Electronic Journal of Differential Equations, Vol. 2007(2007), No. 15, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

VISCOSITY SOLUTIONS TO DEGENERATE DIFFUSION PROBLEMS

ZU-CHI CHEN, YAN-YAN ZHAO

Abstract

This paper concerns the weak solutions to a Cauchy problem in \mathbb{R}^{N} for a degenerate nonlinear parabolic equation. We obtain the Hölder regularity of the weak solutions to this problem.

1. Introduction

We consider the Cauchy problem

$$
\begin{gather*}
u_{t}=\alpha_{1} u^{\beta_{1}} \Delta u+\alpha_{2} u^{\beta_{2}} w, \quad w=\frac{1}{2}|\nabla u|^{2}, \quad(x, t) \in \mathbb{R}^{N} \times \mathbb{R}^{+} \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}^{N}
\end{gather*}
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are constants and u_{0} is a bounded continuous and nonnegative function on R^{N}, denote $\Omega=\mathbb{R}^{N} \times \mathbb{R}^{+}$.

Problem 1.1) degenerates at the points where u vanishes. Therefore, in general, it has no classical solutions and we have to consider its weak solutions. The weak solution is defined as follows.
Definition 1.1. A function $u \in L^{\infty}(\Omega) \cap L_{\mathrm{loc}}^{2}\left([0,+\infty) ; H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)\right)$ is called a weak solution of 1.1 if $u \geq 0$ a.e. in Ω and for all $T>0$,

$$
\int_{R^{N}} u_{0} \psi(0) d x+\int_{\mathbb{R}^{N} \times(0, T)} u \frac{\partial \psi}{\partial t}-\alpha_{1} \nabla u \cdot \nabla\left(u^{\beta_{1}} \psi\right)+\alpha_{2} u^{\beta_{2}}|\nabla u|^{2} \psi d x d t=0
$$

for all $\psi \in C^{1,1}\left(\mathbb{R}^{N} \times[0, T]\right)$ with the compact support in $\mathbb{R}^{N} \times[0, T)$.
Let $u_{\epsilon}(x, t) \geq 0$ be the classical solution of the problem

$$
\begin{gather*}
u_{\epsilon t}=\alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta u_{\epsilon}+\alpha_{2} u_{\epsilon}^{\beta_{2}} w_{\epsilon}, \quad w_{\epsilon}=\frac{1}{2}\left|\nabla u_{\epsilon}\right|^{2}, \quad(x, t) \in \mathbb{R}^{N} \times \mathbb{R}^{+} \tag{1.2}\\
u_{\epsilon}(x, 0)=u_{0}(x)+\epsilon, \quad x \in \mathbb{R}^{N}
\end{gather*}
$$

By the maximum principle $u_{\epsilon}(x, t)$ is decreasing with respect to ϵ, thus

$$
u(x, t)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x, t)
$$

[^0]is well defined in $\bar{\Omega}$. The function u is a weak solution of 1.1. Because u_{0} is bounded, using the maximum principle in problem (1.2), u_{ϵ} is bounded and $\left\{u_{\epsilon}\right\}_{\epsilon \rightarrow 0}$ is uniformly bounded.
Definition 1.2. The weak solution defined above is called a viscosity solution of (1.1).

As its special cases, Bertsh, Passo, Ughi and Lu had considered the equation $u_{t}=u \Delta u-\gamma|\nabla u|^{2}$ in [1-6]. When $\alpha_{1}=m, \beta_{1}=m-1, \alpha_{2}=2 m(m-1)$, $\beta_{2}=\beta_{1}-1$, problem 1.1 is the porous medium equation, the well known case.

2. Main Result

Theorem 2.1. If $\alpha_{1}>0, \beta_{2}=\beta_{1}-1$, there exists a constant s such that

$$
2 \alpha_{2} \beta_{1}-2 \alpha_{2}-s \alpha_{2}+2 s(s+1) \alpha_{1}+N \alpha_{1} \beta_{1}^{2} \leq 0
$$

and

$$
\left|\nabla\left(u_{0}^{1+\frac{s}{2}}\right)\right| \leq M
$$

for a nonnegative constant M. Then the viscosity solution u of 1.1) satisfies $\left|\nabla\left(u^{1+\frac{s}{2}}\right)\right| \leq M$ in $\bar{\Omega}$.

