defines an E-valued continuous function. This assertion is

a consequence of the fact that∫ t

0

H(t− s)
[

0
x(s)

]
ds =

[∫ t

0

S(t− s)x(s) ds
∫ t

0

C(t− s)x(s) ds
]

defines an E × X-valued continuous function. In addition, it follows from the
definition of the norm in E that a function u : I → E is continuous if, and only if,
is continuous with respect to the norm in X and the set of functions {AS(t)u : t ∈
[0, 1]} is an equicontinuous subset of C(I,X).

The existence of solutions for the second-order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), t ∈ I, (2.2)

x(0) = w, x′(0) = z, (2.3)

where h : I → X is an integrable function, is studied in [22]. Similarly, the existence
of solutions of semi-linear second-order abstract Cauchy problems has been treated
in [21]. We only mention here that the function x(·) given by

x(t) = C(t)w + S(t)z +
∫ t

0

S(t− s)h(s)ds, t ∈ I, (2.4)

is called a mild solution of (2.2)-(2.3), and that when w ∈ E the function x(·) is of
class C1 on I and

x′(t) = AS(t)w + C(t)z +
∫ t

0

C(t− s)h(s) ds, t ∈ I. (2.5)

For additional details on the cosine function theory, we refer the reader to [6, 22,
21].

In this work we will employ an axiomatic definition for the phase space B which is
similar at those introduced in [17]. Specifically, B will be a linear space of functions
mapping (−∞, 0] intoX endowed with a seminorm ‖·‖B and satisfying the following
asumptions:
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(A1) If x : (−∞, b] → X, b > 0, is continuous on [0, b] and x0 ∈ B, then for every
t ∈ [0, b] the following conditions hold:
(a) xt is in B.
(b) ‖x(t)‖ ≤ H‖xt‖B.
(c) ‖xt‖B ≤M(t)‖x0‖B +K(t) sup{‖x(s)‖ : 0 ≤ s ≤ t},

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is
locally bounded and H,K,M are independent of x(·).

(A2) For the function x in (A1), xt is a B-valued continuous function on [0, b].
(B1) The space B is complete.

Example 2.1 (The phase space Cr × Lp(g;X)). Let g : (−∞,−r) → R be a
positive Lebesgue integrable function and assume that there exists a non-negative
and locally bounded function γ on (−∞, 0] such that g(ξ + θ) ≤ γ(ξ)g(θ), for all
ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure
zero. The space Cr × Lp(g;X) consists of all classes of functions ϕ : (−∞, 0] → X
such that ϕ is continuous on [−r, 0], Lebesgue-measurable and g‖ϕ‖p is Lebesgue
integrable on (−∞,−r). The seminorm in Cr × Lp(g : X) is defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+
( ∫ −r

−∞
g(θ)‖ϕ(θ)‖pdθ

)1/p

.

Assume that g(·) verifies the conditions (g-5), (g-6) and (g-7) in the nomenclature
of [17]. In this case, B = Cr × Lp(g;X) verifies assumptions (A1), (A2), (B1) see
[17, Theorem 1.3.8] for details. Moreover, when r = 0 and p = 2 we have that
H = 1, M(t) = γ(−t)1/2 and K(t) = 1 +

( ∫ 0

−t
g(θ) dθ

)1/2 for t ≥ 0.

Remark 2.2. Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function
defined by ϕt(θ) = ϕ(t+ θ). Consequently, if the function x in axiom (A1) is such
that x0 = ϕ, then xt = ϕt. We observe that ϕt is well defined for every t < 0 since
the domain of ϕ is (−∞, 0]. We also note that, in general, ϕt /∈ B; consider, for
example, the characteristic function X[µ,0], µ < −r < 0, in the space Cr × Lp(g;X).

Some of our results will proved using the following well know result.

Theorem 2.3 (Leray Schauder Alternative [7, Theorem 6.5.4]). Let D be a convex
subset of a Banach space X and assume that 0 ∈ D. Let G : D → D be a
completely continuous map. Then the map G has a fixed point in D or the set
{x ∈ D : x = λG(x), 0 < λ < 1} is unbounded.

