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NEW APPROACH TO STREAMING SEMIGROUPS WITH
DISSIPATIVE BOUNDARY CONDITIONS

MOHAMED BOULANOUAR

Abstract. This paper concerns the generation of a C0-semigroup by a stream-
ing operator with general dissipative boundary conditions. Here, we give a

third approach based on the construction of the generated semigroup without

using the Hille-Yosida’s Theorem. The first approach, based on the Hille-
Yosida’s Theorem, was given by Dautray [8], Protopopescu [9] and Voigt [10].

The second approach, based on the characteristic method, was given by Beals
[1] and Protopopescu [9].

1. Introduction

In this paper, we are concerned by generation Theorem and the explicit expres-
sion of the generated semigroup of the streaming operator TK defined by

TKϕ(x, v) = −v · ∇xϕ(x, v), on the domain

D(TK) = {ϕ ∈W p
−(Ω) : γ−ϕ = Kγ+ϕ}

(1.1)

where (x, v) ∈ Ω = X × V with X ⊂ Rn is a smoothly bounded open subset
and dµ is a Radon measure on Rn with support V . The traces γ+ϕ = ϕ|Γ+ and
γ−ϕ = ϕ|Γ− present respectively the outgoing and the incoming particles fluxes
and K is a bounded linear operator between the traces spaces Lp(Γ+) and Lp(Γ−)
(see the next section for more explanations).

In the phase space Ω = X × V , the function ϕ(x, v) presents the density of
all particles (neutrons, photons, molecules of gas,. . . ) having, at the time t = 0,
the position x ∈ X with the directional velocity v ∈ V . The boundary conditions
γ−ϕ = Kγ+ϕ included in the domain D(TK) generalize naturally all well-known
boundary conditions such as (vacuum, reflection, specular, periodic,. . . ). For the
convenience of reader and more explanations, we refer for instance to [1], [9, Chapter
XI and XII], [8, Chapter 21] and [10].

The existence of a strongly continuous semigroup generated by the streaming
operator has been investigated by several authors and several important results
have been cleared. When ‖K‖ < 1, the first approach, based on the characteristic
method, has been used in [1] and [9, Theorem 4.3, p.386]. For the same case (i.e.
‖K‖ < 1), the second approach, based on the Hille-Yosida’s Theorem, has been
used in [9, Theorem 2.2, p.410] [8, Theorem 3, p.1118] and [10, Theorem 4.3, p.66].
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The motivation, of the present work, is to give the third approach when ‖K‖ < 1
without using the Hille-Yosida’s Theorem or characteristic method. This approach
is concerned by two steps. The first one is devoted to the construction of a C0-
semigroup given in the Proposition 3.5. In the second step, we show that TK given
by the relation (1.1) is the infinitesimal generator of this semigroup in the Theorem
4.2.

To obtain our objective, we use our technics successfully applied in [3][4]. We
point out that the present work is new and gives the explicit expression of the
generated semigroup and all of this result doesn’t hold for the case ‖K‖ ≥ 1. In
[2], we give another and different treatment for the last case (i.e., ‖K‖ ≥ 1).

2. Setting of the problem

We consider the Banach space Lp(Ω) (1 ≤ p <∞) with its natural norm

‖ϕ‖p =
[ ∫

Ω

|ϕ(x, v)|pdxdµ
]1/p

, (2.1)

where Ω = X × V with X ⊂ Rn be a smoothly bounded open subset and dµ be a
Radon measure on Rn with support V . We also consider the partial Sobolev space

W p(Ω) =
{
ϕ ∈ Lp(Ω), v · ∇xϕ ∈ Lp(Ω)

}
,

with the norm ‖ϕ‖W p(Ω) =
[
‖ϕ‖p

p + ‖v · ∇xϕ‖p
p

]1/p. We set n(x) the outer unit
normal at x ∈ ∂X, where ∂X is the boundary of X equipped with the measure of
surface dγ. We denote

Γ = ∂X × V,

Γ0 = {(x, v) ∈ Γ, v · n(x) = 0},
Γ+ = {(x, v) ∈ Γ, v · n(x) > 0},
Γ− = {(x, v) ∈ Γ, v · n(x) < 0},

and suppose that dγ(Γ0) = 0. For (x, v) ∈ Ω, the time which a particle starting at
x with velocity −v needs until it reaches the boundary ∂X of X is denoted by

t(x, v) = inf{t > 0 : x− tv 6∈ X}.

Similarly, if (x, v) ∈ Γ+ we set

τ(x, v) = inf{t > 0 : x− tv 6∈ X}.

