Electronic Journal of Differential Equations, Vol. 2007(2007), No. 177, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR $p(x)$-LAPLACIAN PROBLEMS

GHASEM A. AFROUZI, HORIEH GHORBANI

Abstract. We consider the system of differential equations

$$
\begin{aligned}
&-\Delta_{p(x)} u=\lambda[g(x) a(u)+f(v)] \text { in } \Omega \\
&-\Delta_{q(x)} v=\lambda[g(x) b(v)+h(u)] \text { in } \Omega \\
& u=v=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

where $p(x) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a radial symmetric function such that $\sup |\nabla p(x)|<$ $\infty, 1<\inf p(x) \leq \sup p(x)<\infty$, and where $-\Delta_{p(x)} u=-\operatorname{div}|\nabla u|^{p(x)-2} \nabla u$ which is called the $p(x)$-Laplacian. We discuss the existence of positive solution via sub-super-solutions without assuming sign conditions on $f(0), h(0)$.

1. Introduction

The study of differential equations and variational problems with nonstandard $p(x)$-growth conditions has been a new and interesting topic. Many results have been obtained on this kind of problems; see for example [3, 4, [5, 6, 7, 8, 13. In [5, 6] Fan and Zhao give the regularity of weak solutions for differential equations with nonstandard $p(x)$-growth conditions. Zhang [11] investigated the existence of positive solutions of the system

$$
\begin{gather*}
-\Delta_{p(x)} u=f(v) \quad \text { in } \Omega \\
-\Delta_{p(x)} v=g(u) \quad \text { in } \Omega \tag{1.1}\\
u=v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $p(x) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a function, $\Omega \subset \mathbb{R}^{N}$ is a bounded domain. The operator $\left.-\Delta_{p(x)} u=-\operatorname{div}|\nabla u|^{p(x)-2} \nabla u\right)$ is called $p(x)$-Laplacian. Especially, if $p(x)$ is a constant p, System (1.1) is the well-known p-Laplacian system. There are many papers on the existence of solutions for p-Laplacian elliptic systems, for example [1, 3, 4, 5, 6, 7, 8, 9 .

[^0]In [9] the authors consider the existence of positive weak solutions for the p Laplacian problem

$$
\begin{align*}
& -\Delta_{p} u=f(v) \quad \text { in } \Omega \\
& -\Delta_{p} v=g(u) \quad \text { in } \Omega \tag{1.2}\\
& u=v=0 \quad \text { on } \partial \Omega
\end{align*}
$$

There the first eigenfunctions is used for constructing the subsolution of p-Laplacian problems. Under the condition $\lim _{u \rightarrow+\infty} f\left(M(g(u))^{1 /(p-1)} / u^{p-1}=0\right.$, for all $M>$ 0 , the authors show the existence of positive solutions for problem 1.2).

In this paper, at first, we consider the existence of positive solutions of the system

$$
\begin{gather*}
-\Delta_{p(x)} u=F(x, u, v) \quad \text { in } \Omega \\
-\Delta_{p(x)} v=G(x, u, v) \quad \text { in } \Omega \tag{1.3}\\
u=v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $p(x) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a function, $F(x, u, v)=[g(x) a(u)+f(v)], G(x, u, v)=$ $[g(x) b(v)+h(u)]$, and $\Omega \subset \mathbb{R}^{N}$ is a bounded domain. Then we consider the system

$$
\begin{gather*}
-\Delta_{p(x)} u=\lambda F(x, u, v) \quad \text { in } \Omega \\
-\Delta_{p(x)} v=\lambda G(x, u, v) \quad \text { in } \Omega \tag{1.4}\\
u=v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $p(x) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a function, $F(x, u, v)=[g(x) a(u)+f(v)], G(x, u, v)=$ $[g(x) b(v)+h(u)], \lambda$ is a positive parameter and $\Omega \subset \mathbb{R}^{N}$ is a bounded domain.

To study $p(x)$-Laplacian problems, we need some theory on the spaces $L^{p(x)}(\Omega)$, $W^{1, p(x)}(\Omega)$ and properties of $p(x)$-Laplacian which we will use later (see [4). If $\Omega \subset \mathbb{R}^{N}$ is an open domain, write

$$
C_{+}(\Omega)=\{h: h \in C(\Omega), h(x)>1 \text { for } x \in \Omega\}
$$

$h^{+}=\sup _{x \in \Omega} h(x), h^{-}=\inf _{x \in \Omega} h(x)$, for any $h \in C(\Omega), L^{p(x)}(\Omega)=\{u \mid u$ is a measurable real-valued function, $\left.\int_{\Omega}|u|^{p(x)} d x<\infty\right\}$.

