Electronic Journal of Differential Equations, Vol. 2007(2007), No. 148, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

REMARKS ON THE GRADIENT OF AN INFINITY-HARMONIC FUNCTION

TILAK BHATTACHARYA

Abstract

In this work we (i) prove a maximum principle for the modulus of the gradient of infinity-harmonic functions, (ii) prove some local properties of the modulus, and (iii) prove that if the modulus is constant on the boundary of a planar disc then it is constant inside.

1. Introduction

In this work we discuss some local properties of the modulus of the gradient of the gradient of an infinity-harmonic function. Differentiability remains an open problem, except in the planar case [11]; however, a quantity, which would be the modulus should differentiability hold, does exist. Our effort in this note is to prove a maximum principle for the modulus and record some local properties of an infinityharmonic function at points where the modulus is a maximum. In particular, we prove that if the modulus is constant on the boundary of a planar disc then it is constant inside.

We start with some notations. Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, will denote a bounded domain, the origin o will be assumed to lie in Ω. Let $B_{r}(x), x \in \mathbb{R}^{n}$, be the ball of radius r with center x. Let \bar{A} denote the closure of a set A and $A^{c}=\mathbb{R}^{n} \backslash A$. An upper semicontinuous function u, defined in Ω, is infinity-subharmonic in Ω if it solves

$$
\begin{equation*}
\Delta_{\infty} u(x)=\sum_{i, j=1}^{n} D_{i} u(x) D_{j} u(x) D_{i j} u(x) \geq 0, \quad x \in \Omega \tag{1.1}
\end{equation*}
$$

in the viscosity sense. A lower semicontinuous function u is infinity-superharmonic in Ω if $\Delta_{\infty} u(x) \leq 0, x \in \Omega$, in the viscosity sense. Moreover, u is infinityharmonic in Ω if it is both infinity-subharmonic and infinity-superharmonic in Ω. Our work exploits the cone comparison property satisfied by u, see [6]. Also see [1, 3, 4, 5, 8] in this connection. For $x \in \Omega$ and $B_{r}(x) \Subset \Omega$, for $0 \leq t \leq r$, we define $M_{x}(t)=\sup _{B_{t}(x)} u, m_{x}(t)=\inf _{B_{t}(x)} u$. For infinity-subharmonic functions, $M_{x}(t)=\sup _{\partial B_{t}(x)} u$, and for infinity-superharmonic functions, $m_{x}(t)=\inf _{\partial B_{t}(x)} u$.

2000 Mathematics Subject Classification. 35J60, 35J70.
Key words and phrases. Infinity-harmonic; gradient; maximum principle.
© 2007 Texas State University - San Marcos.
Submitted August 10, 2007. Published November 5, 2007.

The existence of the following limits is well known [6, Lemma 2.7],

$$
\begin{align*}
& \lim _{t \downarrow 0} \frac{M_{x}(t)-u(x)}{t}=\Lambda^{+}(x), \\
& \lim _{t \downarrow 0} \frac{u(x)-m_{x}(t)}{t}=\Lambda^{-}(x), \quad \text { when } u \text { is infinity-subharmonic } \tag{1.2}\\
& u \text { is infinity-superharmonic. }
\end{align*}
$$

Moreover, if u is infinity-harmonic then $\Lambda^{+}(x)=\Lambda^{-}(x)=\Lambda(x)$, and if also differentiable at x, then $\Lambda(x)=|D u(x)|$. See [1, 4, 6, 7, We now state the two main results of this work.

Theorem 1.1 (Maximum Principle). Let $\Omega \subset \mathbb{R}^{n}$ and $\Omega_{1} \Subset \Omega$. Recall the statements in 1.2. (i) If u is infinity-subharmonic in Ω, then $\sup _{x \in \bar{\Omega}_{1}} \Lambda^{+}(x)=$ $\sup _{x \in \partial \Omega_{1}} \Lambda^{+}(x)$, and (ii) if u is infinity-superharmonic in Ω, then $\sup _{x \in \bar{\Omega}_{1}} \Lambda^{-}(x)=$ $\sup _{x \in \partial \Omega_{1}} \Lambda^{-}(x)$. In particular, if u is infinity-harmonic then $\sup _{x \in \bar{\Omega}_{1}} \Lambda(x)=$ $\sup _{x \in \partial \Omega_{1}} \Lambda(x)$.