We also consider the trace spaces Lp(Γ±) equipped with the norms

‖ϕ‖Lp(Γ±) =
[ ∫

Γ±

|ϕ(x, v)|pdξ
]1/p

,

where dξ = |v · n(x)|dγdµ. In this context we define the trace applications by

γ± : ϕ→ ϕ|Γ± ,

and the Banach spaces

W p
−(Ω) = {ϕ ∈W p(Ω), γ−ϕ ∈ Lp(Γ−)}

W p
+(Ω) = {ϕ ∈W p(Ω), γ+ϕ ∈ Lp(Γ+)}.
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Note that, by [5], [6], we have W p
−(Ω) = W p

+(Ω). Finally, we consider the boundary
operator

K ∈ L(Lp(Γ+), Lp(Γ−)), (2.2)
and we set ‖K‖ := ‖K‖L(Lp(Γ+),Lp(Γ−)) for the rest of this article.

Lemma 2.1 ([8, Theorem 2, pp.1087]). The operator T0 defined by

T0ϕ(x, v) = −v · ∇xϕ(x, v), on the domain

D(T0) = {ϕ ∈W p(Ω), γ−ϕ = 0}
(2.3)

generates, on Lp(Ω), the C0-semigroup {U0(t)}t≥0 of contractions given by

U0(t)ϕ(x, v) = χ(t− t(x, v))ϕ(x− tv, v),

where

χ(t− t(x, v)) =

{
1 if t− t(x, v) ≤ 0,
0 otherwise.

(2.4)

We complete this section by the following Lemma that we will need later.

Lemma 2.2. The following applications are contunous:
(1) γ+ : D(T0) → Lp(Γ+);
(2) γ+(λ− T0)−1 : Lp(Ω) → Lp(Γ+), for all λ > 0;
(3) t ≥ 0 → γ+U0(t)ϕ ∈ Lp(Γ+), for all ϕ ∈ D(T0).

Proof. (1). For all ϕ ∈ D(T0), we have γ−ϕ = 0 ∈ Lp(Γ−) and thus the Green’s
formula holds on D(T0). Using the relation

sgnu|u|p−1v · ∇xu =
1
p
v · ∇x|u|p, (2.5)

we obtain

−
∫

Ω

[
sgnϕ|ϕ|p−1T0ϕ

]
(x, v)dxdµ =

1
p

∫
X×V

v · ∇x(|ϕ|p)(x, v)dxdµ

=
1
p

∫
Γ+

|γ+ϕ(x, v)|pdξ − 1
p

∫
Γ−
|γ−ϕ(x, v)|pdξ

=
1
p
‖γ+ϕ‖p

Lp(Γ+),

(2.6)
which implies, by Hölder’s inequality, that

‖γ+ϕ‖p
Lp(Γ+) ≤ p

∫
Ω

|ϕ(x, v)|p−1|T0ϕ(x, v)|dxdµ

≤ p
[ ∫

Ω

|ϕ(x, v)|q(p−1)dxdµ
] 1

q
[ ∫

Ω

|T0ϕ(x, v)|pdxdµ
]1/p

≤ p‖ϕ‖p/q
p ‖T0ϕ‖p

where q ≥ 1 is the conjugate of p ≥ 1 (i.e. p−1 + q−1 = 1). Now, the Young’s
formula gives us

‖γ+ϕ‖p
Lp(Γ+) ≤ p

[1
q
‖ϕ‖p

p +
1
p
‖T0ϕ‖p

p

]
≤ max{p

q
, 1}‖ϕ‖p

D(T0)

which prove the continuity.
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(2). Let λ > 0. We know from the previous Lemma that, for all g ∈ Lp(Ω),
the function ϕ = (λ − T0)−1g ∈ D(T0) is the unique solution of the equation
λϕ = T0ϕ+ g. Multiplying this last equation by sgnϕ|ϕ|p−1 and using the relation
(2.5) we obtain

λ

∫
Ω

|ϕ|p(x, v)dxdµ =
∫

Ω

[
sgnϕ|ϕ|p−1T0ϕ

]
(x, v)dxdµ

+
∫

Ω

[
sgnϕ|ϕ|p−1

]
(x, v)g(x, v)dxdµ

which implies, by the relation (2.6), that

λ‖ϕ‖p
p = −1

p
‖γ+ϕ‖p

Lp(Γ+) +
∫

Ω

[
sgnϕ|ϕ|p−1g

]
(x, v)g(x, v)dxdµ

and therefore

‖γ+ϕ‖p
Lp(Γ+) ≤ p

∫
Ω

|ϕ|p−1(x, v)|g|(x, v)dxdµ.

The Höder’s inequality and ‖ϕ‖p = ‖(λ− T0)−1g‖p ≤ (‖g‖p/λ) which follows from
the contractiveness of the semigroup {U0(t)}t≥0 in the previous Lemma, infer that

‖γ+ϕ‖p
Lp(Γ+) ≤ p‖ϕ‖

p
q
p ‖g‖p ≤

p

λ
p
q

‖g‖
p
q
p ‖g‖p =

p

λ
p
q

‖g‖p
p.