Throughout the paper, we will assume that $p \in C_{+}(\Omega)$ and $1<\inf _{x \in \mathbb{R}^{N}} p(x) \leq$ $\sup _{x \in \mathbb{R}^{N}} p(x)<N$. We introduce the norm on $L^{p(x)}(\Omega)$ by

$$
|u|_{p(x)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

and $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ becomes a Banach space, we call it generalized Lebesgue space. The space $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ is a separable, reflexive and uniform convex Banach space (see [4, Theorem 1.10, 1.14]).

The space $W^{1, p(x)}(\Omega)$ is defined by $W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega):|\nabla u| \in\right.$ $\left.L^{p(x)}(\Omega)\right\}$, and it is equipped with the norm

$$
\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)}, \quad \forall u \in W^{1, p(x)}(\Omega)
$$

We denote by $W_{0}^{1, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$. $W^{1, p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$ are separable, reflexive and uniform convex Banach space (see 4. Theorem 2.1]). We define

$$
(L(u), v)=\int_{\mathbb{R}^{N}}|\nabla u|^{p(x)-2} \nabla u \nabla v d x, \quad \forall u, v \in W^{1, p(x)}(\Omega)
$$

then $L: W^{1, p(x)}(\Omega) \rightarrow\left(W^{1, p(x)}(\Omega)\right)^{*}$ is a continuous, bounded and is a strictly monotone operator, and it is a homeomorphism [7, Theorem 3.11].

Functions u, v in $W_{0}^{1, p(x)}(\Omega)$, is called a weak solution of (1.4); it satisfies

$$
\begin{array}{ll}
\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \xi d x=\int_{\Omega} \lambda F(x, u, v) \xi d x, & \forall \xi \in W_{0}^{1, p(x)}(\Omega) \\
\int_{\Omega}|\nabla v|^{q(x)-2} \nabla v \nabla \xi d x=\int_{\Omega} \lambda G(x, u, v) \xi d x, \quad \forall \xi \in W_{0}^{1, p(x)}(\Omega)
\end{array}
$$

We make the following assumptions
(H1) $p(x) \in C^{1}\left(\mathbb{R}^{N}\right)$ is a radial symmetric and $\sup |\nabla p(x)|<\infty$
(H2) $\Omega=B(0, R)=\{x| | x \mid<R\}$ is a ball, where $R>0$ is a sufficiently large constant.
(H3) $a, b \in C^{1}([0, \infty))$ are nonnegative, nondecreasing functions such that

$$
\lim _{u \rightarrow+\infty} \frac{a(u)}{u^{P^{-}-1}}=0, \quad \lim _{u \rightarrow+\infty} \frac{b(u)}{u^{P^{-}-1}}=0
$$

(H4) $f, h \in C^{1}([0, \infty))$ are nondecreasing functions, $\lim _{u \rightarrow+\infty} f(u)=+\infty$, $\lim _{u \rightarrow+\infty} h(u)=+\infty$, and

$$
\lim _{u \rightarrow+\infty} \frac{f\left(M(h(u))^{\frac{1}{p^{-}-1}}\right)}{u^{p^{-}-1}}=0, \quad \forall M>0
$$

(H5) $g:[0,+\infty) \rightarrow(0, \infty)$ is a continuous function such that $L_{1}=\min _{x \in \bar{\Omega}} g(x)$, and $L_{2}=\max _{x \in \bar{\Omega}} g(x)$.
We shall establish the following result.
Theorem 1.1. If (H1)-(H5) hold, then 1.3) has a positive solution.
Proof. We establish this theorem by constructing a positive subsolution $\left(\phi_{1}, \phi_{2}\right)$ and supersolution $\left(z_{1}, z_{2}\right)$ of 1.3$)$, such that $\phi_{1} \leq z_{1}$ and $\phi_{2} \leq z_{2}$. That is $\left(\phi_{1}, \phi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ satisfy