Proof. In the definition of the viscosity solution, we let $u_{\epsilon}>0$ be the classical solution of 1.2 . Then

$$
u(x, t)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x, t)
$$

is the viscosity solution of 1.1 . In the following we use the notation $u_{\epsilon, \text {, to denote }}$ then the derivative of function u_{ϵ} with respect to its independent variables. At first, we have

$$
\begin{aligned}
w_{\epsilon, t}= & \left(\frac{1}{2}\left|\nabla u_{\epsilon}\right|^{2}\right)_{t}=\sum_{i=1}^{N} u_{\epsilon, x_{i}}\left(u_{\epsilon, x_{i}}\right)_{t} \\
= & \sum_{i=1}^{N} u_{\epsilon, x_{i}}\left(\alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta u_{\epsilon}+\alpha_{2} u_{\epsilon}^{\beta_{2}} w_{\epsilon, x_{i}}\right. \\
= & \sum_{i=1}^{N} u_{\epsilon, x_{i}}\left(\alpha_{1} \beta_{1} u_{\epsilon, x_{i}} u_{\epsilon}^{\beta_{1}-1} \Delta u_{\epsilon}+\alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta u_{\epsilon, x_{i}}\right. \\
& \left.+\alpha_{2} \beta_{2} u_{\epsilon, x_{i}} u_{\epsilon}^{\beta_{2}-1} w_{\epsilon}+\alpha_{2} u_{\epsilon}^{\beta_{2}} w_{\epsilon, x_{i}}\right) \\
= & 2 \alpha_{1} \beta_{1} u_{\epsilon}^{\beta_{1}-1} w_{\epsilon} \Delta u_{\epsilon}+\alpha_{1} u_{\epsilon}^{\beta_{1}} \sum_{i=1}^{N} u_{\epsilon, x_{i}} \Delta u_{\epsilon, x_{i}} \\
& +2 \alpha_{2} \beta_{2} u_{\epsilon}^{\beta_{2}-1} w_{\epsilon}^{2}+\alpha_{2} u_{\epsilon}^{\beta_{2}} \sum_{i=1}^{N} u_{\epsilon, x_{i}} w_{\epsilon, x_{i}} \\
= & 2 \alpha_{1} \beta_{1} u_{\epsilon}^{\beta_{1}-1} w_{\epsilon} \Delta u_{\epsilon}+\alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta w_{\epsilon}-\alpha_{1} u_{\epsilon}^{\beta_{1}} \sum_{i, j=1}^{N} u_{\epsilon, x_{i} x_{j}}^{2} \\
& +2 \alpha_{2} \beta_{2} u_{\epsilon}^{\beta_{2}-1} w_{\epsilon}^{2}+\alpha_{2} u_{\epsilon}^{\beta_{2}} \sum_{i=1}^{N} u_{\epsilon, x_{i}} w_{\epsilon, x_{i}} .
\end{aligned}
$$

Let

$$
\begin{equation*}
z_{\epsilon}=u_{\epsilon}^{s} w_{\epsilon} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{align*}
z_{\epsilon, t}= & u_{\epsilon, t}^{s} w_{\epsilon}+u_{\epsilon}^{s} w_{\epsilon, t} \\
= & s \alpha_{1} u_{\epsilon}^{s+\beta_{1}-1} w_{\epsilon} \Delta u_{\epsilon}+s \alpha_{2} u_{\epsilon}^{s+\beta_{2}-1} w_{\epsilon}^{2}+2 \alpha_{1} \beta_{1} u_{\epsilon}^{s+\beta_{1}-1} w_{\epsilon} \Delta u_{\epsilon}+\alpha_{1} u_{\epsilon}^{s+\beta_{1}} \Delta w_{\epsilon} \\
& -\alpha_{1} u_{\epsilon}^{s+\beta_{1}} \sum_{i, j=1}^{N} u_{\epsilon, x_{i} x_{j}}^{2}+2 \alpha_{2} \beta_{2} u_{\epsilon}^{s+\beta_{2}-1} w_{\epsilon}^{2}+\alpha_{2} u_{\epsilon}^{s+\beta_{2}} \sum_{i=1}^{N} u_{\epsilon, x_{i}} w_{\epsilon, x_{i}} . \tag{2.2}
\end{align*}
$$