Thus
‖γ+(λ− T0)−1g‖Lp(Γ+) ≤

[ p

λ
p
q

]1/p‖g‖p

for all g ∈ Lp(Ω). The second statement is proved.
(3). Let h > 0. For all ϕ ∈ D(T0) we have

‖U0(h)ϕ− ϕ‖D(T0) =
[
‖U0(h)ϕ− ϕ‖p

p + ‖T0 [U0(h)ϕ− ϕ] ‖p
p

]1/p

=
[
‖U0(h)ϕ− ϕ‖p

p + ‖U0(h)T0ϕ− T0ϕ‖p
p

]1/p

which implies
lim
h↘0

‖U0(h)ϕ− ϕ‖D(T0) = 0

and therefore the continuity at t = 0+ follows. Now, the continuity at t > 0
follows from the previous relation and the fact that {U0(t)}t≥0 is a semigroup (i.e.,
U0(t+ s) = U0(t)U0(s)). �

3. Construction of the semigroup

In this section we give the expression of the generated semigroup {UK(t)}t≥0

only for the case ‖K‖ < 1. In order to show the proposition 3.5 which is the main
result of this section, we are going to show some preparatory Lemmas.

Lemma 3.1. The Cauchy’s problem

du

dt
+ v · ∇xu = 0, (t, x, v) ∈ (0,∞)× Ω;

γ−u = f− ∈ Lp(R+, L
p(Γ−));

u(0) = f0 ∈ Lp(Ω),

(3.1)
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admits an unique solution u = u(t, x, v) = u(t)(x, v). Furthermore, for all t ≥ 0,
we have

‖u(t)‖p
p +

∫ t

0

‖γ+u(s)‖p
Lp(Γ+)ds =

∫ t

0

‖f−(s)‖p
Lp(Γ−)ds+ ‖f0‖p

p. (3.2)

Proof. Let f− ∈ Lp(R+, L
p(Γ−)) and f0 ∈ Lp(Ω). First. The existence of the

solutions u of the Cauchy’s problem (3.1) is guaranteed by [8, pp.1124] and it is
given by

u(t, x, v) = f−(t− t(x, v), x− t(x, v)v, v) + U0(t)ϕ(x, v). (3.3)

Next. If u and u′ are two solution of the Cauchy’s problem (3.1), then w = u− u′

is solution of the Cauchy’s problem (3.1) with f− = 0, f0 = 0 which implies that
w = 0, by the relation (3.2), and therefore u = u′.

Multiplying the first equation of the Cauchy’s problem (3.1) by sgnu|u|p−1, using
the relation (2.5) and integrating on Ω, we obtain

1
p

d‖u(t)‖p
p

dt
=

1
p

∫
Γ−

|γ−u(t, x, v)|pdξ −
1
p

∫
Γ+

|γ+u(t, x, v)|pdξ

=
1
p

∫
Γ−

|f−(t, x, v)|pdξ − 1
p

∫
Γ+

|γ+u(t, x, v)|pdξ

=
1
p
‖f−(t)‖p

Lp(Γ−) −
1
p
‖γ+u(t)‖p

Lp(Γ+)

which implies, by integration with respect to t, that

‖u(t)‖p
p − ‖f0‖p

p =
∫ t

0

‖f−(s)‖p
Lp(Γ−)ds−

∫ t

0

‖γ+u(s)‖p
Lp(Γ+)ds

and completes the proof. �

Remark 3.2. In the sequel, we use the fact that all expression on the form of the
relation (3.3) is automatically solution of the Cauchy’s problem (3.1).

In the sequel, when it is necessary, we implicitly define by zero all function
outside their domain (for instance fϕ(·) in the next Lemma or the the operator-
value functions AK(·) in the Lemma 3.4)

Lemma 3.3. Let ‖K‖ < 1. For all ϕ ∈ Lp(Ω), the equation

f(t) = VK(t)ϕ+HKf(t), (3.4)

has an unique solution fϕ ∈ Lp(R+, L
p(Γ−)), where

VK(t)ϕ = K [γ+U0(t)ϕ] , (3.5)

HKf(t, x, v) = K [γ+u(t)] (x, v), (3.6)

with

u(t, x, v) = ξ(t− t(x, v))f(t− t(x, v), x− t(x, v)v, v), (3.7)

ξ(t− t(x, v)) = 1− χ(t− t(x, v)) =

{
1 if t− t(x, v) ≥ 0,
0 otherwise.