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \phi_{1}\right|^{p(x)-2} \nabla \phi_{1} \cdot \nabla \xi d x \leq \int_{\Omega} g(x) a\left(\phi_{1}\right) \xi d x+\int_{\Omega} f\left(\phi_{2}\right) \xi d x \\
& \int_{\Omega}\left|\nabla \phi_{2}\right|^{p(x)-2} \nabla \phi_{1} \cdot \nabla \xi d x \leq \int_{\Omega} g(x) b\left(\phi_{2}\right) \xi d x+\int_{\Omega} h\left(\phi_{1}\right) \xi d x \\
& \int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \xi d x \geq \int_{\Omega} g(x) a\left(z_{1}\right) \xi d x+\int_{\Omega} f\left(z_{2}\right) \xi d x \\
& \int_{\Omega}\left|\nabla z_{2}\right|^{p(x)-2} \nabla z_{2} \cdot \nabla \xi d x \geq \int_{\Omega} g(x) b\left(z_{2}\right) \xi d x+\int_{\Omega} h\left(z_{1}\right) \xi d x
\end{aligned}
$$

for all $\xi \in W_{0}^{1, p(x)}(\Omega)$ with $\xi \geq 0$. Then 1.3 has a positive solution.
Step 1. We construct a subsolution of (1.3). Denote

$$
\begin{gathered}
\alpha=\frac{\inf p(x)-1}{4(\sup |\nabla p(x)|+1)}, \quad R_{0}=\frac{R-\alpha}{2} \\
b=\min \left\{a(0) L_{1}+f(0), b(0) L_{1}+h(0),-1\right\}
\end{gathered}
$$

and let
$\phi(r)= \begin{cases}e^{-k(r-R)}-1, & 2 R_{0}<r \leq R, \\ e^{\alpha k}-1+\int_{r}^{2 R_{0}}\left(k e^{\alpha k}\right)^{\frac{p\left(2 R_{0}\right)-1}{p(r)-1}} & \\ \times\left[\frac{\left(2 R_{0}\right)^{N-1}}{r^{N-1}} \sin \left(\varepsilon\left(r-2 R_{0}\right)+\frac{\pi}{2}\right)\left(L_{1}+1\right)\right]^{\frac{1}{p(r)-1}} d r, & 2 R_{0}-\frac{\pi}{2 \varepsilon}<r \leq 2 R_{0}, \\ e^{\alpha k}-1+\int_{2 R_{0}-\frac{\pi}{2 \varepsilon}}^{2 R_{0}}\left(k e^{\alpha k}\right)^{\frac{p\left(2 R_{0}\right)-1}{p(r)-1}} & \\ \times\left[\frac{\left(2 R_{0}\right)^{N-1}}{r^{N-1}} \sin \left(\varepsilon_{0}\left(r-2 R_{0}\right)+\frac{\pi}{2}\right)\left(L_{1}+1\right)\right]^{\frac{1}{p(r)-1}} d r, & r \leq 2 R_{0}-\frac{\pi}{2 \varepsilon},\end{cases}$
where R_{0} is sufficiently large, ε is a small positive constant which satisfies $R_{0} \leq$ $2 R_{0}-\frac{\pi}{2 \varepsilon}$,

In the following, we will prove that (ϕ, ϕ) is a subsolution of 1.3$)$. Since

$$
\phi^{\prime}(r)= \begin{cases}e^{-k(r-R)}-1, & 2 R_{0}<r \leq R \\ -\left(k e^{\alpha k}\right)^{\frac{p\left(2 R_{0}\right)-1}{p(r)-1}} & \\ \times\left[\frac{\left(2 R_{0}\right)^{N-1}}{r^{N-1}} \sin \left(\varepsilon\left(r-2 R_{0}\right)+\frac{\pi}{2}\right)\left(L_{1}+1\right)\right]^{\frac{1}{p(r)-1}} d r, & 2 R_{0}-\frac{\pi}{2 \varepsilon}<r \leq 2 R_{0} \\ 0, & 0 \leq r \leq 2 R_{0}-\frac{\pi}{2 \varepsilon}\end{cases}
$$

it is easy to see that $\phi \geq 0$ is decreasing and $\phi \in C^{1}([0, R]), \phi(x)=\phi(|x|) \in C^{1}(\bar{\Omega})$. Let $r=|x|$. By computation,

$$
\left.-\Delta_{p(x)} \phi=-\operatorname{div}|\nabla \phi(x)|^{p(x)-2} \nabla \phi(x)\right)=-\left(r^{N-1}\left|\phi^{\prime}(r)\right|^{p(r)-2} \phi^{\prime}(r)\right)^{\prime} / r^{N-1}
$$

Then

$$
-\Delta_{p(x)} \phi= \begin{cases}\left(k e^{-k(r-R)}\right)^{p(r)-1}\left[-k(p(r)-1)+p^{\prime}(r) \ln k\right. & \\ \left.-k p^{\prime}(r)(r-R)+\frac{N-1}{r}\right], & 2 R_{0}<r \leq R \\ \left.\varepsilon\left(\frac{2 R_{0}}{r}\right)^{N-1}\left(k e^{\alpha k}\right)^{(} p\left(2 R_{0}\right)-1\right) & \\ \times \cos \left(\varepsilon\left(r-2 R_{0}\right)+\frac{\pi}{2}\right)\left(L_{1}+1\right), & 2 R_{0}-\frac{\pi}{2 \varepsilon}<r \leq 2 R_{0} \\ 0, & 0 \leq r \leq 2 R_{0}-\frac{\pi}{2 \varepsilon}\end{cases}
$$