From (2.1) and (2.2),

$$
\begin{align*}
z_{\epsilon, t}= & \alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta z_{\epsilon}+\left(\alpha_{2} u_{\epsilon}^{\beta_{2}}-2 s \alpha_{1} u_{\epsilon}^{\beta_{1}-1}\right) \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}} \\
& +\left[\left(2 \alpha_{2} \beta_{2}-s \alpha_{2}\right) u_{\epsilon}^{\beta_{2}-s-1}+2 s(s+1) \alpha_{1} u_{\epsilon}^{\beta_{1}-s-2}\right] z_{\epsilon}^{2} \tag{2.3}\\
& +2 \alpha_{1} \beta_{1} u_{\epsilon}^{\beta_{1}-1} z_{\epsilon} \Delta u_{\epsilon}-\alpha_{1} u_{\epsilon}^{s+\beta_{1}} \sum_{i, j=1}^{N} u_{\epsilon, x_{i} x_{j}}^{2} .
\end{align*}
$$

If $\beta_{2}=\beta_{1}-1, \alpha_{1}>0$, then

$$
\begin{aligned}
z_{\epsilon, t}= & \alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta z_{\epsilon}+\left(\alpha_{2}-2 s \alpha_{1}\right) u_{\epsilon}^{\beta_{1}-1} \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}} \\
& +\left[\left(2 \alpha_{2} \beta_{2}-s \alpha_{2}\right)+2 s(s+1) \alpha_{1}\right] u_{\epsilon}^{\beta_{1}-s-2} z_{\epsilon}^{2} \\
& +2 \alpha_{1} \beta_{1} u_{\epsilon}^{\beta_{1}-1} z_{\epsilon} \Delta u_{\epsilon}-\alpha_{1} u_{\epsilon}^{s+\beta_{1}} \sum_{i, j=1}^{N} u_{\epsilon, x_{i} x_{j}}^{2} .
\end{aligned}
$$

Since

$$
\sum_{i, j=1}^{N} u_{\epsilon, x_{i} x_{j}}^{2} \geq \frac{1}{N}\left(\Delta u_{\epsilon}\right)^{2}
$$

it follows that

$$
\begin{align*}
z_{\epsilon, t} \leq & \alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta z_{\epsilon}+\left(\alpha_{2}-2 s \alpha_{1}\right) u_{\epsilon}^{\beta_{1}-1} \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}} \\
& +\left[\left(2 \alpha_{2} \beta_{1}-2 \alpha_{2}-s \alpha_{2}\right)+2 s(s+1) \alpha_{1}\right] u_{\epsilon}^{\beta_{1}-s-2} z_{\epsilon}^{2} \\
& +2 \alpha_{1} \beta_{1} u_{\epsilon}^{\beta_{1}-1} z_{\epsilon} \Delta u_{\epsilon}-\frac{\alpha_{1}}{N} u_{\epsilon}^{s+\beta_{1}}(\Delta u)_{\epsilon}^{2} \\
= & \alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta z_{\epsilon}+\left(\alpha_{2}-2 s \alpha_{1}\right) u_{\epsilon}^{\beta_{1}-1} \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}} \tag{2.4}\\
& -\left(\sqrt{\frac{\alpha_{1}}{N}} u_{\epsilon}^{\frac{s+\beta_{1}}{2}} \Delta u_{\epsilon}-\beta_{1} \sqrt{N \alpha_{1}} u_{\epsilon}^{\frac{\beta_{1}-s-2}{2}} z_{\epsilon}\right)^{2} \\
& +\left[\left(2 \alpha_{2} \beta_{1}-2 \alpha_{2}-s \alpha_{2}\right)+2 s(s+1) \alpha_{1}+N \alpha_{1} \beta_{1}^{2}\right] u_{\epsilon}^{\beta_{1}-s-2} z_{\epsilon}^{2}
\end{align*}
$$