(3.8)

where χ is given by (2.4). Furthermore, the application

ϕ ∈ Lp(Ω) → fϕ ∈ Lp(R+, L
p(Γ−)) (3.9)
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is linear and bounded satisfying

‖fϕ‖Lp(R+,Lp(Γ−)) ≤
‖K‖

(1− ‖K‖)
‖ϕ‖p. (3.10)

Proof. Let ϕ ∈ Lp(Ω). Using the boundedness of K we get that

‖VK(·)ϕ‖p
Lp(R+,Lp(Γ−)) = lim

t→∞

∫ t

0

‖VK(s)ϕ‖p
Lp(Γ−)ds

= lim
t→∞

∫ t

0

‖K [γ+U0(s)ϕ] ‖p
Lp(Γ−)ds

≤ ‖K‖p lim
t→∞

∫ t

0

‖γ+U0(s)ϕ‖p
Lp(Γ+)ds.

As the function u(t, x, v) = U0(t)ϕ(x, v) is solution of Cauchy’s problem (3.1) with
f− = 0, f0 = ϕ, then the relation (3.2) infers that

‖VK(·)ϕ‖Lp(R+,Lp(Γ−)) ≤ ‖K‖‖ϕ‖p (3.11)

and therefore VK(·)ϕ ∈ Lp(R+, L
p(Γ−)).

Let f ∈ Lp(R+, L
p(Γ−)). Using the boundedness of K, we get

‖HKf‖p
Lp(R+,Lp(Γ−)) = lim

t→∞

∫ t

0

‖HKf(s)‖p
pds

= lim
t→∞

∫ t

0

‖K [γ+u(s)] ‖p
Lp(Γ−)ds

≤ ‖K‖p lim
t→∞

∫ t

0

‖γ+u(s)‖p
Lp(Γ+)ds.

As u = u(t, x, v) given by the relation (3.7) is solution of Cauchy’s problem (3.1)
with f− = f, f0 = 0, then the relation (3.2) infers that

‖HKf‖p
Lp(R+,Lp(Γ−)) ≤ ‖K‖p lim

t→∞

∫ t

0

‖f(s)‖p
Lp(Γ−)ds ≤ ‖K‖p‖f‖p

Lp(R+,Lp(Γ−)).

Thus we have
‖HKf‖Lp(R+,Lp(Γ−)) ≤ ‖K‖‖f‖Lp(R+,Lp(Γ−)) (3.12)

and therefore HKf ∈ Lp(R+, L
p(Γ−)).

Since ‖K‖ < 1, for all ϕ ∈ Lp(Ω), the equation (3.4) admits an unique solution
fϕ ∈ Lp(R+, L

p(Γ−)) given by

fϕ = (I −HK)−1VK(·)ϕ

which implies the linearity of the application (3.9). Finally, using the relations
(3.11) and (3.12) we get

‖f‖Lp(R+,Lp(Γ−)) ≤ ‖K‖‖ϕ‖p + ‖K‖‖f‖Lp(R+,Lp(Γ−))

Now, the relation (3.10) follows. �

In the following Lemma, we give the second part of the semigroup given in the
Proposition 3.5.
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Lemma 3.4. Let ‖K‖ < 1. For all t ≥ 0, the operator AK(t) given by

AK(t)ϕ(x, v) = ξ(t− t(x, v))fϕ(t− t(x, v), x− t(x, v)v, v)

is a linear and bounded from Lp(Ω) into itself, where fϕ is given in the previous
Lemma. Furthermore, for all ϕ ∈ Lp(Ω), we have

(1) AK(0) = 0 and limt↘0 ‖AK(t)ϕ‖p = 0;
(2) t ≥ 0 → AK(t)ϕ is continuous.

Proof. (1). Let t ≥ 0 and ϕ ∈ Lp(Ω). As u(t, x, v) = AK(t)ϕ(x, v) is solution of the
Cauchy’s problem P(f− = fϕ, f0 = 0) with fϕ ∈ Lp(R+, L

p(Γ−)), then the relation
(3.2) infers that

‖AK(t)ϕ‖p
p ≤

∫ t

0

‖fϕ(s)‖p
Lp(Γ−)ds ≤ ‖fϕ‖p

Lp(R+,Lp(Γ−)),

which implies A(0) = 0, AK(t)ϕ ∈ Lp(Ω) and limt↘0 ‖AK(t)ϕ‖p = 0. Furthermore,
the previous relation together the relation (3.10) imply the boundedness of the
operator AK(t) from Lp(Ω) into itself.

(2). Let t ≥ 0 and ϕ ∈ Lp(Ω). For all h > 0, defining the function uh(t) =
AK(t + h)ϕ − AK(t)ϕ. As uh is the solution of the Cauchy’s problem (3.1) with
f− = fϕ(· + h) − fϕ, f0 = AK(h)ϕ and fϕ(· + h) − fϕ ∈ Lp(R+, L

p(Ω)) and
f0 = AK(h)ϕ ∈ Lp(Ω), the relation (3.2) infers

‖AK(t+ h)ϕ−AK(t)ϕ‖p
p ≤

∫ t

0

‖fϕ(s+ h)− fϕ(s)‖p
Lp(Γ−)ds+ ‖AK(h)ϕ‖p

p.

