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Abstract. In this paper we study the asymptotic behaviour of solutions of
certain nonlinear parabolic equations with variable viscosity and geometric

terms. We generalize the results on the large time behaviour and vanish-

ing viscosity limits obtained earlier for planar Burgers equation by Hopf [7],
Lighthill [20] and others. For several classes of systems of equations we derive

explicit solution for initial value problem with different types of initial condi-

tions and study large time behaviour of the solutions and its asymptotic form.
We derive the simple hump solutions and N -wave solutions as its asymptotes

depending on the conditions on the data and derive Lp decay estimates for

solutions and show that they depend on the variable viscosity coefficient and
geometric terms. We also analyse the small viscosity limit of these solutions.

1. Introduction

One of the well studied nonlinear partial differential equation which describes
the interplay between nonlinearity and diffusion is the Burgers equation

ut + uux =
ν

2
uxx. (1.1)

It was introduced by Burgers [2] as a simple model for fluid flow. Hopf [7] and Cole
[5] showed that it has a remarkable feature that its solution with initial conditions
of the form

u(x, 0) = u0(x) (1.2)

can be explicitly written down. Starting with the pioneering work of Hopf [7]
properties of the solutions for initial value problem was studied by many authors
with regards to large time behaviour, vanishing viscosity limits etc. A table of
solutions is contained in Benton and Platzman [1]. Initial boundary value problems
for (1.1) were studied later, see Joseph [8], Calogero and De Lillo [3, 4] and Joseph
and Sachdev [13, 14] and the references there.
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A more general class of partial differential equation which models physical phe-
nomenon balancing nonlinear convection, geometrical expansion and variable vis-
cosity effects which is studied extensively is the generalized Burgers equation

ut + unux + β(t)u = α(t)uxx (1.3)

where n is a positive integer and the viscosity coefficient α(t) > 0 and the geo-
metric coefficient β(t) are smooth functions for t > 0. For the derivation of the
equation(1.3) for specific physical situations and analysis of simple hump and N-
wave solutions see Lighthill [20], Leibovich and Seebass [19], Crighton and Scott
[6], Lee -Bapty and Crighton [18], Sachdev [24] and Sachdev and his Collaborators
[25, 26, 27, 28, 29] and the references there.

The aim of this paper is to understand the effect of variable viscosity and geo-
metric effect on the large time behaviour of solutions. First we consider the scalar
equation (1.3), with a given initial data and get decay estimates for the solution.
Then we study special nonlinear systems of partial differential equations containing
variable viscosity and geometrical expansion terms which can be linearized using
a generalized Hopf-Cole transformation and explicitly construct exact solutions for
the initial value problem and study its large time behaviour. We show that the
asymptotic form depends on the variable viscosity coefficient and the geometrical
term.

The paper is organized in the following way. In the second section we study
asymptotic behaviour of solutions of the scalar parabolic equations (1.3) in −∞ <
x < ∞ t > 0, with initial condition

u(x, 0) = u0(x). (1.4)

This equation cannot be solved explicitly except for n = 1 and α and β are
related by β = −α′

α . However following the analysis of Zingano [32, 33] we will
show that the L1 norm and L2 norm with respect to x of the solution of (1.3) and
(1.4) decays at a rate depending on α and β.

In the third section, we consider a system of n equations for n unknown variables
u1, u2, . . . , un in −∞ < x < ∞, t > 0,

(uj)t + (
n∑

k=1

ckuk)(uj)x −
ν′(t)
ν(t)

uj =
ν(t)
2

(uj)xx, (1.5)

with initial condition

uj(x, 0) = u0j(x). (1.6)

When n = 1, c1 = 1 and ν(t) = ν > 0, a constant independent of t, (1.5) is standard
Burgers equation (1.1). A special case of (1.5), n = 2, c1 = 1, c2 = 0 ν(t) = ν a
positive constant, was used to construct solution to a model in the study of pressure
less gas by passing to ν goes to 0, see Joseph [9], Joseph and Vasudeva Murthy [15].
For ν(t) = ν, a constant, large time behavior was studied in [12] and vanishing
viscosity limit in [16]. We generalize these results to variable ν(t). We solve the
initial value problem explicitly and show that the limiting asymptotic form depends
on

∫∞
0

ν(s)ds is finite or infinite.
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In the fourth section we study

ut + (
u2

2
)x −

ν′(t)
ν(t)

u =
ν(t)
2

uxx,

vt + (uv)x −
ν′(t)
ν(t)

v =
ν(t)
2

vxx,

wt + (
v2

2
+ uw)x −

ν′(t)
ν(t)

w =
ν(t)
2

wxx,

(1.7)

in −∞ < x < ∞, t > 0, supplemented with an initial condition at t = 0

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), (1.8)

When ν(t) = ν is a positive constant, this system was considered earlier by Joseph
[10] and Shelkovich [31] to construct solution to the corresponding inviscid case

ut + (
u2

2
)x = 0, vt + (uv)x = 0, wt + (

v2

2
+ uw)x = 0. (1.9)

Joseph [10] observed that the system (1.9) does not have a solution in the class of
bounded Borel measures even for Riemann type initial data and hence he used the
special case of the system (1.7) namely ν(t) = ν > 0, a constant and constructed
solutions for general initial data in the class of generalized functions of Colembeau.
Shelkovich [31] constructed solutions of (1.7) with ν(t) = ν > 0 a constant for
Riemann initial data and showed that the solution contains derivative of δ measure
in the passage to the limit. We get explicit formula for (1.7) and (1.8) with ν(t) > 0
and study large time behaviour and and show that the asymptotic form depends
on

∫∞
0

ν(s)ds is finite or infinite.
In the fifth section we consider vector equivalent of Burgers equation with an

additional geometrical term and variable viscosity namely

Ut + U.∇U − ν′(t)
ν(t)

U =
ν(t)
2

∆U. (1.10)

The special case ν(t) a positive constant was treated first by Nerney et al [22] and
by Joseph and Sachdev [14]. We generalize their method and get explicit solutions
of the equation (1.10) with initial conditions of the form

U(x, 0) = ∇xφ0(x) (1.11)

and study the large time behaviour and small viscosity limits.

2. L2 decay estimates for solutions of (1.3)

In this section, we consider initial value problem for the scalar equation

ut + unux + β(t)u = α(t)uxx, (2.1)

in −∞ < x < ∞, t > 0 with initial condition at t = 0

u(x, 0) = u0(x). (2.2)

In the description of asymptotic behaviour of solutions of (2.1) and (2.2), the fol-
lowing functions of t, naturally appear:

τ(t) =
∫ t

0

α(s)ds, η(t) =
∫ t

0

β(s)ds, γ(τ) =
∫ τ

0

β(t(s)
α(t(s))

ds (2.3)
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To see this consider the linear part of (2.1) namely

ut + β(t)u = α(t)uxx, (2.4)

Dividing this equation through out by α(t) and using the definition of τ the equation
(2.4) becomes

uτ +
β(t(τ))
α(t(τ))

u = uxx, (2.5)

Set v(x, τ) = eγ(τ)u(x, τ), (2.5) and (2.2) reduces to

vτ = vxx, v(x, 0) = u0(x). (2.6)

Solving (2.6) we get the explicit formula

v(x, τ) =
1

(4πτ)1/2

∫ ∞

−∞
u0(y)e−

(x−y)2

4τ dy.

This gives the formula for the solution of the linear problem (2.4) with initial data
(2.2), namely

u(x, t) =
e−η(t)

(4πτ(t))1/2

∫ ∞

−∞
u0(y)e−

(x−y)2

4τ(t) dy. (2.7)

since

γ(τ(t)) =
∫ τ(t)

0

β(t(s))
α(t(s))

ds =
∫ t

0

β(y)dy = η(t).