By the condition

$$
2 \alpha_{2} \beta_{1}-2 \alpha_{2}-s \alpha_{2}+2 s(s+1) \alpha_{1}+N \alpha_{1} \beta_{1}^{2} \leq 0
$$

and 2.4 , we obtain

$$
z_{\epsilon, t} \leq \alpha_{1} u_{\epsilon}^{\beta_{1}} \Delta z_{\epsilon}+\left(\alpha_{2}-2 s \alpha_{1}\right) u_{\epsilon}^{\beta_{1}-1} \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}}
$$

Using the maximum principle, we obtain

$$
\left\|z_{\epsilon}\right\|_{\infty} \leq\left\|z_{0}\right\|_{\infty}
$$

Because $z_{\epsilon}=u_{\epsilon}^{s} w_{\epsilon}=\frac{1}{2} u_{\epsilon}^{s}\left|\nabla u_{\epsilon}\right|^{2}$, thus

$$
\left\|u_{\epsilon}^{s}\left|\nabla u_{\epsilon}\right|^{2}\right\|_{\infty} \leq\left\|u_{0}^{s}\left|\nabla u_{0}\right|^{2}\right\|_{\infty} \leq M+\epsilon
$$

Since $\nabla\left(u_{\epsilon}^{1+\frac{s}{2}}\right)$ is continuous,

$$
\begin{equation*}
\left|\nabla\left(u_{\epsilon}^{1+\frac{s}{2}}\right)\right| \leq M+\epsilon . \tag{2.5}
\end{equation*}
$$

Because $u(x, t)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x, t)$, then

$$
\begin{equation*}
\left|\nabla\left(u^{1+\frac{s}{2}}\right)\right| \leq M \tag{2.6}
\end{equation*}
$$

Theorem 2.2. Suppose $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, u_{0}$ are as in Theorem 2.1, if there exists a nonpositive constant $s \neq-2$ satisfying

$$
2 \alpha_{2} \beta_{1}-2 \alpha_{2}-s \alpha_{2}+2 s(s+1) \alpha_{1}+N \alpha_{1} \beta_{1}^{2} \leq 0
$$

then the viscosity solution $u(x, t)$ of problem (1.1) is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$.

Proof. Because $\left\{u_{\epsilon}\right\}_{\epsilon \rightarrow 0}$ is uniformly bounded, $u(x, t)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}$, so there exists a constant M_{1} such that $|u|<M_{1}$. By Theorem 2.1. $\left|\nabla\left(u^{1+\frac{s}{2}}\right)\right| \leq M$, then

$$
|\nabla u| \leq\left|1+\frac{s}{2}\right|^{-1} M\left|u^{\frac{-s}{2}}\right| \leq\left|1+\frac{s}{2}\right|^{-1} M M_{1}^{\frac{-s}{2}} .
$$

Therefore, u is Lipschitz continuous with respect to x. Hence, we get directly from [7] that u is Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$.

3. Examples

Example 3.1. Consider the problem

$$
\begin{gather*}
u_{t}=u \Delta u-\gamma|\nabla u|^{2}, \quad(x, t) \in \Omega \\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}^{N} \tag{3.1}
\end{gather*}
$$

If $\gamma \geq \sqrt{N-1}(N \neq 10)$, and there are constants

$$
\begin{gathered}
\tau=\frac{3-\sqrt{N-1}}{2}, \\
s=\frac{1-\gamma-2 \tau}{2 \tau}+\frac{\sqrt{2 \gamma^{2}-2 N+2-[2 \tau-(3-\gamma)]^{2}}}{2 \tau}
\end{gathered}
$$

satisfying $\left|\nabla u_{0}^{\tau\left(1+\frac{s}{2}\right)}\right| \leq M$, then the viscosity solution of (3.1) is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$.