However, the operator VK defined by the relation (3.5) satisfies

VK(t+ h)ϕ = K [γ+U0(t+ h)ϕ] = K [γ+U0(t)U0(h)ϕ] = VK(t) [U0(h)ϕ] .

Thus, by uniqueness of the solution of the equation (3.4) we get that fϕ(t + h) =
fU0(h)ϕ(t) and therefore

‖AK(t+ h)ϕ−AK(t)ϕ‖p
p ≤

∫ t

0

‖fU0(h)ϕ(s)− fϕ(s)‖p
Lp(Γ−)ds+ ‖AK(h)ϕ‖p

p.

Using the linearity of the application ϕ → fϕ in the previous Lemma and the
relation (3.10) we finally obtain

‖AK(t+ h)ϕ−AK(t)ϕ‖p
p ≤

∫ t

0

‖fU0(h)ϕ−ϕ(s)‖p
Lp(Γ−)ds+ ‖AK(h)ϕ‖p

p

≤ ‖fU0(h)ϕ−ϕ‖p
Lp(R+,Lp(Γ−)) + ‖AK(h)ϕ‖p

p

≤
[ ‖K‖
(1− ‖K‖)

]p‖U0(h)ϕ− ϕ‖p
p + ‖AK(h)ϕ‖p

p.

Now the required continuity follows from the first part and the fact that {U0(t)}t≥0

is a semigroup. �

The following Proposition is devoted to the explicit expression of a semigroup
which will be, in the Theorem 4.2, the generated semigroup by the streaming op-
erator given by the relation (1.1).

Proposition 3.5. If ‖K‖ < 1, then the family {UK(t)}t≥0 defined by

UK(t) = U0(t) +AK(t), t ≥ 0, (3.13)
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is a C0-semigroup on Lp(Ω). Furthermore, for all ϕ ∈ Lp(Ω), we have

UK(t)ϕ(x, v) = U0(t)(x, v) + ξ(t− t(x, v))K [γ+UK(t− t(x, v))ϕ] (x− t(x, v)v, v)
(3.14)

for all t ≥ 0 and a.e. (x, v) ∈ Ω.

Proof. Let t ≥ 0 and ϕ ∈ Lp(Ω). Note that from the lemmas 2.1 and 3.4 the
operator UK(t) is linear and bounded from Lp(Ω) into itself, UK(0) = U0(0) +
AK(0) = 0 + I = I (I is the identity operator of Lp(Ω)) and

lim
t↘0

‖UK(t)ϕ− ϕ‖p ≤ lim
t↘0

‖U0(t)ϕ− ϕ‖p + lim
t↘0

‖AK(t)ϕ‖p = 0.

Now, let us shown the formula (3.14) and let ϕ ∈ D(T0). First. Using the definition
of the operator AK(t) in the previous Lemma and all of the notations of the Lemma
3.3 we get that

γ−AK(t)ϕ−K [γ+AK(t)ϕ] = fϕ(t)−K [γ+AK(t)ϕ] = K [γ+U0(t)ϕ]

a.e. t ≥ 0. As, the first point of the Lemma 2.2 and the boundedness of the operator
K imply the continuity of the application t ≥ 0 → K [γ+U0(t)ϕ] ∈ Lp(Γ−), then
the previous equality holds for all t ≥ 0.
Next. The previous relation and the fact that U0(t)ϕ ∈ D(T0) imply

γ−UK(t)ϕ−Kγ+UK(t)ϕ =γ−AK(t)ϕ−Kγ+UK(t)ϕ

= γ−AK(t)ϕ−Kγ+ [U0(t)ϕ+AK(t)ϕ]

= γ−AK(t)ϕ−Kγ+ [U0(t)ϕ]−Kγ+ [AK(t)ϕ]

= Kγ+ [U0(t)ϕ]−Kγ+ [U0(t)ϕ]
= 0

for all t ≥ 0, which implies γ−UK(t)ϕ = Kγ+UK(t)ϕ and therefore

γ−AK(t− t(x, v))ϕ(x− t(x, v)v, v) = K [γ+UK(t− t(x, v))ϕ] (x− t(x, v)v, v)

for all t ≥ 0 and a.e. (x, v) ∈ Ω. From other hand, the definition of AK(t) in the
Lemma 3.4 infers that γ−AK(t)ϕ(x, v) = fϕ(t, x, v) which implies

γ−AK(t− t(x, v))ϕ(x− t(x, v)v, v) = fϕ(t− t(x, v), x− t(x, v)v, v)

= AK(t)ϕ(x, v)

a.e. (x, v) ∈ Ω and for all t ≥ 0 because of the second point of the previous Lemma.
Now, the two previous relation gives us

AK(t)ϕ(x, v) = K [γ+UK(t− t(x, v))ϕ] (x− t(x, v)v, v)

for all t ≥ 0 and a.e. (x, v) ∈ Ω. Replacing this relation in the relation (3.13), we
obtain the relation (3.14) which holds on Lp(Ω) because of the density of D(T0) in
Lp(Ω).