If k is sufficiently large, when $2 R_{0}<r \leq R$, then

$$
-\Delta_{p(x)} \phi \leq-k\left[\inf p(x)-1-\sup |\nabla p(x)|\left(\frac{\ln k}{k}+R-r\right)+\frac{N-1}{k r}\right] \leq-k \alpha
$$

Since α is a constant dependent only on $p(x)$, if k is a big enough, such that $-k a<b$, and since $\phi(x) \geq 0$ and a, f are monotone, this implies

$$
\begin{equation*}
-\Delta_{p(x)} \phi \leq a(0) L_{1}+f(0) \leq g(x) a(\phi)+f(\phi), \quad 2 R_{0}<|x| \leq R \tag{1.5}
\end{equation*}
$$

If k is sufficiently large, then

$$
a\left(e^{\alpha k}-1\right) \geq 1, \quad f\left(e^{\alpha k}-1\right) \geq 1, \quad b\left(e^{\alpha k}-1\right) \geq 1, \quad h\left(e^{\alpha k}-1\right) \geq 1
$$

where k is dependent on a, f, b, h, p, and independent on R. Since

$$
\begin{aligned}
-\Delta_{p(x)} \phi & \left.=\varepsilon\left(\frac{2 R_{0}}{r}\right)^{N-1}\left(k e^{\alpha k}\right)^{(} p\left(2 R_{0}\right)-1\right) \cos \left(\varepsilon\left(r-2 R_{0}\right)+\frac{\pi}{2}\right)\left(L_{1}+1\right) \\
& \leq \varepsilon\left(L_{1}+1\right) 2^{N} k^{p^{+}} e^{\alpha k p^{+}}, 2 R_{0}-\frac{\pi}{2 \varepsilon}<|x|<2 R_{0}
\end{aligned}
$$

Let $\varepsilon=2^{-N} k^{-p^{+}} e^{-\alpha k p^{+}}$. Then

$$
\begin{equation*}
-\Delta_{p(x)} \phi \leq L_{1}+1 \leq g(x) a(\phi)+f(\phi), 2 R_{0}-\frac{\pi}{2 \varepsilon}<|x|<2 R_{0} \tag{1.6}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
-\Delta_{p(x)} \phi=0 \leq L_{1}+1 \leq g(x) a(\phi)+f(\phi),|x|<2 R_{0}-\frac{\pi}{2 \varepsilon} \tag{1.7}
\end{equation*}
$$

Since $\phi(x) \in C^{1}(\Omega)$, combining (1.5), 1.6), 1.7), we have

$$
-\Delta_{p(x)} \phi \leq g(x) a(\phi)+f(\phi)
$$

for a.e. $x \in \Omega$. Similarly we have

$$
-\Delta_{p(x)} \phi \leq g(x) b(\phi)+h(\phi)
$$

for a.e. $x \in \Omega$. Let $\left(\phi_{1}, \phi_{2}\right)=(\phi, \phi)$, since $\phi(x) \in C^{1}(\bar{\Omega})$, it is easy to see that $\left(\phi_{1}, \phi_{2}\right)$ is a subsolution of (1.3).

Step 2. We construct a supersolution of 1.3 Let z_{1} be a radial solution of

$$
\begin{gathered}
-\Delta_{p(x)} z_{1}(x)=\left(L_{2}+1\right) \mu, \quad \text { in } \Omega, \\
z_{1}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

We denote $z_{1}=z_{1}(r)=z_{1}(|x|)$, then z_{1} satisfies

$$
-\left(r^{N-1}\left|z_{1}^{\prime}\right|^{p(r)-2} z_{1}^{\prime}\right)^{\prime}=r^{N-1}\left(L_{2}+1\right) \mu, z_{1}(R)=0, z_{1}^{\prime}(0)=0 .
$$

Then

$$
\begin{equation*}
z_{1}^{\prime}=-\left|\frac{r\left(L_{2}+1\right) \mu}{N}\right|^{\frac{1}{p(r)-1}}, \tag{1.8}
\end{equation*}
$$

and

$$
z_{1}=\int_{r}^{R}\left|\frac{r\left(L_{2}+1\right) \mu}{N}\right|^{\frac{1}{p(r)-1}} d r
$$