Proof. Set $v_{\epsilon}=u_{\epsilon}^{\tau}$. From problem 3.1, we obtain

$$
\begin{aligned}
v_{\epsilon, t} & =\tau v \Delta u_{\epsilon}-\tau \gamma u_{\epsilon}^{\tau-1}\left|\nabla u_{\epsilon}\right|^{2} \\
& =\tau v_{\epsilon} \sum_{i=1}^{N}\left(\frac{1}{\tau} v_{\epsilon}^{\frac{1}{\tau}-1} v_{\epsilon, x_{i}}\right)_{x_{i}}-\tau \gamma v_{\epsilon}^{\frac{\tau-1}{\tau}}\left|\frac{1}{\tau} v_{\epsilon}^{\frac{1}{\tau}-1} \nabla v_{\epsilon}\right|^{2} \\
& =v_{\epsilon}^{\frac{1}{\tau}} \Delta v_{\epsilon}+v_{\epsilon} \sum_{i=1}^{N}\left(\frac{1}{\tau}-1\right) v_{\epsilon}^{\frac{1}{\tau}-2} v_{\epsilon, x_{i}}^{2}-\frac{\gamma}{\tau} v_{\epsilon,}^{\frac{1}{\tau}-1}\left|\nabla v_{\epsilon}\right|^{2} \\
& =v_{\epsilon}^{\frac{1}{\tau}} \Delta v_{\epsilon}+\frac{1-\gamma-\tau}{\tau} v_{\epsilon}^{\frac{1}{\tau}-1}\left|\nabla v_{\epsilon}\right|^{2} .
\end{aligned}
$$

In problem 1.1, with $\alpha_{1}=1, \beta_{1}=\frac{1}{\tau}, \alpha_{2}=\frac{2-2 \gamma-2 \tau}{\tau}, \beta_{2}=\beta_{1}-1$, we have

$$
\begin{aligned}
& 2 \alpha_{2} \beta_{1}-2 \alpha_{2}-s \alpha_{2}+2 s(s+1) \alpha_{1}+N \alpha_{1} \beta_{1}^{2} \\
& =\frac{4(1-\gamma-\tau)}{\tau^{2}}-\frac{4(1-\gamma-\tau)}{\tau}-\frac{2 s(1-\gamma-\tau)}{\tau}+2 s(s+1)+\frac{N}{\tau^{2}} \\
& =2\left(s-\frac{1-\gamma-2 \tau}{2 \tau}\right)^{2}-\frac{(1-\gamma-2 \tau)^{2}}{2 \tau^{2}}+\frac{4(1-\gamma-\tau)}{\tau^{2}}-\frac{4(1-\gamma-\tau)}{\tau}+\frac{N}{\tau^{2}} \\
& =2\left(s-\frac{1-\gamma-2 \tau}{2 \tau}\right)^{2}+\frac{1}{2 \tau^{2}}\left[-\gamma^{2}+(4 \tau-6) \gamma+4 \tau^{2}-12 \tau+2 N+7\right] \\
& =0 .
\end{aligned}
$$

From Theorem 2.1 we get $\left|\nabla\left(u^{\tau\left(1+\frac{s}{2}\right)}\right)\right| \leq M$. Because $\tau\left(1+\frac{s}{2}\right)-1 \leq 0$, we have

$$
|\nabla u| \leq\left|\tau\left(1+\frac{s}{2}\right)\right|^{-1} M\left|u^{-\tau\left(1+\frac{s}{2}\right)+1}\right| \leq M_{2}
$$

We get the Hölder continuity of u with respect to t from [7] directly.
Remark 3.2. For the case $N=10$, we take τ as a positive number, say δ, then similar to the above arguments we can get the result that when $\gamma \geq 2 \delta-3+$ $\sqrt{2(2 \delta-3)^{2}+2 N-2}$ and $\left|\nabla u_{0}^{\delta\left(1+\frac{s}{2}\right)}\right| \leq M$, then u is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$. Since δ is any positive number which can be taken small enough so our conclusion for the parameter γ is that when $\gamma>\sqrt{N-1}$ the solution is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$. It is a improved result of the one in 9 .

Remark 3.3. Let $\tau=1$ in Example 3.1, we could get the result as $\gamma \geq \sqrt{2 N}-1$. It is the main result in 3 .

Example 3.4. The initial problem for the porous medium equation

$$
\begin{gather*}
u_{t}=\Delta\left(u^{m}\right), \quad(x, t) \in \Omega \\
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R}^{N} \tag{3.2}
\end{gather*}
$$

If $m>0, \frac{10+2 N-\sqrt{16+2 N}}{7+2 N} \leq m \leq \frac{10+2 N+\sqrt{16+2 N}}{7+2 N}$, and $\left|\nabla\left(u_{0}^{\frac{m+2}{4}}\right)\right| \leq M$, then the viscosity solution $u(x, t)$ is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$.