The terminology and notation are those generally used in functional analysis. In
particular, for Banach spaces Z,W , the notation L(Z,W ) stands for the Banach
space of bounded linear operators from Z into W and we abbreviate this notation
to L(Z) when Z = W . Moreover Br(x, Z) denotes the closed ball with center at x
and radius r > 0 in Z and, for a bounded function x : [0, a] → X and 0 ≤ t ≤ a we
employ the notation ‖x‖t for

‖x‖t = sup{‖x(s)‖ : s ∈ [0, t]}. (2.6)

This paper has four sections. In the next section we establish the existence
of mild solutions for the abstract Cauchy problem (1.1)-(1.2). In section 4 some
applications are considered.
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3. Existence Results

In this section we establish the existence of mild solutions for the abstract Cauchy
problem (1.1)-(1.2). To prove our results, we assume that ρ : I ×B → (−∞, a] is a
continuous function and that the following conditions are verified.

(H1) The function f : I × B → X satisfies the following properties.
(a) The function f(·, ψ) : I → X is strongly measurable for every ψ ∈ B.
(b) The function f(t, ·) : B → X is continuous for each t ∈ I.
(c) There exist an integrable function m : I → [0,∞) and a continuous

nondecreasing function W : [0,∞) → (0,∞) such that

‖f(t, ψ)‖ ≤ m(t)W (‖ψ‖B), (t, ψ) ∈ I × B. (3.1)

(H2) The function t → ϕt is well defined and continuous from the set R(ρ−) =
{ρ(s, ψ) : (s, ψ) ∈ I × B, ρ(s, ψ) ≤ 0} into B and there exists a continuous
and bounded function Jϕ : R(ρ) → (0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B
for every t ∈ R(ρ).

Remark 3.1. The condition (H2) is frequently verify by functions continuous and
bounded. In fact, if B verifies axiom C2 in the nomenclature of [17], then there
exists L > 0 such that ‖ϕ‖B ≤ L supθ≤0 ‖ϕ(θ)‖ for every ϕ ∈ B continuous and
bounded, see [17, Proposition 7.1.1] for details. Consequently,

‖ϕt‖B ≤ L
supθ≤0 ‖ϕ(θ)‖

‖ϕ‖B
‖ϕ‖B

for every continuous and bounded function ϕ ∈ B \ {0} and every t ≤ 0. We also
observe that the space Cr × Lp(g;X) verifies axiom C2, see [17, p.10] for details.

Motivated by (2.4) we introduce the following concept of mild solutions for the
system (1.1)-(1.2).

Definition 3.2. A function x : (−∞, a] → X is called a mild solution of the
abstract Cauchy problem (1.1)-(1.2) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I and

x(t) = C(t)ϕ(0) + S(t)ζ0 +
∫ t

0

S(t− s)f(s, xρ(s,xs))ds, t ∈ I.

In the rest of this paper, Ma and Ka are the constants defined by Ma =
supt∈I M(t) and Ka = supt∈I K(t).

Lemma 3.3 ([15, Lemma 2.1]). Let x : (−∞, a] → X be a function such that
x0 = ϕ and x|[0,a] ∈ PC. Then

‖xs‖B ≤ (Ma + J̃ϕ)‖ϕ‖B +Ka sup{‖x(θ)‖; θ ∈ [0, max{0, s}] },

s ∈ R(ρ−) ∪ I, where J̃ϕ = supt∈R(ρ−) J
ϕ(t).

Now, we can prove our first existence result.

Theorem 3.4. Let conditions (H1), (H2) hold and assume that S(t) is compact
for every t ∈ R. If

ÑKa lim inf
ξ→∞+

W (ξ)
ξ

∫ a

0

m(s)ds < 1,

then there exists a mild solution u(·) of (1.1)-(1.2). Moreover, if ϕ(0) ∈ E then
u ∈ C1(I,X) and condition (1.2) is verified.
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Proof. On the space Y = {u ∈ C(I,X) : u(0) = ϕ(0)} endowed with the uniform
convergence topology, we define the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0) + S(t)ζ0 +
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds, t ∈ I, (3.2)

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From assumption
(A1) and our assumptions on ϕ, we infer that Γx is well defined and continuous.