By Young’s inequality for convolutions, the Lp norm of u with respect to x decays
at the rate τ(t)−

1
2 (1−1/p)e−η(t). We will show that for any integer n ≥ 1 the L1

and L2 norm of the solution of (2.1) and (2.2) with respect to x decays as t goes
to infinity. More precisely we shall prove

Theorem 2.1. Assume that β(t) ≥ 0, and α(t) > 0 for t ≥ 0 and initial data
u0 ∈ L1(R1) ∩ L∞(R1). Then there exits a smooth solution u(x, t) for (2.1) and
(2.2) satisfying the following decay estimates:

‖u(x, t)‖L1(dx) ≤ e−η(t)‖u0‖L1(dx) (2.8)

‖u(x, t)‖2 ≤ C(1 + τ(t))−1/2e−
η(t)
2 .

( ∫ t

0

(1 + τ(s))−1/2e−η(s)α(s)ds
)1/2

. (2.9)

Further if ‖du0
dx ‖L1(dx) < ∞, then

‖ux(x, t)‖L1(dx) ≤ e−η(t)‖du0

dx
‖L1(dx) (2.10)

Proof. Existence of smooth solutions to (2.1) and (2.2) follows in a standard way
using fixed point arguments. Further we get for each fixed t > 0, u(x, t) is bounded
and integrable with respect to x and satisfy the estimate

‖u(., t)‖L∞(dx) ≤ ‖u0‖L∞(dx) (2.11)

which follows from the maximum principle.
To prove decay estimates in L1 norm,in a standard way we write the L1- norm

as a sum of integrals on intervals where u has the same sign. For fixed t > 0, let
yi(t), i ∈ Z are the points where u(x, t) as a function of x change its sign with
yi(t) < yi+1(t) and the index is chosen such that on (y0(t), y1(t)), u(x, t) > 0. Thus
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u(x, t) is positive on (y2k(t), y2k+1(t)) and negative on (y2k+1(t), y2k+2(t)). Hence
ux(y2k+1(t), t) ≤ 0 and ux(y2k(t), t) ≥ 0. Hence

‖u(x, t)‖L1(dx) =
∞∑

i=−∞
(−1)i

∫ yi+1(t)

yi(t)

u(x, t)dx

and differentiating it with respect to t and using u(yi(t), t) = 0 and the differential
equation (2.1), we get

d

dt
‖u(x, t)‖L1(dx) =

∞∑
i=−∞

(−1)i

∫ yi+1(t)

yi(t)

ut(x, t)dx

=
∞∑

i=−∞
(−1)i

∫ yi+1(t)

yi(t)

(−unux − β(t)u + α(t)uxx)dx,

= −β(t)‖u(., t)‖L1(dx) + α(t)
∞∑

i=−∞
(−i)i(ux(yi+1(t))− ux(yi(t)))

≤ −β(t)‖u(., t)‖L1(dx)

Integrating this from 0 to t we get the estimate (2.8) follows.
The estimate (2.10) can be derived by differentiating the equation (2.1) with

respect to x and following the same procedure for v = ux. The details are omitted.
To get L2 decay estimates we multiply the (2.1) by u(x, t) and integrate with

respect to x

d

dt

∫
R1

u2(x, t)dx + β(t)
∫

R1
u2(x, t)dx = −α(t)

∫
R

ux
2dx, (2.12)

d

dτ

∫
R1

u2(x, t)dx +
β(t(τ))
α(t(τ))

∫
R1

u2(x, t(τ)dx = −
∫

R

ux
2dx (2.13)

Using (2.3) we can write (2.13) in the form
d

dτ

∫
R1

eγ(τ)u2(x, t)dx +
∫

R1
eγ(τ)ux

2dx = 0. (2.14)

Multiply (2.14) by (1 + τ) and integrate from 0 to τ0, we get

(1 + τ0)eγ(τ0)

∫
R

u2(x, t)dx +
∫ τ0

0

(1 + τ)eγ(τ)

∫
R

ux
2dxdt

=
∫

R

u0(x)2dx +
∫ τ0

0

eγ(τ)

∫
R

u2(x, t)dxdτ

(2.15)

Now
‖u(x, t(τ))‖2L2(dx) ≤ ‖u(x, t(τ))‖L∞(dx).‖u(x, t(τ))‖L1(dx) (2.16)

and
u2(x, t) =

∫ x

−∞
(u(x, t)2)xdx = 2

∫ x

−∞
u(x, t)ux(x, t)dx

≤ 2‖u(x, t)‖L2(dx)‖ux(x, t)‖L2(dx)

(2.17)

from which we get

‖u(x, t)‖L∞(dx) ≤ 2.‖u(x, t)‖1/2
L2(dx)‖ux(x, t)‖1/2

L2(dx) (2.18)

Using (2.18) in (2.16) we have

‖u(x, t)‖2L2(dx) ≤ 2.‖u(x, t)‖1/2
L2(dx)‖ux(x, t)‖1/2

L2(dx)‖u(x, t)‖L1(dx). (2.19)
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From (2.19), we get

‖u(x, t)‖2L2(dx) ≤ 4.‖ux(x, t)‖2/3
L2(dx)‖u(x, t)‖4/3

L1(dx) (2.20)

Now∫ τ0

0

eγ(τ)‖u(x, t(τ))‖2L2(dx)dτ

≤ 4
∫ τ0

0

(eγ(τ)‖ux(x, t(τ))‖2/3
L2(dx)‖u(x, t(τ))‖4/3

L1(dx))dτ

= 4
∫ τ0

0

((1 + τ)1/3e
1
3 γ(τ)‖ux(x, t(τ))‖2/3

L2(dx)(1 + τ)−1/3e
2
3 γ(τ)‖u(x, t(τ))‖4/3

L1(dx))dτ

≤ 4(
∫ τ0

0

((1 + τ)eγ(τ)‖ux(x, t(τ))‖2L2(dx)dτ)1/3

× (
∫ τ0

0

(1 + τ)−1/2eγ(τ)‖u(x, t(τ))‖2L1(dx)dτ)2/3

(2.21)
and from (2.8), we get∫ τ0

0

(1 + τ)−
1
2 eγ(τ)‖u(x, t(τ))‖2L1(dx)dτ

≤ ‖u0‖2L1(dx)

∫ τ0

0

[(1 + τ)−1/2eγ(τ)e−2γ(τ)]dτ

= ‖u0‖2L1(dx)

∫ τ0

0

(1 + τ)−1/2e−γ(τ)dτ.

(2.22)

Let F (τ) be defined by

F (τ) = (1 + τ)eγ(τ)

∫
R

u2(x, t)dx +
∫ τ

0

(1 + s)eγ(s)

∫
R

ux
2(x, s)dxds. (2.23)

and

g(τ) =
∫ τ0

0

(1 + τ)−1/2e−γ(τ)dτ (2.24)

Using (2.21)-(2.24) in (2.15), we get

F (τ) ≤ 8(‖u0‖2L2(dx) + ‖u0‖1/3
L1(dx)g(τ)2/3F (τ)1/3). (2.25)

Since ‖u0‖2L2 ≤ ‖u0‖L1 .‖u0‖L∞ , from (2.25), it follows that, for some constant C
depending only on ‖u0‖L1 and ‖u0‖L∞ ,

F (τ) ≤ Cg(τ) (2.26)

Substituting F (τ) from (2.23) g(τ) from (2.24) in (2.26) we get

(1 + τ)eγ(τ)‖u(x, t(τ))‖2L2(dx) +
∫ τ

0

(1 + s)eγ(s)‖ux(x, t(s))‖2L2(dx)ds

≤ C

∫ τ

0

(1 + s)−1/2e−γ(s)ds.