Now, in order to order to finish the proof, we have to show that

GK(t, t′) := UK(t)UK(t′)− UK(t+ t′) = 0

for all t, t′ ≥ 0. Using the relation (3.14), a simple calculation shows

GK(t, t′) = AK(t)UK(t′) + (U0(t)AK(t′)−AK(t+ t′))
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Let ϕ ∈ D(T0). Using the definition of AK(t) and UK(t) we easily get

GK(t, t′)ϕ(x, v) = ξ(t− t(x, v))K [γ+UK(t− t(x, v))UK(t′)ϕ] (x− t(x, v)v, v)

+ [χ(t− t(x, v))ξ(t+ t′ − t(x, v))− ξ(t+ t′ − t(x, v))]

×K [γ+UK(t+ t′ − t(x, v), t′)ϕ] (x− t(x, v)v, v).

Now the definition of χ and ξ implies

GK(t, t′)ϕ(x, v) = ξ(t− t(x, v))K [γ+GK(t− t(x, v), t′)ϕ] (x− t(x, v)v, v).

As ut′(t) = GK(t, t′)ϕ is solution of the following Cauchy’s problem (3.1) with
f− = K[γ+GK(·, t′)ϕ], f0 = 0 and f− ∈ R(K) ⊂ Lp(Γ−), then the relation (3.2)
and the boundedness of K infer that∫ t

0

‖γ+G(s, t′)ϕ‖p
Lp(Γ+)ds ≤

∫ t

0

‖K [γ+GK(s, t′)ϕ] ‖p
Lp(Γ−)ds

≤ ‖K‖p

∫ t

0

‖γ+GK(s, t′)ϕ‖p
Lp(Γ+)ds

which implies ∫ t

0

‖γ+G(s, t′)ϕ‖Lp(Γ+)ds = 0

because of ‖K‖ < 1. From other hand, the relation (3.2) gives us

‖GK(t, t′)ϕ‖p
p ≤

∫ t

0

‖K [γ+GK(s, t′)ϕ] ‖p
Lp(Γ−)ds

≤ ‖K‖p

∫ t

0

‖γ+GK(s, t′)ϕ‖p
Lp(Γ+)ds.

Now the two previous relations and the density of D(T0) in Lp(Ω) imply that
GK(t, t′) = 0 for all t, t′ ≥ 0 and thus {UK(t)}t≥0 is a strongly continuous semigroup
on Lp(Ω). The proof is complete. �

Now, let us calculate the resolvent operator of the generator of the semigroup
{UK(t)}t≥0 given in the previous Proposition. But, before to state this result, recall
that the Albedo operator A associate to the following problem

v · ∇xu = 0, on Ω

γ−u = ψ ∈ Lp(Γ−),

is defined by Aψ(x, v) = ψ(x−τ(x, v)v, v). Furthermore, a simple calculation shows
that ‖Aψ‖Lp(Γ+) = ‖ψ‖Lp(Γ−) for all ψ ∈ Lp(Γ−) and thus ‖A‖L(Lp(Γ−),Lp(Γ+)) = 1.

Proposition 3.6. Let ‖K‖ < 1 and suppose that (BK , D(BK)) is the generator of
the semigroup {UK(t)}t≥0. Then, for all λ > 0, the resolvent of BK is linear and
bounded operator from Lp(Ω) into itself given by

(λ−BK)−1g(x, v) = (λ− T0)−1g(x, v) + ελ(x, v)

×
[
K(I −Kλ)−1γ+(λ− T0)−1g

]
(x− t(x, v)v, v)

(3.15)

where I is the identity operator of Lp(Γ+), ελ(x, v) = e−λt(x,v) and Kλ = [γ+ελ]AK
with A is the Albedo operator.
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Proof. For all λ > 0 and all ϕ ∈ D(T0), we have

‖Kλ‖L(Lp(Γ+)) ≤ ‖A‖L(Lp(Γ−),Lp(Γ+))‖K‖L(Lp(Γ+),Lp(Γ−)) < 1 (3.16)

which implies that the operators Kλ and (I − Kλ)−1 belong to L(Lp(Γ+)) and
therefore the relation (3.15) admits a sense because of the second point of the
Lemma 2.2.