Let ϕ̄ : (−∞, a] → X be the extension of ϕ to (−∞, a] such that ϕ̄(θ) = ϕ(0) on
I and J̃ϕ = sup{Jϕ(s) : s ∈ R(ρ−)}. We claim that there exists r > 0 such that
Γ(Br(ϕ̄|I , Y )) ⊆ Br(ϕ̄|I , Y ). If this property is false, then for every r > 0 there
exist xr ∈ Br(ϕ̄|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− ϕ(0)‖. By using Lemma
3.3 we find that

r < ‖Γxr(tr)− ϕ(0)‖

≤ ‖C(tr)ϕ(0)− ϕ(0)‖+ ‖S(t)ζ0‖+
∫ tr

0

‖S(tr − s)‖‖f(s, xr
ρ(s,(xr)s

)‖ds

≤ H(N + 1)‖ϕ‖B + Ñ‖ζ0‖+ Ñ

∫ tr

0

m(s)W (‖xr
ρ(s,(xr)s)‖B)ds

≤ H(N + 1)‖ϕ‖B + Ñ‖ζ0‖+ Ñ

∫ tr

0

m(s)W
(
(Ma + J̃ϕ)‖ϕ‖B +Ka‖xr‖a

)
ds

≤ H(N + 1)‖ϕ‖B + Ñ‖ζ0‖

+ ÑW
(
(Ma + J̃ϕ)‖ϕ‖B +Ka(r + ‖ϕ(0)‖)

) ∫ a

0

m(s)ds,

and hence

1 ≤ ÑKa lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds,

which is contrary to our assumption.
Let r > 0 be such that Γ(Br(ϕ̄|I , Y )) ⊆ Br(ϕ̄|I , Y ). Next, we will prove that

Γ is completely continuous on Br(ϕ̄|I , Y ). In the sequel, r∗, r∗∗ are the numbers
defined by r∗ := (Ma + J̃ϕ)‖ϕ‖B +Ka(r + ‖ϕ(0)‖) and r∗∗ := W (r∗)

∫ a

0
m(s)ds.

Step 1 The set Γ(Br(ϕ̄|I , Y )(t) = {Γx(t) : x ∈ Br(ϕ̄|I , Y )} is relatively compact
in X for all t ∈ I.

The case t = 0 is obvious. Let 0 < ε < t ≤ a. Since the function t → S(t) is
Lipschitz, we can select points 0 = t1 < t2 · · · < tn = t such that ‖S(s)−S(s′)‖ ≤ ε,
if s, s′ ∈ [ti, ti+1] for some i = 1, 2, . . . , n − 1. If x ∈ Br(ϕ̄|I , Y ), from Lemma 3.3
follows that ‖x̄ρ(t,x̄t)‖B ≤ r∗ and hence

‖
∫ τ

0

f(s, x̄ρ(s,x̄s))ds‖ ≤W (r∗)
∫ a

0

m(s)ds = r∗∗, τ ∈ I. (3.3)
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Now, from (3.3) we find that

Γx(t) = C(t)ϕ(0) + S(t)ζ0 +
n−1∑
i=1

∫ ti+1

ti

(S(s)− S(ti))f(t− s, x̄ρ(t−s,x̄t−s))ds

+
n−1∑
i=1

S(ti)
∫ ti+1

ti

f(t− s, x̄ρ(t−s,x̄t−s))ds

∈ {C(t)ϕ(0) + S(t)ζ0}+ Cε +
n−1∑
i=1

S(ti)Br∗∗(0, X).

Thus,

Γ(Br(ϕ̄|I , Y )(t) ⊆ Cε +Kε,

where Kε is compact and diam(Cε) ≤ εr∗∗, which permit us concluding that the set
Γ(Br(ϕ̄|I , Y ))(t) is relatively compact in X since ε is arbitrary.