(2.27)

From (2.27), we get

‖u(x, t)‖2L2(dx) ≤ (1 + τ(t))−1e−γ(τ(t))

∫ τ(t)

0

(1 + s)−1/2e−γ(s)ds. (2.28)
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Now observe that making a change of variable, t(s) = y, we get

γ(τ(t)) =
∫ τ(t)

0

β(t(s))
α(t(s))

ds =
∫ t

0

β(y)dy = η(t). (2.29)

From (2.27) - (2.29) we get

‖u(x, t)‖2L2(dx) ≤ (1 + τ(t))−1e−η(t)

∫ t

0

(1 + τ(s))−1/2e−η(s)α(s)ds. (2.30)

From (2.30) the estimate (2.9) follows. �

We remark that since β is non-negative, α > 0 and dτ(s) = α(s)ds, it follows
that∫ t

0

(1 + τ(s))−1/2e−η(s)α(s)ds ≤
∫ t

0

(1 + τ(s))−1/2α(s)ds ≤ 2(1 + τ(t))1/2

and hence from (2.30) we get the estimate

‖u(x, t)‖L2(dx) ≤ (1 + τ(t))−1/4e−
η(t)
2 . (2.31)

For the special case β = 0, the estimate (2.31) becomes

‖u(x, t)‖L2(dx) ≤ (1 + τ(t))−1/4.

and this agrees with the L2 decay results of Zingano [32, 33] for the Burgers equation
(n = 1, α, a constant, τ(t) = αt) and β = 0) and for certain systems of equations
with β = 0 and diffusion term is in conservation form (B(u)ux)x, with B(u) positive
definite matrix.

3. Explicit solution of (1.5) and its asymptotic behaviour

In this section we consider the initial value problem for the system for uj , j =
1, 2, . . . n, in a domain −∞ < x < ∞, t > 0

(uj)t +
( n∑

k=1

ckuk

)
(uj)x −

ν′(t)
ν(t)

uj =
ν(t)
2

(uj)xx, (3.1)

with initial conditions at t = 0

uj(x, 0) = u0j(x). (3.2)

Here we assume that ν(t) > 0 for t ≥ 0 and two times continuously differentiable
and u0j , j = 1, 2, . . . n are measurable functions. We use a generalised Hopf-Cole
transformation to linearize the system of equations in (3.1) and solve it in terms of
initial data (3.2). Through out this section we use

τ(t) =
∫ t

0

ν(s)ds, σ0(x) =
n∑
1

cju0j(x), w0(x) =
∫ x

0

σ0(z)dz (3.3)

We shall prove the following result.

Theorem 3.1. (a). Under the assumptions, u0j ∈ Lp(R1) for some 1 ≤ p ≤ ∞
the functions uj , j = 1, 2, . . . n given by

uj(x, t) =
ν(t)
ν(0)

∫∞
−∞ u0j(y)e−[

w0(y)
ν(0) +

(x−y)2

2τ(t) ]dy∫∞
−∞ e−[

w0(y)
ν(0) +

(x−y)2
2τ(t) ]dy

. (3.4)
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are twice continuously differentiable in the variables (x, t) and is exact solution of
the initial value problem for (3.1) and (3.2).
(b). Assume that u0j , j = 1, 2, . . . , n is such that u0j(∞),u0j(−∞) exists and there
is a cancellation in σ0 =

∑n
1 cku0k, so that σ0 is integrable. If τ(t) goes to infinity

as t goes to infinity, then

ν(0)

ν(t)
uj(x, t) ≈

u0j(∞)e
−w0(∞)

ν(0)
∫ ξ

−∞ e−
y2

2 dy + u0j(−∞)e
−w0(−∞)

ν(0)
∫∞

ξ
e−

y2

2 dy

e
−w0(∞)

ν(0)
∫ ξ

−∞ e−
y2
2 dy + e

−w0(−∞)
ν(0)

∫∞
ξ

e−
y2
2 dy

(3.5)
uniformly in the variable ξ = x/

√
τ(t) lying on bounded subsets. If τ(t) goes to a

finite value τ(∞), as t goes to infinity then

lim
t→∞

ν(0)
ν(t)

uj(x, t) =

∫∞
−∞ u0j(y)e−[

w0(y)
ν(0) +

(x−y)2

2τ(∞) ]dy∫∞
−∞ e−[

w0(y)
ν(0) +

(x−y)2
2τ(∞) ]dy

. (3.6)

(c). If u0j ∈ L1(R1) then we have the following estimates

‖uj(x, t)‖p = O(1)τ
−1
2 (1−1/p). (3.7)

(d).If ν(t) = εν0(t), ε > 0, τ0(t) =
∫ t

0
ν0(s)ds and uε

j , j = 1, 2, . . . , n, the correspond-
ing solution given by (3.4), then for each fixed t > 0 except for a countable number
of x, the limit

lim
ε→0

uε
j(x, t) =

ν0(t)
ν0(0)

u0j(y(x, t)) (3.8)

exists, where y(x, t) is the minimizer of

min
−∞<y<∞

[
w0(y)
ν0(0)

+
(x− y)2

2τ0(t)
] (3.9)

Proof. To prove the result first we introduce a new unknown variable

σ =
n∑

k=1

ckuk. (3.10)

It follows that, the equation (3.1) can be written as

(uj)t + σ(uj)x −
ν′(t)
ν(t)

uj =
ν(t)
2

(uj)xx. (3.11)

Now multiplying this equation by cj and summing from 1 to n we get σ is the
solution to

σt +
1
2
(σ2)x −

ν′(t)
ν(t)

σ =
ν(t)
2

σxx

σ(x, 0) = σ0(x).
(3.12)

So to solve the initial value problem (3.1) and (3.2) first we solve (3.12) and then
we solve the linear system (3.11) with initial conditions

uj(x, 0) = u0j(x), (3.13)

for j = 1, 2, . . . , n. To solve (3.11) and (3.12) we observe that if w(x, t) is a solution
of

wt +
(wx)2

2
− ν′(t)

ν(t)
w =

ν(t)
2

wxx (3.14)
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with initial condition
w(x, 0) = w0(x) (3.15)

then
σ(x, t) = wx(x, t) (3.16)

is a solution of (3.12). Here w0 is defined by (3.3). To get explicit solution, we
use a modified form of the Hopf- Cole transformation by introducing new unknown
variables v, vj , j = 1, 2, . . . n, in the following way

v = e−
w

ν(t) , vj =
uj

ν(t)
e−

w
ν(t) , j = 1, 2, 3, . . . ., n. (3.17)

An easy calculation shows that

vt −
ν(t)
2

vxx = − 1
ν(t)

[wt +
(wx)2

2
− ν′(t)

ν(t)
w − ν(t)

2
wxx]e−

w
ν(t) ,

(vj)t −
ν(t)
2

(vj)xx =
1

ν(t)
[(uj)t + σ(uj)x −

ν′(t)
ν(t)

uj −
ν(t)
2

wxx]e−
w

ν(t)

− 1
ν(t)2

[wt +
(wx)2

2
− ν′(t)

ν(t)
w − ν(t)

2
wxx]uje

− w
ν(t) .