The anonymous referee pointed out this general version of Theorem 1.1. An older version of this theorem was stated only for infinity-harmonic functions. A proof will be presented in Section 2. The main idea of the proof is to exploit the result about increasing slope estimate in [6, Lemma 3.3]. In 4], these have been referred to as Hopf derivatives in the case of infinity-harmonic functions. The properties of the latter will be used to prove the second main result of this work.

Theorem 1.2. Let $\Omega \subset \mathbb{R}^{2}$ and $B_{r}(x) \Subset \Omega$. Let u be infinity-harmonic in Ω. Suppose that for some $L>0$ and for every $y \in \partial B_{r}(x), \Lambda(y)=|D u(y)|=L$, then
(i) for any $w \in B_{r}(x),|D u(w)|=L$, and
(ii) given any point $z \in B_{r}(x)$ there is a straight segment T, with its end points on $\partial B_{r}(x)$ and containing z, such that u is linear on T. Also, if e_{T} is a unit vector parallel to T then for any ξ on T either $D u(\xi)=L e_{T}$, or $D u(\xi)=-L e_{T}$. In addition, if T_{1} and T_{2} are any two such segments then either T_{1} coincides with T_{2} or they are distinct.

At this time it is unclear whether or not this holds in \mathbb{R}^{n} with $n \geq 3$. Theorem 1.2 does not hold in general and the convexity of the domain seems to play a role in the proof this result. Consider the example $u(x, y)=x^{4 / 3}-y^{4 / 3}$ on \mathbb{R}^{2}, where a point is described as (x, y). Then $\Lambda(x, y)=|D u(x, y)|=4 / 3 \sqrt{x^{2 / 3}+y^{2 / 3}}$, and consider the regions D_{c} of the type bounded by $x^{2 / 3}+y^{2 / 3}=c>0$. While $|D u(x, y)|$ is constant on $\partial D_{c},|D u(o)|=0$ and $|D u(x, y)|<4 c^{2} / 3,(x, y) \in D_{c}$.

We have divided our work as follows. Section 2 presents a proof of Theorem 1.1 . In Section 3, we study the behaviour of an infinity-harmonic function u near points of maximum of $\Lambda(x)$. In Section 4, we prove the rigidity result in Theorem 1.2 ,

2. Proof of main results

We first state results we will use in the proof of Theorem 1.1. Recall the statements in 1.2). Let $\Omega \subset \mathbb{R}^{n}$ and $B_{r}(x) \Subset \Omega$. Let (a) $p_{t} \in \partial B_{t}(x), t \leq r$, denote a point of maximum of $u(p)$ on $B_{t}(x)$, when u is infinity-subharmonic in Ω, and (b) $q_{t} \in \partial B_{t}(x)$ denote a point of minimum of u on $B_{t}(x)$, when u is infinitysuperharmonic in Ω. For part (i) of the theorem we will use the following.

$$
\begin{equation*}
\Lambda^{+}(x) \leq \frac{M_{x}(t)-u(x)}{t} \leq \inf _{p_{t}} \Lambda^{+}\left(p_{t}\right), \quad \text { and } \Lambda^{+} \text {is upper-semicontinuous. } \tag{2.1}
\end{equation*}
$$

While for part (ii) we use

$$
\Lambda^{-}(x) \leq \frac{u(x)-m_{x}(t)}{t} \leq \inf _{q_{t}} \Lambda^{-}\left(q_{t}\right), \quad \text { and } \Lambda^{-}(x) \text { is upper-semicontinuous. }
$$

See [6, Lemma 3.3]. We also point out that minor modifications of the arguments in [3, 4] will also yield 2.1) and 2.2 . We now prove Theorem 1.1 by employing the above repeatedly.