We denote $\beta=\beta\left(\left(L_{2}+1\right) \mu\right)=\max _{0 \leq r \leq R} z_{1}(r)$, then

$$
\beta\left(\left(L_{2}+1\right) \mu\right)=\int_{0}^{R}\left|\frac{r\left(L_{2}+1\right) \mu}{N}\right|^{\frac{1}{p(r)-1}} d r=\left(\left(L_{2}+1\right) \mu\right)^{\frac{1}{p(q)-1}} \int_{0}^{R}\left|\frac{r}{N}\right|^{\frac{1}{p(r)-1}} d r
$$

where $q \in[0,1]$. Since $\int_{0}^{R}\left|\frac{r}{N}\right|^{\frac{1}{p(r)-1}} d r$ is a constant, then there exists a positive constant $C \geq 1$ such that

$$
\begin{equation*}
\frac{1}{C}\left(\left(L_{2}+1\right) \mu\right)^{\frac{1}{p^{+}-1}} \leq \beta\left(\left(L_{2}+1\right) \mu\right)=\max _{0 \leq r \leq R} z_{1}(r) \leq C\left(\left(L_{2}+1\right) \mu\right)^{\frac{1}{p^{-}-1}} . \tag{1.9}
\end{equation*}
$$

We consider

$$
\begin{gathered}
-\Delta_{p(x)} z_{1}=\left(L_{2}+1\right) \mu \quad \text { in } \Omega \\
-\Delta_{p(x)} z_{2}=\left(L_{2}+1\right) h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right) \quad \text { in } \Omega \\
z_{1}=z_{2}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Then we shall prove that $\left(z_{1}, z_{2}\right)$ is a supersolution for 1.3 . For $\xi \in W^{1, p(x)}(\Omega)$ with $\xi \geq 0$, it is easy to see that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{2}\right|^{p(x)-2} \nabla z_{2} \cdot \nabla \xi d x & =\int_{\Omega}\left(L_{2}+1\right) h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right) \xi d x \\
& \geq \int_{\Omega} L_{2} h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right) \xi d x+\int_{\Omega} h\left(z_{1}\right) \xi d x
\end{aligned}
$$

Similar to (1.9), we have

$$
\max _{0 \leq r \leq R} z_{2}(r) \leq C\left[\left(L_{2}+1\right) h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right)\right]^{\frac{1}{\left(p^{-}-1\right)}} .
$$

By (H3), for μ large enough we have

$$
h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right) \geq b\left(C\left[\left(L_{2}+1\right) h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right)\right]^{\frac{1}{p^{-}-1}}\right) \geq b\left(z_{2}\right)
$$

Hence

$$
\begin{equation*}
\int_{\Omega}\left|\nabla z_{2}\right|^{p(x)-2} \nabla z_{2} \cdot \nabla \xi d x \geq \int_{\Omega} g(x) b\left(z_{2}\right) \xi d x+\int_{\Omega} h\left(z_{1}\right) \xi d x \tag{1.10}
\end{equation*}
$$

Also

$$
\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \xi d x=\int_{\Omega}\left(L_{2}+1\right) \mu \xi d x
$$

By (H3), (H4), when μ is sufficiently large, according to 1.9), we have

$$
\begin{aligned}
\left(L_{2}+1\right) \mu & \geq\left[\frac{1}{C} \beta\left(\left(L_{2}+1\right) \mu\right)\right]^{p^{-}-1} \\
& \geq L_{2} a\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right)+f\left[C\left[\left(L_{2}+1\right)^{\frac{1}{\left(p^{-}-1\right)}}\left(h\left(\beta\left(\left(L_{2}+1\right) \mu\right)\right)\right)^{\frac{1}{\left(p^{-}-1\right)}}\right]\right. \\
& \geq g(x) a\left(z_{1}\right)+f\left(z_{2}\right)
\end{aligned}
$$

then

$$
\begin{equation*}
\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \xi d x \geq \int_{\Omega} g(x) a\left(z_{1}\right) \xi d x+\int_{\Omega} f\left(z_{2}\right) \xi d x \tag{1.11}
\end{equation*}
$$

According to 1.10 and 1.11 , we can conclude that $\left(z_{1}, z_{2}\right)$ is a supersolution of (1.3).

Let μ be sufficiently large, then from (1.8) and the definition of $\left(\phi_{1}, \phi_{2}\right)$, it is easy to see that $\phi_{1} \leq z_{1}$ and $\phi_{2} \leq z_{2}$. This completes the proof.