(3.18)

From (3.10) - (3.18), it follows that v, vj , j = 1, 2, . . . , n are solutions of

vt =
ν(t)
2

vxx, v(x, 0) = e−
w0(x)
ν(0) ,

(vj)t =
ν(t)
2

(vj)xx, vj(x, 0) =
u0j(x)
ν(0)

e−
w0(x)
ν(0) ,

(3.19)

if and only if w is a solution of (3.14) and (3.15) and uj , j = 1, 2, 3, . . . n are solutions
of (3.11) and (3.13). Solving (3.19) explicitly we get

v(x, t) =
1

(2πτ(t)1/2

∫
R1

e−[
w0(y)
ν(0) +

(x−y)2

2τ(t) ]dy,

vj(x, t) =
1

ν(0)(2πτ(t))1/2

∫
R1

u0j(y)e−[
w0(y)
ν(0) +

(x−y)2

2τ(t) ]dy.

(3.20)

From (3.16) and (3.17) we get

σ(x, t) = wx(x, t) = −ν(t)
vx

v
, uj(x, t) = ν(t)

vj

v
, j = 1, 2, . . . , n. (3.21)

and substituting the formulas of v and vj from (3.20) in (3.21) we get the explicit
formula (3.4) for the solution of (3.1) and (3.2).

We show that integrals defined in (3.4) is well defined and uj(x, t) is twice con-
tinuously differentiable, when u0j ∈ Lp. This follows from the fact that w0(y) grows
at most linearly at infinity as shown below.

For 1 < p < ∞ using Holder’s inequality we get

|w0(y)| ≤
∫ y

0

|σ(z)| ≤ |y|
p−1

p

n∑
j=1

|cj |‖u0j‖p.

Hence for each fixed {(x, t), x ∈ R1, t > 0} and k a non-negative integer, the map

y → yke−[
w0(y)
ν(0) +

(x−y)2

2τ(t) ] is in Lp/p−1. So for any k non negative integer, the product

u0j(y).yke−[
w0(y)
ν(0) +

(x−y)2

2τ(t) ] is integrable with respect to y by the Holder’s inequality.
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Hence the differentiation under the integral sign is justified and the smoothness of
uj in (x, t) follows. The cases for p = 1 and p = ∞ also follows as for p = 1,

‖w0‖L∞ ≤
n∑

j=1

|cj |‖u0j‖1

and for p = ∞

|w0(y)| ≤
n∑

j=1

|cj |‖u0j‖∞|y|.

Next we prove part (b) of the theorem. First we take the case τ(∞) = ∞. We
rewrite the solution uj(x, t), j = 1, 2, . . . , n in a convenient way.

Setting ξ = x/
√

τ(t), and then making a change of variable z =
√

τ(t)ξ−y√
τ(t)

and

renaming z as y, we get

uj(x, t) =
ν(t)
ν(0)

∫∞
−∞ u0j(

√
τ(t)(ξ − y))e−[

w0(
√

τ(t)(ξ−y))
ν(0) +y2/2]dy∫∞

−∞ e−[
w0(

√
τ(t)(ξ−y))
ν(0) +y2/2]dy

. (3.22)

Now we fix δ > 0 and split the integrals appearing in the explicit solution into
three parts and study each of these integrals as t tends to infinity. We have under
the assumptions of the theorem on w0(x) and u0j(x), as t tends to infinity:∫ ξ−δ

−∞
u0j(

√
τ(t)(ξ − y)e−[

w0(
√

τ(t)(ξ−y)
ν(0) +y2/2]dy ≈ e−

w0(+∞)
ν(0) u0j(∞)

∫ ξ−δ

−∞
e−y2/2dy.∫ ∞

ξ+δ

u0j(
√

τ(t)(ξ − y)e−[
w0(

√
τ(t)(ξ−y)
ν(0) +y2/2]dy ≈ e−

w0(−∞)
ν(0) u0j(−∞)

∫ ∞

ξ+δ

e−y2/2dy,

lim sup
t→∞

|
∫ ξ+δ

ξ−δ

u0j(
√

τ(t)(ξ − y)e−[
w0(

√
τ(t)(ξ−y)
ν(0) +y2/2]dy| = O(δ).

Now first let t tends to infinity in these integrals and add and then δ tends to 0,
we get ∫ ∞

−∞
u0j(

√
τ(t)(ξ − y))e−[w0(

√
τ(t)(ξ−y)ν+y2/2]dy ≈

e−
w0(+∞)

ν(0) u0j(∞)
∫ ξ

−∞
e−y2/2dy + e

−w0(−∞)
ν(0) u0j(−∞)

∫ ∞

ξ

e−y2/2dy. (3.23)

Similarly∫ ∞

−∞
e−[

w0(
√

τ(t)(ξ−y)
ν(0) +y2/2]dy ≈ e

−w0(+∞)
ν(0)

∫ ξ

−∞
e−y2/2dy + e

−w0(−∞)
ν(0)

∫ ∞

ξ

e−y2/2dy.

(3.24)
We observe that due to our assumption on w0(x), this limit in (3.24) is positive
and hence from (3.22), (3.23) and (3.24) we get the asymptotic form (3.5). When
τ(∞) < ∞, then (3.6) follows immediately from the explicit formula (3.4).

Now we shall prove (c). Since u0j ∈ L1(R1),

|w0(x)| = |
∫ x

0

n∑
0

cju0j(y)dy| ≤
n∑
0

|cj‖|u0j‖L1 = c < ∞
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Hence from (3.20), we have

v(x, t) ≥ e−
c

ν(0) , |vj(x, t)| ≤ e
c

ν(0)

ν(0)(2πτ(t))1/2

∫
R1
|u0j(y)|e−

(x−y)2

2τ(t) ]dy.

Using these estimates in (3.21), we get

|uj(x, t)| ≤ ν(t)e
2c

ν(0)

ν(0)(2πτ(t))1/2

∫
R1
|u0j(y)|e−

(x−y)2

2τ(t) ]dy.

The right hand side is a function of t times the convolution of heat kernel and |u0j |.
By Young’s inequality we get the estimate (3.7)

Lastly we consider the vanishing diffusion limit. Let ν(t) = εν0(t) where ν0(t) >
0, for t ≥ 0. We denote the solution u(x, t) of (3.1) and (3.2) given by (3.4)
by uε. Following the analysis of Hopf [7] and Lax [17], we have, for each t > 0,
except for a countable points of x, (3.9) has a unique minimum y(x, t)and at those
points limε→0 uε has limit given by the formula (3.8). The proof of the theorem is
complete. �

It is easy to see from the present analysis that initial boundary value problem
for (3.1) in {(x, t), x > 0, t > 0} with initial condition

uj(x, 0) = u0j(x), x > 0

and boundary condition
uj(0, t) = 0, t > 0

has an explicit formula given by

uj(x, t) =
ν(t)
ν(0)

∫∞
0

u0j(y){e−
(x−y)2

2τ(t) − e−
(x−y)2

2τ(t) }e−
w0(y)
ν(0) dy∫∞

0
{e−

(x−y)2
2τ(t) + e−

(x−y)2
2τ(t) }e−

w0(y)
ν(0) dy

and its asymptotic behaviour easily follows. We have the following result:
If τ(t) goes to infinity as t goes to infinity, then

lim
t→∞

ν(0)
ν(t)

uj(x, t) = 0, j = 1, 2, . . . n.

If τ(t) goes to a finite value τ(∞), as t goes to infinity then

lim
t→∞

ν(0)
ν(t)

uj(x, t) =

∫∞
0

u0j(y)e−
w0(y)
ν(0) {e−

(x−y)2

2τ(∞) − e−
(x+y)2

2τ(∞) }dy∫∞
0

e−
w0(y)
ν(0) {e−

(x−y)2
2τ(∞) + e−

(x+y)2
2τ(∞) }dy

.