Proof of Theorem 1.1. We first prove part (i). Let $L=\sup _{x \in \bar{\Omega}_{1}} \Lambda^{+}(x)$, we assume that $L>0$. Since Λ^{+}is upper semi-continuous, for some $y \in \bar{\Omega}_{1}$ we have $\Lambda(y)=L$. If $y \in \partial \Omega_{1}$ then we are done. Assume then that $y \in \Omega_{1}$. We will show that in this case there is a point $\bar{y} \in \partial \Omega_{1}$ with $\Lambda(\bar{y})=L$. Set $y_{1}=y$ and let $d_{1}=\operatorname{dist}\left(y_{1}, \Omega_{1}^{c}\right)$. Clearly, $B_{d_{1}}\left(y_{1}\right) \subset \Omega_{1}$; by 2.1), $\Lambda^{+}(p) \geq\left(u(p)-u\left(y_{1}\right)\right) / d_{1} \geq \Lambda^{+}\left(y_{1}\right)=L$, for any $p \in \partial B_{d_{1}}\left(y_{1}\right)$ with $u(p)=M_{y_{1}}\left(d_{1}\right)$. Thus $\Lambda^{+}(p)=L$ and $u(p)=u\left(y_{1}\right)+L d_{1}$. If $p \in \partial \Omega_{1}$ then we are done, otherwise set $y_{2}=p$. As already noted $u\left(y_{2}\right)=u\left(y_{1}\right)+$ $L d_{1}$. Let $d_{2}=\operatorname{dist}\left(y_{2}, \Omega_{1}^{c}\right)$, and any $p \in \partial B_{d_{2}}\left(y_{2}\right)$ be such that $u(p)=M_{d_{2}}\left(y_{2}\right)$. Again by (2.1), $\Lambda^{+}(p) \geq\left(u(p)-u\left(y_{2}\right)\right) / d_{2} \geq \Lambda^{+}\left(y_{2}\right)=L$. Thus $\Lambda^{+}(p)=L$ and $u(p)=u\left(y_{1}\right)+L\left(d_{1}+d_{2}\right)$. If $p \in \partial \Omega_{1}$ then we are done. Suppose now that we have obtained sequences $\left\{y_{i}\right\}_{i=1}^{k},\left\{d_{i}\right\}_{i=1}^{k}$ such that
(a) $d_{i}=\operatorname{dist}\left(y_{i}, \Omega_{1}^{c}\right), y_{i} \in \partial B_{d_{i-1}}\left(y_{i-1}\right)$ and $y_{i} \notin \partial \Omega_{1}, 2 \leq i<k$,
(b) $u\left(y_{i}\right)=M_{y_{i-1}}\left(d_{i-1}\right)=u\left(y_{1}\right)+L \sum_{j=1}^{i-1} d_{j}, 2 \leq i \leq k$, and
(c) $\Lambda^{+}\left(y_{i}\right)=\Lambda^{+}\left(y_{j}\right)=L$, for all $i, j=1,2, \ldots, k$.

Suppose that $y_{k} \notin \partial \Omega_{1}$. For any $p \in \partial B_{d_{k}}\left(y_{k}\right)$, with $u(p)=M_{d_{k}}\left(y_{k}\right)$, 2.1) implies $\Lambda^{+}(p) \geq\left(u(p)-u\left(y_{k}\right)\right) / d_{k} \geq \Lambda^{+}\left(y_{k}\right)=L$. Thus $\Lambda^{+}(p)=L, u(p)=u\left(y_{k}\right)+L d_{k}$. If $p \in \partial \Omega_{1}$ then we are done otherwise set $y_{k+1}=p$ and note that $u\left(y_{k+1}\right)=$ $u\left(y_{1}\right)+L \sum_{i=1}^{k} d_{i}$ and $\Lambda^{+}\left(y_{k+1}\right)=L$. By the maximum principle, for every k, $u\left(y_{1}\right)+L \sum_{i=1}^{k} d_{i}=u\left(y_{k+1}\right) \leq \sup _{\Omega_{1}} u<\infty$. Thus $\sum_{i=1}^{\infty} d_{i}<\infty$ and $d_{i} \rightarrow 0$. Moreover, for $i<j,\left|y_{i}-y_{j}\right| \leq \sum_{l=i}^{j-1}\left|y_{l}-y_{l+1}\right|=\sum_{l=i}^{j-1} d_{l}$ is small if i is large. Thus for some $\bar{y} \in \partial \Omega_{1}, y_{i} \rightarrow \bar{y}$ and $\Lambda^{+}(\bar{y}) \geq \lim \sup _{k \rightarrow \infty} \Lambda^{+}\left(y_{k}\right)=L$. Part (ii) may now be proved analogously by using points of minima and 2.2 . The conclusion follows.