Step 2 The set of functions Γ(Br(ϕ̄|I , Y )) is equicontinuous on I.
Let 0 < ε < t < a and δ > 0 such that ‖S(s)x− S(s′)x‖ < ε, for every s, s′ ∈ I

with |s− s′ |≤ δ. For x ∈ Br(ϕ̄|I , Y ) and 0 < |h |< δ such that t+ h ∈ I we get

‖Γx(t+ h)− Γx(t)‖ ≤ ‖(C(t+ h)− C(t))ϕ(0)‖+ ε‖ζ0‖+ ÑW (r∗)
∫ t+h

t

m(s)ds

+W (r∗)
∫ t

0

‖(S(t+ h− s)− S(t− s))‖m(s)ds

≤ ‖(C(t+ h)− C(t))ϕ(0)‖+ ε‖ζ0‖+ ÑW (r∗)
∫ t+h

t

m(s)ds

+W (r∗)ε
∫ a

0

m(s)ds,

which proves that Γ(Br(ϕ̄|I , Y )) is equicontinuous on I.
Proceeding as in the proof of [15, Theorem 2.2] we can prove that Γ is continuous.

Thus, Γ is completely continuous. Now, from the Schauder Fixed Point Theorem we
infer the existence of a mild solution u(·) for (1.1)-(1.2). The assertion concerning
the regularity of u(·) follows directly from the properties of the space E. The proof
is complete. �

Theorem 3.5. Let conditions (H1), (H2) be satisfied. Suppose that S(t) is compact
for every t ∈ R, ρ(t, ψ) ≤ t for every (t, ψ) ∈ I × B and

KaÑ

∫ a

0

m(s)ds <
∫ ∞

C

ds

W (s)
,

where C = (KaNH + Ma + J̃ϕ)‖ϕ‖B + KaÑ‖ζ0‖ and J̃ϕ = supt∈R(ρ−) J
ϕ(t).

Then there exists a mild solution of (1.1)-(1.2). If in addition, ϕ(0) ∈ E, then
u ∈ C1(I,X) and condition (1.2) is verified.

Proof. For u ∈ Y = C(I,X) we define Γu by (3.2). In order to use Theorem
2.3, next we will shall a priori estimates for the solutions of the integral equation
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z = λΓz, λ ∈ (0, 1). If xλ = λΓxλ, λ ∈ (0, 1), from Lemma 3.3 we have that

‖xλ(t)‖ ≤ NH‖ϕ‖B + Ñ‖ζ0‖+
∫ t

0

Ñ‖f(s, xλ
ρ(s,(xλ)s)

)‖ds

≤ NH‖ϕ‖B + Ñ‖ζ0‖

+ Ñ

∫ t

0

m(s)W
(
(Ma + J̃ϕ)‖ϕ‖B +Ka‖xλ‖

max{0,ρ(s,(xλ)s)}

)
ds

≤ NH‖ϕ‖B + Ñ‖ζ0‖+ Ñ

∫ t

0

m(s)W
(
(Ma + J̃ϕ)‖ϕ‖B +Ka‖xλ‖s

)
ds,

since ρ(s, (xλ)s) ≤ s for all s ∈ I. Defining ξλ(t) = (Ma + J̃ϕ)‖ϕ‖B +Ka‖xλ‖t, we
obtain

ξλ(t) ≤ (KaNH +Ma + J̃ϕ)‖ϕ‖B +KaÑ‖ζ0‖+KaÑ

∫ t

0

m(s)W (ξλ(s))ds. (3.4)

Denoting by βλ(t) the right-hand side of (3.4), follows that

β′λ(t) ≤ KaÑm(t)W (βλ(t))

and hence ∫ βλ(t)

βλ(0)=C

ds

W (s)
≤ KaÑ

∫ a

0

m(s)ds <
∫ ∞

C

ds

W (s)
,

which implies that the set of functions {βλ(·) : λ ∈ (0, 1)} is bounded in C(I : R).
This prove that {xλ(·) : λ ∈ (0, 1)} is also bounded in C(I,X).

Arguing as in the proof of Theorem 3.4 we can prove that Γ(·) is completely
continuous, and from Theorem 2.3 we conclude that there exists a mild solution
u(·) for (1.1)-(1.2). Finally, it is clear from the preliminaries that u(·) is a function
in C1(I,X) which verifies (1.2) when ϕ(0) ∈ E. The proof is finished. �

4. Examples

In this section we consider some applications of our abstract results.