4. Explicit solution for (1.7) and its asymptotic behaviour

In this section we consider a system of partial differential equations of the form

ut + (
u2

2
)x −

ν′(t)
ν(t)

u =
ν(t)
2

uxx,

vt + (uv)x −
ν′(t)
ν(t)

v =
ν(t)
2

vxx,

wt + (
v2

2
+ uw)x −

ν′(t)
ν(t)

w =
ν(t)
2

wxx,

(4.1)

in −∞ < x < ∞, t > 0, supplemented with an initial condition at t = 0

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x). (4.2)
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Assuming that ν(t) > 0 for t ≥ 0 and two times continuously differentiable and
u0(x), v0(x), w0(x) are in Lp(R1) for some 1 ≤ p ≤ ∞, we find explicit solution
for the problem (4.1) and (4.2). Under addition conditions on the data we study
the asymptotic behaviour of its solution as t goes to infinity. The limit depends on
whether

∫∞
0

ν(s)ds is finite or infinite. Given u0(x), v0(x), w0(x) we introduce the
functions

U0(x) =
∫ x

0

u0(y)dy, V0(x) =
∫ x

0

v0(y)dy,W0(x) =
∫ x

0

w0(y)dy. (4.3)

p1(x) = e−
U0(y)
ν(0) , p2(x) = −V0(y)

2ν(0)
e−

U0(y)
ν(0) , p3(x) = (

V0(y)2

2ν(0)2
− W0(y)

ν(0)
)e−

U0(y)
ν(0) . (4.4)

We shall show explicit formula for the solution of (4.1) and (4.2) can be represented
in terms of

aj(x, t) =
1√

2πτ(t)

∫ +∞

−∞
pj(y)e−

(x−y)2

2τ(t) dy, j = 1, 2, 3. (4.5)

With the independent variable

τ(t) =
∫ t

0

ν(s)ds, ξ =
x√
τ(t)

, (4.6)

we introduce the following function to describe the asymptotic form of the solution.

αj(ξ) = pj(∞)
∫ ξ

−∞
e−y2/2dy + pj(−∞)

∫ ∞

ξ

e−y2/2dy, j = 1, 2, 3. (4.7)

For τ(∞) < ∞, we introduce

βj(x) =
∫ +∞

−∞
pj(y)e−

(x−y)2

2τ(∞) dy, (4.8)

We shall prove the following result.

Theorem 4.1. (a). Assume that the initial data u0(x), v0(x), w0(x) are in Lp(R1)
for some 1 ≤ p ≤ ∞, then the functions (u(x, t), v(x, t), w(x, t)) defined by

u = −ν(t)(log(a1))x, v = −ν(t)(
a2

a1
)x, w = ν(t)(−a3

a1
+

a2
2

2a1
2
)x. (4.9)

are two times continuously differentiable and is a classical solution of the initial
value problem (4.1) and (4.2).
(b) When u0, v0, w0 ∈ L1(R1), this solution has the following asymptotic behaviour
as t tends to infinity.

When τ(t) →∞ as t →∞

lim
t→∞

√
τ(t)

ν(t)
.u(x, t) = −α1

′(ξ)
α(ξ)

, (4.10)

lim
t→∞

√
τ(t)

ν(t)
.v(x, t) = −α2

′(ξ)
α(ξ)

) +
α2(ξ)
α1(ξ)

.
α1
′(ξ)

α1(ξ)
, (4.11)

lim
t→∞

√
τ(t)

ν(t)
.w(x, t) = −α3

′(ξ)
α1(ξ)

+
α3(ξ)
α1(ξ)

.
α1
′(ξ)

α1(ξ)
+

α2(ξ)
α1(ξ)

.
α2
′(ξ)

α1(ξ)
−α2(ξ)

α1(ξ)
.
α2(ξ)
α1(ξ)

.
α1
′(ξ)

α1(ξ)
,

(4.12)
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uniformly with respect to the variable ξ = x√
τ(t)

on bounded sets.

When τ(∞) < ∞, we have

lim
t→∞

√
τ(t)

ν(t)
.u(x, t) = −β′1(x)

β1(x)
, (4.13)

lim
t→∞

√
τ(t)

ν(t)
.v(x, t) = −β′2(x)

β1(x)
) +

β2(x)
β1(x)

.
β′1(x)
β1(x)

, (4.14)

lim
t→∞

√
τ(t)

ν(t)
.w(x, t) = −β′3(x)

β1(x)
+

β3(x)
β1(x)

.
β′1(x)
β1(x)

+
β2(x)
β1(x)

.
β′2(x)
β1(x)

− β2(x)
β1(x)

.
β2(x)
β1(x)

.
β′1(x)
β1(x)

,

(4.15)

Proof. First we note that if (U, V,W ) is a solution of

Ut + (
U2

x

2
)− ν′(t)

ν(t)
U =

ν(t)
2

Uxx,

Vt + (UxVx)− ν′(t)
ν(t)

V =
ν(t)
2

Vxx,

Wt + (
V 2

x

2
+ UxVx)− ν′(t)

ν(t)
W =

ν(t)
2

Wxx,

(4.16)

with initial condition

U(x, 0) = U0(x), V (x, 0) = V0(x), W (x, 0) = W0(x), (4.17)

where U0(x), V0(x),W0(x) are given by (4.3) then (u, v, w) defined by

u = Ux, v = Vx, w = Wx (4.18)

is the solution to (4.1) and (4.2). Now we make the transformation

a(x, t) = e−
U(x,t)

ν(t) ,

b(x, t) = −V (x, t)
ν(t)

e−
U(x,t)

ν(t) ,

c(x, t) = (
V (x, t)2

2ν(t)2
− W (x, t)

ν(t)
)e−

U(x,t)
ν(t) .

(4.19)

An easy computation shows that

at −
ν(t)
2

axx =
−e−

U
ν(t)

ν(t)
(Ut −

ν′(t)
ν(t)

U +
Ux

2

2
− ν(t)

2
Uxx), (4.20)

bt −
ν(t)
2

bxx =
−e−

U
ν(t)

ν(t)
[(Vt −

ν′(t)
ν(t)

V + UxVx −
ν(t)
2

Vxx)

+
V

ν2(t)
(Ut −

ν′(t)
ν(t)

U +
U2

x

2
− ν(t)

2
Uxx)],

(4.21)
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ct −
ν(t)
2

cxx =
−e−

U
ν(t)

ν(t)
[(

W

ν(t)
− V 2

2ν2(t)
)(Ut + (

U2
x

2
)− ν′(t)

ν(t)
U − ν(t)

2
Uxx)

+
V

ν2(t)
(Vt + (UxVx)− ν′(t)

ν(t)
V − ν(t)

2
Vxx),

− 1
ν(t)

(Wt + (
V 2

x

2
+ UxVx)− ν′(t)

ν(t)
W − ν(t)

2
Wxx)]

(4.22)

From (4.16)-(4.22), we get

u = −ν(t)(log(a))x, v = −ν(t)(
b

a
)x, w = ν(t)(− c

a
+

b2

2a2
)x. (4.23)

is the solution of (4.1) with initial conditions (4.2) if a, b and c are solutions of the
equation

at =
ν(t)
2

axx, bt =
ν(t)
2

bxx, ct =
ν(t)
2

cxx (4.24)

with initial conditions

a(x, 0) = e−
U0(x)
ν(0) , b(x, 0) = −V0(x)

ν(0)
e−

U0(x)
ν(0) ,

c(x, 0) = (
V0(x)2

2ν(0)2
− W0(x)

ν(0)
)e−

U0(x)
ν(0)

(4.25)

respectively. Solution to (4.24) and (4.25) is

a(x, t) = a1(x, t), b(x, t) = a2(x, t), c(x, t) = a3(x, t)

where a1, a2, a3 are given by (4.5) and hence the formula (4.9) follows from (4.23).
To see that the solution is infinite times continuously differentiable, it is enough

to show that aj defined by (4.5) is infinitely differentiable when u0, v0, w0 are in Lp

for some 1 ≤ p ≤ ∞. But this follows, by the applications of Holder’s inequality,
as in the proof of Theorem 3.1. This proves part (a) of the theorem.