Remark 2.1. In the case of infinity-harmonic functions, we can show using Lemma 3.1 (see Section 2) that the points y_{1}, y_{2}, \ldots all lie on a straight segment terminating at \bar{y}. We also mention in passing that if $\Lambda^{s}(r)=\sup _{x \in \partial B_{r}(o)} \Lambda(x)$ then the upper-semicontinuity of Λ and Theorem 1.1 implies that $\Lambda^{s}(r)$ is right continuous.

3. Comments on the function Λ

For the remainder of this work u will denote an infinity-harmonic function. Our effort in this section will be to describe the behaviour of u near points of maximum of Λ. We recall some previously defined notations for ease of presentation. Let $B_{r}(x) \Subset \Omega$; a point $p_{t} \in \partial B_{t}(x), t \leq r$, will denote a point of maximum of u on $B_{t}(x)$. The direction $\left(p_{t}-x\right) / t$ will be denoted by ω_{t}. The quantities $M_{x}(t)$ and $m_{x}(t)$ continue to denote the maximum and the minimum of u on $B_{t}(x)$. Note that $M_{x}(t)$ and $-m_{x}(t)$ are convex in t. We will drop the subscript x when $x=o$. Next we summarize the properties of the Hopf-derivaties which will be used repeatedly in the rest of this work, see [4, Theorems 1 and 2]. We work in $B_{r}(o)$.
(i) $\frac{M(t)-u(o)}{t}$ decreases to $\Lambda(o)$ as $t \downarrow 0$,
(ii) for $0 \leq s \leq \tau \leq t \leq r$, we have $\Lambda(o) \leq \sup _{p_{s} \in \partial B_{s}(o)} \Lambda\left(p_{s}\right) \leq \Lambda\left(p_{\tau}\right) \leq$ $\inf _{p_{t} \in \partial B_{t}(o)} \Lambda\left(p_{t}\right) \leq \Lambda\left(p_{r}\right)$, and

$$
\begin{equation*}
\lim _{t \downarrow 0} \sup _{p_{t} \in \partial B_{t}(o)} \Lambda\left(p_{t}\right)=\Lambda(o), \quad t \leq r, \tag{3.1}
\end{equation*}
$$

(iii) $\Lambda(o) \leq \frac{M(r)-u\left(t \omega_{r}\right)}{r-t} \leq \Lambda\left(p_{r}\right)$, and $\frac{M(r)-u\left(t \omega_{r}\right)}{r-t}$ increases to $\Lambda\left(p_{r}\right)$ as $t \uparrow r$. Moreover,
(i) u is differentiable at any $p_{t} \in \partial B_{t}(o)$ and $D u\left(p_{t}\right)=\Lambda\left(p_{t}\right) \omega_{t}, t \leq r$,

$$
\begin{equation*}
M^{\prime}(t-) \leq \inf _{p_{t} \in \partial B_{t}(o)} \Lambda\left(p_{t}\right) \leq \sup _{p_{t} \in \partial B_{t}(o)} \Lambda\left(p_{t}\right) \leq M^{\prime}(t+) \tag{ii}
\end{equation*}
$$

(iii) There exists $p_{t} \in \partial B_{t}(o)$ such that $\Lambda\left(p_{t}\right)=M^{\prime}(t+)$.

Analogous statements also hold for q_{t} and $m(t)$. Moreover, for any pair of sequences $r_{k} \downarrow 0, \omega_{r_{k}} \in S^{n-1}$, with $\omega_{r_{k}} \rightarrow \omega$ (by compactness such pairs do exist, also see [7]), we have

$$
\begin{align*}
\lim _{r_{k} \downarrow 0} \frac{u\left(r_{k} \omega_{r_{k}}\right)-u(o)}{r_{k}} & =\lim _{r_{k} \downarrow 0} \frac{u\left(r_{k} \omega\right)-u(o)}{r_{k}}=\Lambda(o), \\
\lim _{r_{k} \downarrow 0} \frac{u\left(\theta r_{k} \eta\right)-u(o)}{r_{k}} & =\theta \Lambda(o)\langle\omega, \eta\rangle, \quad \forall \eta \in S^{n-1}, \tag{3.3}
\end{align*}
$$

for any fixed $\theta>0$. Note that $M\left(r_{k}\right)=u\left(r_{k} \omega_{r_{k}}\right)$. The above statements also apply to points of minima. In particular, if $\nu_{t}=q_{t} / t$ where $u\left(q_{t}\right)=m(t)$, then $\nu_{r_{k}} \rightarrow-\omega$. If ω is the only limit point of ω_{t} as $t \downarrow 0$, then u is differentiable at o, see [7]. Also, if $\omega \in S^{n-1}$ is such that 3.3 (ii) holds for any sequence then ω is a gradient direction and u is differentiable at o. We now prove the following result.