Proof. In Theorem 2.2, let $\alpha_{1}=m, \beta_{1}=m-1, \alpha_{2}=2 m(m-1), \beta_{2}=\beta_{1}-1$, $s=\frac{m-2}{2}$. Then the result follows.

Example 3.5. Consider the initial-value problem for the singular equation

$$
\begin{gather*}
u_{t}=\Delta u+\frac{|\nabla u|^{2}}{u^{m}}, \quad(x, t) \in \Omega \tag{3.3}\\
u(x, 0)=u_{0}(x) \quad x \in \mathbb{R}^{N}
\end{gather*}
$$

where $m \geq 0$. If $\left|\nabla u_{0}\right| \leq M$, then $u(x, t)$ is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$.

Proof. As the proof in Theorem 2.1. In problem (1.1), we take $\alpha_{1}=1, \beta_{1}=0$, $\alpha_{2}=2, \beta_{2}=-m$. From 2.3),
$z_{\epsilon, t} \leq \Delta z_{\epsilon}+\left(2 u_{\epsilon}^{-m}-2 s u_{\epsilon}^{-1}\right) \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}}+\left[(-4 m-2 s) u_{\epsilon}^{-m+1}+2 s(s+1)\right] z_{\epsilon}^{2} u_{\epsilon}^{-s-2}$.
Let $s=0$, then

$$
z_{\epsilon, t} \leq \Delta z_{\epsilon}+2 u_{\epsilon}^{-m} \sum_{i=1}^{N} u_{\epsilon, x_{i}} z_{\epsilon, x_{i}} .
$$

Thus $\left\|z_{\epsilon}\right\|_{\infty} \leq\left\|z_{0}\right\|_{\infty}$ and so $|\nabla u| \leq M$. As in the proof in Theorem [2.2, u is Lipschitz continuous in x and Hölder continuous in t with exponent $1 / 2$ in $\bar{\Omega}$.

Acknowledgements. The authors want to thank the anonymous referee for his/her valuable comments and suggestions.

References

[1] M. Bertsch and M. Ughi; Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anul. TMA. 14 (1990), 7, 571-592.
[2] M. Bertsch, R. D. Passo and M. Ughi; Discontinuous viscosity Solution of A degenerate parbolic equation, Trans. AMS 320 (1990), 2, 779-798.
[3] Yungguang Lu and Liwen Qian; Regularity of viscosity solutions of degenerate parabolic equation, Proc. AMS. vol.130, No.4, 999-1004.
[4] M. Ughi; A dengenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl. 143 (1986), 385-400.
[5] D. Passo and S. Luckhans; A degenarate diffusion problem not in divergence form. J. Diff. Eqns 69, 1-14 (1987).
[6] M. Bertsch, D. Passo and M. Ughi; Nonuniquenss of solutions of a degenarate parabolic equation, Ann. Mat. Pura Appl. (4) 161 (1992), 57-81.
[7] B. H. Gilding; Hölder continuity of solutions of parabolic equations, J. London Math. Soc. (2), 13 (1976), 103-106.
[8] Yunguang Lu and Willi Jäger; On solutions to nonliner Reaction-diffusion-convection equations with dengenerate diffusion, J. Diff. Eqns 170, 1-21 (2001).
[9] Yan-Yan Zhao and Zu-Chi Chen; Regularity of viscosity solutions to a degenerate nonlinear cauchy problem, to appear in Nonlinear Analysis TMA.

Zu-Chi Chen
Department of mathematics, University of Science and Technology of China, Hefei 230026, China

E-mail address: chenzc@ustc.edu.cn
Yan-Yan Zhao
Department of mathematics, University of Science and Technology of China, Hefei 230026, China

E-mail address: yyzhao@mail.ustc.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35K15, 35K55, 35K65.
 Key words and phrases. Viscosity solution; degenerate; Hölder regularity. (C) 2007 Texas State University - San Marcos.

 Submitted November 4, 2006. Published January 23, 2007.
 Supported by grant 10371116 from NNSF of China.