Now we consider the problem

$$
\begin{gather*}
-\Delta_{p(x)} u=\lambda F(x, u, v) \quad \text { in } \Omega \\
-\Delta_{p(x)} v=\lambda G(x, u, v) \quad \text { in } \Omega \tag{1.12}\\
u=v=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

If $p(x) \equiv p$ (a constant), because of the homogenity of p-Laplacian, 1.3) and (1.4) can be transformed into each other; but, if $p(x)$ is a general function, since $p(x)$-Laplacian is nonhomogeneous, they cannot be transformed into each other. So we can see that $p(x)$-Laplacian problem is more complicated than than that of p-Laplacian, and it is necessary to discuss the problem separately.

Theorem 1.2. If $p(x) \in C^{1}(\bar{\Omega}), \Omega=B(0, R)$, and (H3)-(H5) hold, then there exists a λ^{*} which is sufficiently large, such that (1.4) possesses a positive solution for any $\lambda \geq \lambda^{*}$.
Proof. We construct a subsolution of (1.4). Let $\beta \leq \frac{R}{4}$ satisfy

$$
\begin{equation*}
\left|p\left(r_{1}\right)-p\left(r_{2}\right)\right| \leq \frac{1}{2}, \forall r_{1}, r_{2} \in[R-2 \beta, R] \tag{1.13}
\end{equation*}
$$

In the following we denote

$$
\begin{gather*}
\delta=\min \left\{\frac{\inf p(x)-1}{4(\sup |\nabla p(x)|+1)}\right\}, \quad p_{*}^{+}=\sup _{R-2 \beta \leq|x| \leq R} p(x), \quad p_{*}^{-}=\inf _{R-2 \beta \leq|x| \leq R} p(x), \\
b=\min \left\{a(0) L_{1}+f(0), b(0) L_{1}+h(0),-1\right\} \tag{1.14}
\end{gather*}
$$

Let $\alpha \in(0, \beta]$, and set

$$
\phi(r)= \begin{cases}e^{-k(r-R)}-1, & R-\alpha<r \leq R, \\ e^{\alpha k}-1+\int_{r}^{R-\alpha}\left(k e^{\alpha k}\right)^{\frac{p(R-\alpha)-1}{p(r)-1}}\left[\frac{(R-\alpha)^{N-1}}{r^{N-1}}\right. & \\ \left.\times \sin \left(\varepsilon(r-(R-\alpha))+\frac{\pi}{2}\right)\left(L_{1}+1\right)\right]^{\frac{1}{p(r)-1}} d r, & R-2 \beta<r \leq R-\alpha, \\ e^{\alpha k}-1+\int_{R-\alpha-\frac{\pi}{2 \varepsilon}}^{R-\alpha}\left(k e^{\alpha k}\right)^{\frac{p(R-\alpha)-1}{p(r)-1}}\left[\frac{(R-\alpha)^{N-1}}{r^{N-1}}\right. & \\ \left.\times \sin \left(\varepsilon(r-(R-\alpha))+\frac{\pi}{2}\right)\left(L_{1}+1\right)\right]^{\frac{1}{p(r)-1}} d r, & r \leq R-2 \beta,\end{cases}
$$

where $\varepsilon=\frac{\pi}{2(2 \beta-\alpha)}$ which satisfies $\varepsilon(R-2 \beta-(R-\alpha))+\frac{\pi}{2}=0$.
In the following, we will prove that (ϕ, ϕ) is a subsolution of 1.4). Since

$$
\phi^{\prime}(r)= \begin{cases}e^{-k(r-R)}-1, & R-\alpha<r \leq R, \\ -\left(k e^{\alpha k}\right)^{\frac{p(R-\alpha)-1}{p(r)-1}} & \\ {\left[\frac{(R-\alpha)^{N-1}}{r^{N-1}}\right.} & \\ \left.\times \sin \left(\varepsilon(r-(R-\alpha))+\frac{\pi}{2}\right)\left(L_{1}+1\right)\right]^{\frac{1}{p(r)-1}} d r, & R-2 \beta<r \leq R-\alpha, \\ 0, & r \leq R-2 \beta .\end{cases}
$$