To study the large time behaviour, we write (4.9) in a convenient way and follow
the method of section 3. We have

u(x, t) = −ν(t)
a1x

a1
, (4.26)

v(x, t) = −ν(t)
a2x

a1
+ ν(t)

a2

a1
.
a1x

a1
, (4.27)

w(x, t) = −ν(t)
a3x

a1
+ ν(t)

a3

a1
.
a1x

a1
+ ν(t)

a2

a1
.
a2x

a1
− ν(t)

a2

a1
.
a2

a1
.
a1x

a1
(4.28)

Setting ξ = x/
√

τ(t), and then making a change of variable z =
√

τ(t)ξ−y√
τ(t)

and

renaming z as y, we get

aj(x, t) =
1√
2π

∫ ∞

−∞
pj(

√
τ(t)(ξ − y)e−y2/2dy.

Following the analysis of section 3, it follows that

lim
t→∞

√
2π.aj(x, t) = pj(∞)

∫ ξ

−∞
e−y2/2dy + pj(−∞)

∫ ∞

ξ

e−y2/2dy

= αj(ξ), j = 1, 2, 3.

(4.29)
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lim
t→∞

√
2πτ(t).ajx(x, t) = (pj(∞)− pj(−∞))e−ξ2/2

= αj
′(ξ), j = 1, 2, 3.

(4.30)

These limits are valid uniformly for ξ belonging bounded subsets of R1. Now we
note that (4.26)-(4.28) can be written as√

τ(t)
ν(t)

u(x, t) = −
√

τ(t)
a1x

a1
, (4.31)√

τ(t)
ν(t)

v(x, t) = −
√

τ(t)
a2x

a1
+

a2

a1
.
√

τ(t)
a1x

a1
, (4.32)√

τ(t)
ν(t)

w(x, t) = −
√

τ(t)
a3x

a1
+

a3

a1
.
√

τ(t)
a1x

a1
+

a2

a1
.
√

τ(t)
a2x

a1
− a2

a1
.
a2

a1
.
√

τ(t)
a1x

a1

(4.33)

We observe that α(ξ) > 0 and hence letting t tends to infinity in (4.31) -(4.33) and
using (4.29) and (4.30) we get the asymptotic form (4.10)-(4.12).

When τ(∞) finite the asymptotic form (4.13) -(4.15) follows from (4.5), (4.8)
and (4.31)-(4.33). The proof of the theorem is complete. �

Note that the proof of the theorem also shows that the boundary value problem
for (4.1), with initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x)
for x > 0 and boundary conditions u(0, t) = v(0, t) = w(0, t) = 0 is given by

u = −ν(t)(log(b1))x, v = −ν(t)(
b2

b1
)x, w = ν(t)(−b3

b1
+

b2
2

2b1
2 )x. (4.34)

where the functions bj , j = 1, 2, 3 are given by

bj(x, t) =
1√

2πτ(t)

∫ +∞

−∞
pj(y){e−

(x−y)2

2τ(t) + e−
(x+y)2

2τ(t) }dy, j = 1, 2, 3. (4.35)

With τ(t) and pj(x) as given before by (4.6) (4.3)and (4.4). Further When τ(∞) =
∞, we have

lim
t→∞

√
τ(t)

ν(t)
.u(x, t) = 0, lim

t→∞

√
τ(t)

ν(t)
.v(x, t) = 0, lim

t→∞

√
τ(t)

ν(t)
.w(x, t) = 0.

When τ(∞) < ∞, we have

lim
t→∞

√
τ(t)

ν(t)
.u(x, t), lim

t→∞

√
τ(t)

ν(t)
.v(x, t), lim

t→∞

√
τ(t)

ν(t)
.w(x, t)

are given by (4.13)-(4.15) with βj replaced by Bj where

Bj(x) =
∫ +∞

0

pj(y){e−
(x−y)2

2τ(∞) + e−
(x−y)2

2τ(∞) }dy.

5. Explicit solution of (1.10) and its asymptotic behaviour

Here we consider vector equivalent of Burgers equation with an additional geo-
metrical term and variable viscosity namely

Ut + U.∇U − ν′(t)
ν(t)

U =
ν(t)
2

∆U. (5.1)
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Here we assume that ν(t) > 0 for t ≥ 0 and twice continuously differentiable.
The special case ν(t) a positive constant was treated first by by Nerney et al [22]
and by Joseph and Sachdev [14]. We generalize their results for variable ν(t), and
write down explicit solution of the equation (5.1) with initial conditions of the form

U(x, 0) = ∇xφ0(x). (5.2)

We also study the asymptotic behaviour solutions for large time and vanishing
viscosity limits. More precisely, we prove the following theorem.

Theorem 5.1. (a). Under the assumptions, ∇xφ0(x) bounded or integrable, the
function

U(x, t) =
ν(t)
ν(0)

∫
Rn ∇xφ0(y) exp(− |x−y|2

2τ(t) −
φ0(y)
ν(0) )dy∫

Rn exp(− |x−y|2
2τ(t) −

φ0(y)
ν(0) )dy

. (5.3)

is twice continuously differentiable in the variables (x, t) and is exact solution of
the initial value problem for (5.1) and (5.2), where τ(t) =

∫ t

0
ν(s)ds.

(b). Assume that

φ0(x) =
n∑
1

φi
0(xi) + o(1), |x| → ∞, (5.4)

where φi
0(x), i = 1, 2, . . . , n are differentiable functions from R1 to R1 and the limits

lim
xi→−∞

φi
0(xi) = φ−i , lim

xi→∞
φi

0(xi) = φ+
i , (5.5)

exist. Let

ξ =
x

τ(t)1/2
, τ(t) =

∫ t

0

ν(s)ds, ki =
(φ+

i − φ−i )
ν(0)

gi(ξi) = exp(−ki

2
)
∫ ξi

−∞
exp(−z2

i

2
)dzi + exp(

ki

2
)
∫ ∞

ξi

exp(−z2
i

2
)dzi,

(5.6)

for i = 1, 2, . . . n. Then if τ(∞) = ∞

lim
t→∞

(
τ(t)1/2

ν(t)
)U((τ(t))1/2ξ, t) = −(

g′1(ξ1)
g1(ξ1)

,
g′2(ξ2)
g2(ξ2)

, . . . ,
g′n(ξn)
gn(ξn)

). (5.7)

If τ(∞) < ∞, then

lim
t→∞

ν(0)
ν(t)

U(x, t) =

∫
Rn ∇xφ0(y) exp(− |x−y|2

2τ(∞) −
φ0(y)
ν(0) )dy∫

Rn exp(− |x−y|2
2τ(∞) −

φ0(y)
ν(0) )dy

. (5.8)

(c). Let U(x, t) is the solution of (5.1) with the initial

U(x, 0) = xχ[|x|≤l0](x) (5.9)

where χ[|x|≤l0](x) is the characteristic function of the of the ball B(0, l0) = [x : |x| ≤
l0]. If τ(∞) = ∞ then we have

lim
t→∞

U(x, t) = U∞(x, t) (5.10)
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uniformly in the variable ξ = x
(τ(t))1/2 belonging to a bounded subset of Rn, where

U∞ is given by

U∞(x, t) =
x/( τ(t)