The ordinary case. If X = Rk, our results are easily applicable. In fact, in
this case the operator A is a matrix of order n × n which generates the cosine
function C(t) = cosh (tA1/2) =

∑∞
n=1

t2n

2n!A
n with associated sine function S(t) =

A−
1
2 sinh (tA1/2) =

∑∞
n=1

t2n+2

(2n+1)!A
n. We note that the expressions cosh (tA1/2) and

sinh (t‖A‖1/2) are purely symbolic and do not assume the existence of the square
roots of A. It is easy to see that C(t), S(t), t ∈ R, are compact operators and that
‖C(t)‖ ≤ cosh (a‖A‖1/2) and ‖S(t)‖ ≤ ‖A‖1/2 sinh (a‖A‖1/2) for all t ∈ R. The
next result is a consequence of Theorems 3.4 and 3.4.

Proposition 4.1. Assume conditions (H1), (H2). If any of the following condi-
tions is verified,

(a) Ka‖A‖1/2 sinh (a‖A‖1/2) lim infξ→∞+
W (ξ)

ξ

∫ a

0
m(s)ds < 1;

(b) ρ(t, ψ) ≤ t for all (t, ψ) ∈ I × B and

Ka‖A‖1/2 sinh (a‖A‖1/2)
∫ a

0

m(s)ds <
∫ ∞

C

ds

W (s)
,

where

C = (Ka cosh (a‖A‖1/2)H + J̃ϕ)‖ϕ‖B +Ka‖A‖1/2 sinh (a‖A‖1/2)‖ζ0‖;
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then there exists a mild solution of (1.1)-(1.2).

A partial differential equation with state dependent delay. To complete
this section, we discuss the existence of solutions for the partial differential system

∂2u(t, ξ)
∂2t

=
∂2u(t, ξ)
∂ξ2

+
∫ t

−∞
a1(s− t)u(s− ρ1(t)ρ2(

∫ π

0

a2(θ)|u(t, θ)|2dθ), ξ)ds
(4.1)

for t ∈ I = [0, a], ξ ∈ [0, π], subject to the initial conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (4.2)

u(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π. (4.3)

To apply our abstract results, we consider the spaces X = L2([0, π]); B = C0 ×
L2(g,X) and the operator Af = f ′′ with domain

D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}.
It is well-known that A is the infinitesimal generator of a strongly continuous cosine
function (C(t))t∈R on X. Furthermore, A has a discrete spectrum, the eigenval-
ues are −n2, n ∈ N, with corresponding eigenvectors zn(θ) =

(
2
π

)1/2 sin(nθ). In
addition, the following properties hold:

(a) The set {zn : n ∈ N} is an orthonormal basis of X.
(b) For x ∈ X, C(t)x =

∑∞
n=1 cos(nt)(x, zn)zn. From this expression, it follows

that S(t)x =
∑∞

n=1
sin(nt)

n (x, zn)zn, ‖C(t)‖ = ‖S(t)‖ ≤ 1 for all t ∈ R and
that S(t) is compact for every t ∈ R.

(c) If Φ is the group of translations on X defined by Φ(t)x(ξ) = x̃(ξ+ t), where
x̃ is the extension of x with period 2π, then C(t) = 1

2 (Φ(t) + Φ(−t)) and
A = B2, where B is the generator of Φ and

E = {x ∈ H1(0, π) : x(0) = x(π) = 0},
see [6] for details.

Assume that ϕ ∈ B, the functions ai : R → R, ρi : [0,∞) → [0,∞), i = 1, 2, are
continuous, a2(t) ≥ 0 for all t ≥ 0 and L1 = (

∫∞
0

a2
1(s)
g(s) ds)

1/2 < ∞. Under these
conditions, we can define the operators f : I × B → X, ρ : I × B → R by

f(t, ψ)(ξ) =
∫ 0

−∞
a1(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2

( ∫ π

0

a2(θ)|ψ(0, ξ) |2 dθ
)
,

and transform system (4.1)-(4.3) into the abstract Cauchy problem (1.1)-(1.2).
Moreover, f is a continuous linear operator with ‖f‖ ≤ L1, ρ is continuous and
ρ(t, ψ) ≤ s for every s ∈ [0, a]. The next results are consequence of Theorem 3.5
and Remark 3.1.

Proposition 4.2. Assume that ϕ satisfies (H2). Then there exists a mild solution
of (4.1)–(4.3).

Corollary 4.3. If ϕ is continuous and bounded, then there exists a mild solution
of (4.1)–(4.3).
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