It is easy to see that $\phi \geq 0$ is decreasing and $\phi \in C^{1}([0, R]), \phi(x)=\phi(|x|) \in C^{1}(\Omega)$.
Let $r=|x|$. By computation,

$$
-\Delta_{p(x)} \phi(x)= \begin{cases}\left(k e^{-k(r-R)}\right)^{p(r)-1}[-k(p(r)-1) \\ \left.+p^{\prime}(r) \ln k-k p^{\prime}(r)(r-R)+\frac{N-1}{r}\right], & R-\alpha<r \leq R \\ \varepsilon\left(\frac{R-\alpha}{r}\right)^{N-1}\left(k e^{\alpha k}\right)^{(p(R-\alpha)-1)} & \\ \times \cos \left(\varepsilon(r-(R-\alpha))+\frac{\pi}{2}\right)\left(L_{1}+1\right), & R-2 \beta<r \leq R-\alpha \\ 0, & r \leq R-2 \beta\end{cases}
$$

If k is sufficiently large, when $R-\alpha<r \leq R$, then we have

$$
-\Delta_{p(x)} \phi \leq-k^{p(r)}\left[\inf p(x)-1-\sup |\nabla p(x)|\left(\frac{\ln k}{k}+R-r\right)+\frac{N-1}{k r}\right] \leq-k^{p(r)} \delta
$$

If k satisfies

$$
\begin{equation*}
k^{p_{*}^{-}} \delta=-\lambda b \tag{1.15}
\end{equation*}
$$

and since $\phi(x) \geq 0$ and a, f is monotone, it means that

$$
\begin{equation*}
-\Delta_{p(x)} \phi \leq \lambda\left(a(0) L_{1}+f(0)\right) \leq \lambda(g(x) a(\phi)+f(\phi)), R-\alpha<|x| \leq R \tag{1.16}
\end{equation*}
$$

From (H3), (H4) there exists a positive constant M such that $a(M-1) \geq 1$, $f(M-1) \geq 1, b(M-1) \geq 1, h(M-1) \geq 1$. Let

$$
\begin{equation*}
\alpha k=\ln M \tag{1.17}
\end{equation*}
$$

Since

$$
\begin{aligned}
-\Delta_{p(x)} \phi(x) & \left.=\varepsilon\left(\frac{R-\alpha}{r}\right)^{N-1}\left(k e^{\alpha k}\right)^{(} p(R-\alpha)-1\right) \cos \left(\varepsilon(r-(R-\alpha))+\frac{\pi}{2}\right)\left(L_{1}+1\right) \\
& \leq \varepsilon\left(L_{1}+1\right) 2^{N}\left(k e^{\alpha k}\right)^{p_{*}^{+}-1}, R-2 \beta<|x|<R-\alpha
\end{aligned}
$$

if

$$
\begin{equation*}
\varepsilon 2^{N}\left(k e^{\alpha k}\right)^{p_{*}^{+}-1} \leq \lambda, \tag{1.18}
\end{equation*}
$$

then

$$
\begin{equation*}
-\Delta_{p(x)} \phi(x) \leq \lambda\left(L_{1}+1\right) \leq \lambda(g(x) a(\phi)+f(\phi)), \quad R-2 \beta<|x|<R-\alpha \tag{1.19}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
-\Delta_{p(x)} \phi(x)=0 \leq \lambda L_{1}+1 \leq \lambda(g(x) a(\phi)+f(\phi)), \quad|x|<R-2 \beta \tag{1.20}
\end{equation*}
$$

Combining (1.15), 1.17) and 1.18, we only need

$$
\varepsilon 2^{N}\left|\frac{-b}{\delta} \lambda\right|^{\frac{p_{*}^{+}-1}{p_{*}^{-}}} M^{p_{*}^{+}-1} \leq \lambda
$$

and according to 1.13 , 1.14, we only need

$$
\left(\frac{\pi}{\beta} 2^{N} M^{p_{*}^{+}-1}\left|\frac{-b}{\delta}\right|^{\frac{p_{*}^{+}-1}{p_{*}^{-}}}\right) 2 p_{*}^{-} \leq \lambda .
$$

Let

$$
\lambda^{*}=\left(\frac{\pi}{\beta} 2^{N} M^{p_{*}^{+}-1}\left|\frac{-b}{\delta}\right|^{\frac{p_{*}^{+}-1}{p_{*}^{-}}}\right)^{2 p_{*}^{-}} .
$$

If $\lambda \geq \lambda^{*}$ is sufficiently large, then 1.18 is satisfied.
Since $\phi(x)=\phi(|x|) \in C^{1}(\Omega)$, according to 1.16 , 1.19 and 1.20 , it is easy to see that if λ is sufficiently large, then $\left(\phi_{1}, \phi_{2}\right)$ is a subsolution of (1.4).