ν(t) )
1/2

( τ(t)
ν(t) )

1/2
[1 + τ(t)n/2

c0
exp( |x|

2

2τ(t) )]
(5.11)

with

c0 =
exp( l20

2ν(0) )

(2π)
n
2

[
∫

[|y|≤l0]

exp(− |z|2

2ν(0)
)dz − exp(− l20

2ν(0)
)|B(0, l0)|]. (5.12)

Here |B(0, l0)| denotes the volume, if space dimension n ≥ 3, area if n = 2 and
length if n = 1, of B(0, l0).
(d). Further assume that ∇xφ0(x) ∈ L1(R) then we have the following estimates

‖U(x, t)‖p = O(1)τ
−1
2 (n−1/p). (5.13)

(e). Assume ν(t) = εν0(t), τ0(t) =
∫ t

0
ν0(s)ds and U ε the corresponding solution of

(5.1) and (5.2), then

lim
ε→

U ε(x, t) =
ν0(t)
τ0(t)

(x− y(x, τ0(t)) (5.14)

where y(x, τ) minimizes

min
y∈Rn

(
|x− y|2

2τ0(t)
− φ0(y)

ν(0)
) . (5.15)

Proof. If a solution U is sought as a gradient of some scalar function φ ,

U = ∇xφ, (5.16)

then equation (5.1) becomes

∇x[φt +
|∇φ|2

2
− ν(t)′

ν(t)
∇φ− ν(t)

2
∆φ] = 0.

This leads to

φt +
|∇φ|2

2
− ν′(t)

ν(t)
φ− ν(t)

2
∆φ = f(t),

where f(t) is an arbitrary function of t. Since we are interested in the space
derivative ∇xφ and this is independent of f(t) , we let f(t) = 0. If we are given
an initial data for U which is gradient of some scalar function φ0 of the form,
U(x, 0) = ∇xφ0(x), by (5.16), it is enough to find a solution φ of

φt +
|∇φ|2

2
− ν(t)′

ν(t)
φ− ν

2
∆φ = 0 (5.17)

with initial condition
φ(x, 0) = φ0(x). (5.18)

We may then use (5.16) to get the solution U of (5.1) and (5.2). To solve (5.17)
and (5.18) we use the Hopf-Cole transformation

θ(x, t) = exp(− φ

ν(t)
). (5.19)
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From (5.17) - (5.19) it follows that if θ is the solution of the linear problem with
variable viscosity

θt =
ν(t)
2

∆θ, θ(x, 0) = exp(−φ0(x)
ν(0)

). (5.20)

then φ given by (5.19) gives the solution to (5.17) and (5.18). Solving (5.20), we
have

θ(x, t) =
1

(2πτ(t))
n
2

∫
Rn

exp(−|x− y|2

2τ(t)
− φ0(y)

ν(0)
)dy. (5.21)

From (5.16) and (5.19) we see that the solution to (5.1) and (5.2) is given by

U = −ν(t)
∇θ

θ
. (5.22)

Now

∂xj
θ(x, t) =

1
(2πτ(t))

n
2

∫
Rn

∂xj
(exp(−|x− y|2

2τ(t)
)) exp (−φ0(y)

ν(0)
)dy

= − 1
(2πτ(t))

n
2

∫
Rn

∂yj
(exp(−|x− y|2

2τ(t)
)) exp (−φ0(y)

ν(0)
)dy

=
1

(2πτ(t))
n
2

∫
Rn

exp(−|x− y|2

2τ(t)
)∂yj

(exp (−φ0(y)
ν(0)

))dy

= − 1
(2πτ(t))

n
2

∫
Rn

∂yj φ(y)
ν(0)

exp(−|x− y|2

2τ(t)
) exp−(

φ0(y)
ν(0)

)dy

(5.23)

From (5.22) and (5.23) explicit formula (5.3) for (5.1) and (5.2) follows. This
function is smooth follows as in the proof of Theorem 3.1.

Next we study the asymptotic behaviour of this solution as t →∞. The asymp-
totic form depends on τ(∞) is finite or not. First we study case when τ(∞) = ∞.
To prove the asymptotic form, consider θ given by (5.21), where φ0 satisfies the
conditions (5.4) and (5.5). After a change of variable the expression for θ becomes

θ(x, t) =
1

(2π)
n
2

∫
Rn

exp(−|z|
2

2
− 1

ν(0)
φ0(x− (τ(t))1/2z)dz

=
1

(2π)
n
2

∫
Rn

exp(−|z|
2

2
− 1

ν(0)
φ0((τ(t))1/2(ξ − z))dz

Now using (5.4) we get

θ(x, t) ≈ 1
(2π)

n
2

∫
Rn

exp(−|z|
2

2
− 1

ν(0)

n∑
1

φi
0((τ(t))1/2(ξi − zi)))dzi

=
n∏
i

1
(2π)1/2

∫ ∞

−∞
exp(−z2

i

2
− 1

ν(0)
φi

0((τ)1/2(ξi − zi)))dzi

(5.24)

as t → ∞ uniformly on bounded sets of ξ in Rn. Now take the i-th term in this
product. As in section 2, following the argument of Hopf [7], we get∫ ∞

−∞
exp(−z2

i

2
− 1

ν(0)
φi

0((τ(t))1/2(ξi − zi)))dzi

≈ exp(− φ+
i

ν(0)
)
∫ ξi

−∞
exp(−z2

i

2
)dzi + exp(− φ−i

ν(0)
)
∫ ∞

ξi

exp(−z2
i

2
)dzi.

(5.25)
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Thus from (5.24) and (5.25), we have

(2π)
n
2 lim

t→∞
θ(ξ(τ(t))1/2, t) =

n∏
i

(exp(− 1
ν(0)

φ+
i )

∫ ξi

−∞
exp(−z2

i

2
)dzi

+ exp(− 1
ν(0)

φ−i )
∫ ∞

ξi

exp(−z2
i

2
)dzi).

(5.26)

Similarly, we get

(2π)
n
2 lim

t→∞
τ(t)1/2θxl

(ξ(τ(t))1/2, t) =
∏
i 6=l

(exp(− 1
ν(0)

φ+
i )

∫ ξi

−∞
exp(−z2

i

2
)dzi

+ exp(− 1
ν(0)

φ−i )
∫ ∞

ξi

exp(−z2
i

2
)dzi)

× (exp(−
φ+

l

ν(0)
)− exp(−

φ−l
ν(0)

)) exp(−ξ2
l

2
)

(5.27)
Since (τ(t))1/2

ν(t) U = −(τ(t))1/2∇xθ
θ and θ is bounded away from 0, we have, from

(5.26) and (5.27),

lim
t→∞

(τ(t))
1
2

ν(t)
U((τ(t)1/2ξ, t)

= − lim
t→∞

τ(t)1/2(
θν

x1

θ
,
θν

x2

θ
, . . . ,

θν
xn

θ
) = −(

g′1(ξ1)
g1(ξ1)

, . . . ,
g′n(ξn)
gn(ξn)

)

which is (5.7). The case τ(∞) is simple and the form (5.8) follows from (5.3).
Now we consider the equation (5.1) with antisymmetric initial data (5.9). Note

that this initial data can be written as the gradient of φ0 where

φ0(x) = (
|x|2

2
χ[|x|≤l0](x) +

l0
2

2
(1− χ[|x|≤l0](x))).