Let λ > 0 and ϕ ∈ D(T0). First, for a.e. (x, v) ∈ Γ+, the relation (3.14) gives us

γ+U0(t)ϕ(x, v) =γ+UK(t)ϕ(x, v)

− ξ(t− τ(x, v))K [γ+UK(t− τ(x, v))ϕ] (x− τ(x, v)v, v)

=γ+UK(t)ϕ(x, v)

− ξ(t− τ(x, v))AK [γ+UK(t− τ(x, v))ϕ] (x, v)

for all t ≥ 0 because the second point of the Lemma 2.2. Next, the first point of
the Lemma 2.2 and the previous relation imply that

γ+(λ− T0)−1ϕ(x, v)

= γ+

[∫ ∞

0

e−λtU0(t)ϕdt
]

(x, v)

=
∫ ∞

0

e−λtγ+U0(t)ϕ(x, v)dt

=
∫ ∞

0

e−λtγ+UK(t)ϕ(x, v)dt

−
∫ ∞

0

e−λtξ(t− τ(x, v))K
[
γ+UK(t− τ(x, v))ϕ

]
(x− τ(x, v)v, v)dt.

The change of variable s = t− τ(x, v) infers

γ+(λ− T0)−1ϕ(x, v)

=
∫ ∞

0

e−λtγ+UK(t)ϕ(x, v)dt

−
∫ ∞

0

e−λs [(γ+ελ)K [γ+UK(s)ϕ]] (x− τ(x, v)v, v)ds

=
∫ ∞

0

e−λtγ+UK(t)ϕ(x, v)dt

− (γ+ελ)A
[ ∫ ∞

0

e−λsK [γ+UK(s)ϕ] ds
]
(x, v)

=
∫ ∞

0

e−λtγ+UK(t)ϕ(x, v)dt− (γ+ελ)AK
[∫ ∞

0

e−λs [γ+UK(s)ϕ] ds
]

(x, v)

=
∫ ∞

0

e−λtγ+UK(t)ϕ(x, v)dt−Kλ

∫ ∞

0

e−λsγ+UK(s)ϕ(x, v)ds,

where A is the Albedo operator. Using the boundedness of Kλ we get

γ+(λ− T0)−1ϕ =
∫ ∞

0

e−λtγ+UK(t)ϕdt−Kλ

∫ ∞

0

e−λsγ+UK(s)ϕds

= (I −Kλ)
∫ ∞

0

e−λtγ+UK(t)ϕdt.
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The relation (3.16), implies the invertibility of (I −Kλ) and thus∫ ∞

0

e−λtγ+UK(t)ϕdt = (I −Kλ)−1γ+(λ− T0)−1ϕ. (3.17)

On the other hand, using the relation (3.14), we get[
(λ−BK)−1 − (λ− T0)−1

]
ϕ(x, v)

=
∫ ∞

0

e−λt [UK(t)ϕ− U0(t)ϕ] (x, v)dt

=
∫ ∞

0

ξ(t− t(x, v))e−λtK [γ+UK(t− t(x, v))ϕ] (x− t(x, v)v, v)dt.

The change of variable s = t− t(x, v) and the boundedness of K infer[
(λ−BK)−1 − (λ− T0)−1

]
ϕ(x, v)

= ελ(x, v)
∫ ∞

0

e−λsK [γ+UK(s)ϕ] (x− t(x, v)v, v)ds

= ελK
[ ∫ ∞

0

e−λsγ+UK(s)ϕds
]
(x− t(x, v)v, v).

Combining, the last relation with the relation (3.17) and the density of D(T0) in
Lp(Ω), we obtain

(λ−BK)−1ϕ− (λ− T0)−1ϕ = ελK(I −Kλ)−1γ+(λ− T0)−1ϕ

for all ϕ ∈ Lp(Ω). The proof is complete. �

4. Generation Theorem

In this section, we state the main generation Theorem where we prove that
operator TK given by the relation (1.1) is well the generator of the semigroup
{UK(t)}t≥0.

Lemma 4.1. Suppose that ‖K‖ < 1. If λ > 0, then we have λ ∈ ρ(TK) and

(λ−BK)−1 = (λ− TK)−1. (4.1)

Proof. Let λ > 0, g ∈ Lp(Ω) and ϕ = (λ− BK)−1g ∈ D(BK) ⊂ Lp(Ω). Using the
relation (3.15), a simple calculation of derivative give us

v · ∇xϕ(x, v) = v · ∇x(λ− T0)−1g(x, v)

+ v · ∇x

[
ελ(x, v)

[
K(I −Kλ)−1γ+(λ− T0)−1g

]
(x− t(x, v)v, v)

]
= g(x, v)− λ(λ− T0)−1g(x, v)

− λελ(x, v)
[
K(I −Kλ)−1γ+(λ− T0)−1g

]
(x− t(x, v)v, v)

+ ελ(x, v)v · ∇x

[
K(I −Kλ)−1γ+(λ− T0)−1g

]
(x− t(x, v)v, v).