Step 2. We construct a supersolution of (1.4). Similar to the proof of Theorem 1.1, we consider

$$
\begin{gathered}
-\Delta_{p(x)} z_{1}=\lambda\left(L_{2}+1\right) \mu \quad \text { in } \Omega \\
-\Delta_{p(x)} z_{2}=\lambda\left(L_{2}+1\right) h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right) \quad \text { in } \Omega \\
z_{1}=z_{2}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where $\beta=\beta\left(\lambda\left(L_{2}+1\right) \mu\right)=\max _{0 \leq r \leq R} z_{1}(r)$. It is easy to see that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{2}\right|^{p(x)-2} \nabla z_{2} \cdot \nabla \xi d x & =\int_{\Omega} \lambda\left(L_{2}+1\right) h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right) \xi d x \\
& \geq \int_{\Omega} \lambda L_{2} h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right) \xi d x+\int_{\Omega} \lambda h\left(z_{1}\right) \xi d x
\end{aligned}
$$

Similar to (1.9), we have

$$
\max _{0 \leq r \leq R} z_{2}(r) \leq C\left[\lambda\left(L_{2}+1\right) h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right)\right]^{\frac{1}{\left(p^{-}-1\right)}} .
$$

By (H3) for μ large enough we have

$$
h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right) \geq b\left(C\left[\lambda\left(L_{2}+1\right) h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right)\right]^{\frac{1}{p^{--1}}}\right) \geq b\left(z_{2}\right)
$$

Hence

$$
\begin{equation*}
\int_{\Omega}\left|\nabla z_{2}\right|^{p(x)-2} \nabla z_{2} \cdot \nabla \xi d x \geq \int_{\Omega} \lambda g(x) b\left(z_{2}\right) \xi d x+\int_{\Omega} \lambda h\left(z_{1}\right) \xi d x \tag{1.21}
\end{equation*}
$$

Also

$$
\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \xi d x=\int_{\Omega} \lambda\left(L_{2}+1\right) \mu \xi d x
$$

By (H3), (H4), when μ is sufficiently large, according to 1.9 , we have

$$
\begin{aligned}
\left(L_{2}+1\right) \mu & \geq \frac{1}{\lambda}\left[\frac{1}{C} \beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right]^{p^{-}-1} \\
& \geq L_{2} a\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right)+f\left(C\left[\lambda\left(L_{2}+1\right) h\left(\beta\left(\lambda\left(L_{2}+1\right) \mu\right)\right)\right]^{\frac{1}{\left(p^{-}-1\right)}}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \xi d x \geq \int_{\Omega} \lambda g(x) a\left(z_{1}\right) \xi d x+\int_{\Omega} \lambda f\left(z_{2}\right) \xi d x \tag{1.22}
\end{equation*}
$$

According to 1.21 and 1.22 , we can conclude that $\left(z_{1}, z_{2}\right)$ is a supersolution of (1.4).

Similar to the proof of Theorem 1.1, if μ is sufficiently large, we have $\phi_{1} \leq z_{1}$ and $\phi_{2} \leq z_{2}$. This completes the proof.

References

[1] J. Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parametes, J. Math. Anal. Appl. Article In Press.
[2] C. H. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal. 62 (2005) 751-756.
[3] X. L. Fan, H. Q. Wu, F. Z. Wang, Hartman-type results for $p(t)$-Laplacian systems, Nonlinear Anal. 52 (2003) 585-594.
[4] X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001) 424-446.
[5] X. L. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA 36 (1999) 295-318.
[6] X. L. Fan, D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions, Nonlinear Anal. TMA 39 (2000) 807-816.
[7] X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.
[8] X. L. Fan, Q. H. Zhang, D. Zhao Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306-317.
[9] D. D. Hai, R. Shivaji, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal. 56 (2024) 1007-1010.
[10] M. Rûzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math, vol. 1784, Springer-Verlag, Berlin, 2000.
[11] Q. H. Zhang, Existence of positive solutions for elliptic systems with nonstandard $p(x)$-growth conditions via sub-supersolution method, Nonlinear Anal. 67 (2007) 1055-1067.
[12] Q. H. Zhang, Existence of positive solutions for a class of $p(x)$-Laplacian systems, J. Math. Anal. Appl. 302 (2005) 306-317.
[13] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv. 29 (1987) 33-36.

Ghasem A. Afrouzi
Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, BabolSAR, Iran

E-mail address: afrouzi@umz.ac.ir
Horieh Ghorbani
Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, BabolSAR, Iran

E-mail address: seyed86@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 35J60, 35B30, 35B40.
 Key words and phrases. Positive radial solutions; $p(x)$-Laplacian problems;
 boundary value problems.
 © 2007 Texas State University - San Marcos.
 Submitted July 18, 2007. Published December 17, 2007.