By (5.21) and (5.22), the solution is given by

U(x, t) = −ν(t)
∇Q

Q
, (5.28)

where Q(x, t) can be written as

Q(x, t) = I1 + exp(− l20
2ν(0)

)I2 (5.29)

where

I1 =
1

(2πτ(t))
n
2

∫
[|y|≤l0]

exp(−1
2
[
|y|2

ν(0)
+
|x− y|2

τ(t)
])dy,

I2 =
1

(2πτ(t))
n
2

∫
[|y|>l0]

exp(−|x− y|2

2τ(t)
]dy.

Here we take the case τ(∞) = ∞. The case τ(∞) < ∞ is already covered by (5.8).
It can be easily checked by making use of error function and its asymptotics that,
as t →∞,

I1 ≈
exp(− |x|2

2τ(t) )

(2πτ(t)
n
2

∫
[|z|≤l0]

exp(− z2

2ν(0)
)dz, I2 ≈ [1−

exp(− |x|2
2τ(t) )

(2πτ(t))
n
2
|B(0, l0)|]. (5.30)
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Substituting these asymptotics in (5.29) , we get

Q(x, t)

≈ exp(− l20
2ν(0)

) +
exp(− |x|2

2τ(t) )

(2πτ(t)
n
2

[ ∫
[|z|≤l0]

exp(− |z|2

2ν(0)
)dz − exp(− l20

2ν(0)
)|B(0, l0)|

]
.

(5.31)
Similarly,

∇xQ(x, t)

≈ − 1
τ(t)1/2

.
x

τ(t)
1
2
.
exp(− |x|2

2τ(t) )

(2πτ(t))
n
2

[
∫

[|z|≤l0]

exp(− |z|2

2ν(0)
)dz − exp(− l20

2ν(0)
)|B(0, l0)|].

(5.32)
From (5.29), (5.30) and (5.32) we get

U(x, t) ≈

x

τ(t)1/2
.

ν(t)

τ(t)1/2

exp(− |x|2
2τ(t) )

(2πτt)
n
2

[
∫
[|z|≤l0]

exp(− |z|2
2ν(0) )dz − exp(− l20

2ν(0) )|B(0, l0)|]

exp(− l20
2ν ) + exp(− |x|2

2νt )

(2πνt)
n
2

[
∫
[|z|≤l0]

exp(− |z|2
2ν )dz − exp(− l20

2ν )|B(0, l0)|]
.

On rearranging the terms we get

U(x, t) ≈
x

(
τ(t)
ν(t) )

1/2

( τ(t)
ν(t) )

1/2[1 + τ(t)
n
2

c0
exp( |x|

2

2τ(t) )]
(5.33)

where c0 is given by (5.12).
Now to prove the decay estimates, for general initial data ∇xφ0(x) ∈ L1(Rn).

First note that in this case φ0(x) is bounded function and hence there exists con-
stants c1, c2 both positive such that the estimate

c1 = inf
x∈Rn

(e
−φ0(x)

ν(0) ) ≤ θ ≤ sup
x∈Rn

e
−φ0(x)

ν(0) = c2.

Hence from (5.22) from the expression (5.21) for θ we get

|U(x, t)| ≤ c2

c1

1
(2πτ(t))

n
2

∫
Rn

|∇φ(y)| exp(−|x− y|2

2τ(t)
)dy. (5.34)

The right hand side integral is the convolution of heat kernel with |∇φ| and hence
by the Young’s inequality we get the estimate (5.13) This completes the proof of
(5.14).

Now to study the inviscid the limit limε→0 U ε(x, t) where U ε is the solution of
(5.1) and (5.2) given by the formula (5.3) when ν(t) = εν0(t). First we note that

U ε(x, t) = ν0(t)
∫

Rn

(
x− y

τ0(t)
)dµε

(x,t)(y) (5.35)

where, for each (x, t) and ε > 0, dµε
(x,t)(y) is a probability measure given explicitly

by

dµε
(x,t)(y) =

exp(− 1
ε ( |x−y|2

2τ(t) + φ0(y)
ν(0) )dy∫

Rn exp(− 1
ε ( |x−y|2

2τ(t) + φ0(y)
ν(0) )dy

. (5.36)
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Following the argument of Hopf [7] and Lax [17] it can easily be seen that this
measure tends to the δ-measure concentrated at y(x, τ(t)), the minimizer of (5.15),
which is unique for almost every (x, t). So for almost all (x, t) we get from (5.35)
and (5.36)

lim
ε→0

U ε(x, t) =
(x− y0(x, τ(t))

t
where y(x, τ(t)) is as before a minimizer of (5.15). �

Remark 5.2. Here we observe that for Burgers equation, that is, when n = 1 and
ν(t) = ν, a constant, the parameter k1 can be computed in terms of the mass of
the initial data,

νk1 = φ+
1 − φ−1 =

∫ ∞

x0

u0(y)dy −
∫ −∞

x0

u0(y)dy =
∫ ∞

−∞
u0(y)dy

and then formula (5.17) with n = 1 is exactly Hopf’s result. Also we note that the
limit function obtained in the result written in the (x, t) variable, namely

U(x, t) = (−ν[log(v1(x1, t))]x1 ,−ν[log(v2(x2, t))]x2 , . . . ,−ν[log(vn(xn, t))]xn
)

where for i = 1, 2, . . . n,

vi(xi, t) = exp(−ki

2
)
∫ xi/(νt)1/2

−∞
exp(−z2

i

2
)dzi + exp(

ki

2
)
∫ ∞

xi/(νt)1/2
exp(−z2

i

2
)dzi

is an exact solution of (5.1).

Remark 5.3. It is easy to see that, for c0 a constant

θ(x, t) =
1
c0

+ τ(t)−
n
2 exp(− |x|2

2τ(t)
)

is a solution of the of the heat equation with variable viscosity coefficient namely
θt = ν(t)

2 ∆θ. Its space gradient is

∇xθ(x, t) = − x

τ(t)
τ(t)−

n
2 exp(− |x|2

2τ(t)
).

By earlier discussion U∞ = −ν(t)∇θ
θ is an exact solution of the vector Burgers

equation (5.1). On simplification we get

U∞(x, t) =
x/ τ(t)

ν(t)

1/2

τ(t)
ν(t)

1/2
[1 + t

n
2

c0
exp( |x|

2

2tν )]

For n = 1 and ν(t) = ν, a constant this exact solution of the Burgers equation was
discovered by Lighthill [20]. Sachdev, Joseph and Nair [28] showed that it can be
obtained as time asymptotic of a pure initial vale problem. This solution is called
the N-wave solution.

Remark 5.4. Note that the proof of part (e) of the theorem gives an explicit for-
mula for the solution of the initial value problem for the Hamilton-Jacobi equation

φt +
1
2
|∇φ|2 − ν0(t)′

ν0(t)
φ = 0,

φ(x, 0) = φ0(x)
(5.37)
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namely

φ(x, t) = min
y

[
φ0(y)
ν(0)

+
‖x− y‖2

2τ0(t)
]. (5.38)

Note that when ν0(t) is a constant this explicit formula was derived for the viscos-
ity solution of (5.37) earlier by other methods, see Lions [21]. Further, φ(x, t) is
Lipschitz continuous when its initial data φ0(x) is and is a solution to (5.37). Our
analysis shows that the explicit formula (5.38) follows from the vanishing viscosity
limit of

φt +
1
2
|∇φ|2 − ν′0(t)

ν0(t)
φ = ε

ν0(t)
2

∆φ

φ(x, 0) = φ0(x).
(5.39)

as the solution of (5.39) is given by the formula

φε(x, t) = −εν0(t) log[
1

(2πεν0(t)
n
2

∫
Rn

exp(−1
ε
(
|x− y|2

2τ0(t)
+

φ0(y)
ν0(0)

)dy.

By passing to the limit as ε goes to 0 we get exactly the formula (5.38).
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