The last term vanishes and we can write v · ∇xϕ = g − λϕ which implies

‖v · ∇xϕ‖p = ‖g − λϕ‖p ≤ ‖g‖p + λ‖ϕ‖p <∞

and therefore ϕ = (λ−BK)−1g ∈W p(Ω). Furthermore, we trivially have

γ−(λ−BK)−1g = K(I −Kλ)−1γ+(λ− T0)−1g ∈ Lp(Γ−)
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because the rang of K is such that R(K) ⊂ Lp(Γ−). Thus we have (λ−BK)−1g ∈
W p
−(Ω). But, using all of the notations of the Proposition 3.6, we get

γ−(λ−BK)−1g = K(I −Kλ)−1γ+(λ− T0)−1g

= K
[
Kλ(I −Kλ)−1 + I

]
γ+(λ− T0)−1g

= K
[
Kλ(I −Kλ)−1γ+(λ− T0)−1g + γ+(λ− T0)−1g

]
= K

[
(γ+ελ)AK(I −Kλ)−1γ+(λ− T0)−1g + γ+(λ− T0)−1g

]
= Kγ+(λ−BK)−1g

which implies (λ−BK)−1g ∈ D(TK) and therefore ϕ = (λ−BK)−1g is the solution
of (λ − TK)ϕ = g. The arbitrary of g ∈ Lp(Ω) infers that λ ∈ ρ(TK) and the
invertibility of the operator (λ− TK). �

Now, we are able to state the main result of this work as follows.

Theorem 4.2. If ‖K‖ < 1, then the operator TK defined by the relation (1.1), i.e,

TKϕ(x, v) = −v · ∇xϕ(x, v), on the domain

D(TK) = {ϕ ∈W p(Ω), γ±ϕ ∈ Lp(Γ±), γ−ϕ = Kγ+ϕ}
generates, on Lp(Ω), the strongly continuous semigroup {UK(t)}t≥0 satisfying

UK(t)ϕ(x, v) = U0(t)(x, v)

+ ξ(t− t(x, v))K [γ+UK(t− t(x, v))ϕ] (x− t(x, v)v, v)
(4.2)

for all t ≥ 0 and a.e. (x, v) ∈ Ω and all ϕ ∈ Lp(Ω). Furthermore,

‖UK(t)‖L(Lp(Ω)) ≤ 1, t ≥ 0. (4.3)

Proof. The existence of the semigroup {UK(t)}t≥0 and the relation (4.2) are guar-
anteed by the Proposition 3.5. Now, let us show the identity BK = TK .

First. If ϕ ∈ D(TK), then the relation (4.1) infers

ϕ = (λ− TK)−1(λ− TK)ϕ = (λ−BK)−1(λ− TK)ϕ

which implies that ϕ ∈ D(BK) = R((λ−BK)−1(λ− TK)) and therefore D(TK) ⊂
D(BK). Inversely, if ϕ ∈ D(BK), the relation (4.1) also infers

ϕ = (λ−BK)−1(λ−BK)ϕ = (λ− TK)−1(λ−BK)ϕ

which implies that ϕ ∈ D(TK) = R((λ− TK)−1(λ−BK)) and therefore D(BK) ⊂
D(TK). Thus, D(TK) = D(BK).

Next. Since the relation (4.1) we get, for all ϕ ∈ D(TK) = D(BK), that (λ −
TK)ϕ = (λ−BK)ϕ which implies that BKϕ = TKϕ. Thus we have BK = TK .

To complete the proof, let us show the relation (4.3). Let ϕ ∈ D(BK) = D(TK) ⊂
Lp(Ω). As u(t) = UK(t)ϕ is the solution of the following Cauchy’s problem (3.1)
with f− = K[γ+UK(·)ϕ], f0 = ϕ, applying the relation (3.2) together with the
boundedness of the operator K we get, for all t ≥ 0, that

‖UK(t)ϕ‖p
p − ‖ϕ‖p

p =
∫ t

0

‖Kγ+UK(s)ϕ‖p
Lp(Γ−)ds−

∫ t

0

‖γ+UK(s)ϕ(s)‖p
Lp(Γ+)ds

≤ [‖K‖p − 1]
∫ t

0

‖γ+UK(s)ϕ(s)‖p
Lp(Γ+)ds,

which implies ‖UK(t)ϕ‖p ≤ ‖ϕ‖p for all t ≥ 0 because of ‖K‖ < 1. Now, the
density of D(BK) in Lp(Ω) archives the proof. �
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Remark 4.3. First, we can positively close the conjecture [10, p 103]. Next, it is
clear that the previous Theorem and all of result of this work are based on the fact
that ‖K‖ < 1 and we cannot apply these results for the case ‖K‖ ≥ 1. In [2], we
give others and different proofs to obtain the same main objective of the present
work, but for the case ‖K‖ ≥ 1.
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[5] Cessenat. M., Théorèmes de trace Lp pour des espaces de fonctions de la neutronique, C. R.

Acad. Sc. Paris, t.299, Série.I, pp.831-834, 1984.
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