Lemma 3.1. Let $u \neq 0$ be infinity-harmonic in Ω and $B_{r}(o) \Subset \Omega$.
(a) If $\Lambda(o)=(M(r)-u(o)) / r$, then u is differentiable at o and $D u(o)=\Lambda(o) \omega$, for some $\omega \in S^{n-1}$. Moreover, for $0 \leq t \leq r, M(t)=u(t \omega)=u(o)+t \Lambda(o)$, and for very $t>0$ there is exactly one point $p_{t} \in \partial B_{t}(o)$ such that $u\left(p_{t}\right)=$ $M(t)$.
(b) If $p_{r} \in \partial B_{r}(o)$ is such that $\Lambda\left(p_{r}\right)=\Lambda(o)$ then the same conclusion holds for u with $\omega=p_{r} / r$, and $M(t)=u(t \omega)=u(o)+t \Lambda(o), 0 \leq t \leq r$.
Furthermore, if x is any point on the segment op r_{r} then $D u(x)=\Lambda(o) \omega$.
Proof. We prove part (a). Recall that $M(t)$ is convex in t, thus by 5 (i) and the first part of 3.1(iii),

$$
\begin{equation*}
\Lambda(o) \leq \frac{M(t)-u(o)}{t} \leq \frac{M(r)-u(o)}{r}=\Lambda(o), \quad 0 \leq t \leq r \tag{3.4}
\end{equation*}
$$

Thus $M(t)=u(o)+t \Lambda(o)$, and $u(t \omega) \leq u(o)+t \Lambda(o)$, for all $0 \leq t \leq r$. For $0<t<r$, let $p_{t} \in \partial B_{o}(t)$ be any point of maximum of u, set $\omega_{t}=p_{t} / t$. Since $M^{\prime}(t)=\Lambda(o)$, using (3.2) (ii) and (3.4), we have that $\Lambda\left(p_{t}\right)=\Lambda(o)$. For a fixed $t \leq r$, an application of (3.1) (iii) to the ball $B_{t}(o)$ results in

$$
\Lambda(o) \leq \frac{M(t)-u\left(s \omega_{t}\right)}{t-s} \leq \Lambda\left(p_{t}\right)=\Lambda(o), \quad \forall 0 \leq s<t
$$

Thus $u\left(s \omega_{t}\right)=u(o)+s \Lambda(o), 0 \leq s \leq t$, and this holds for every $0 \leq t<r$. Clearly, for a fixed $0<t<r,\left(u\left(s \omega_{t}\right)-u(o)\right) / s \rightarrow \Lambda(o)$ as $s \downarrow 0$. By the comments following (3.3), u is differentiable at o and the gradient direction is ω_{t}. This is true of any ω_{t} and any $0<t<r$. Clearly, $\omega=\omega_{t}, 0<t \leq r$, is unique. Moreover,
$M(t)=u(t \omega)=u(o)+t \Lambda(o), 0 \leq t \leq r$. By the second part of 3.1)(iii) and 3.2)(iii), $\Lambda(r \omega)=\Lambda(o)=M^{\prime}(r-)$, for any $p_{r} \in B_{r}(o)$. It is also clear that $r \omega$ is a point of maximum of u on $\partial B_{r}(o)$.

Now suppose that $\omega_{1} \in S^{n-1}$ is such that $u\left(r \omega_{1}\right)=M(r)$. Using the special nature of $M(t)$, we see from the second part of 3.1 (iii) that $\Lambda\left(r \omega_{1}\right)=\Lambda(o)$. Using 3.1)(i) and arguing as above we see that ω_{1} is another gradient direction at o. Thus by (3.3), $\omega_{1}=\omega$. Also note that by (3.2) (iii), $M^{\prime}(r)=\Lambda(o)$. This also proves part (b). To show the last statement let $0 \leq s \leq r$ be such that $x=s \omega$. Then $B_{\rho}(x) \subset$ $B_{\rho+s}(o), u(x)=u(o)+s \Lambda(o)$ and $M_{x}(\rho)=\sup _{B_{\rho}(x)} u=M(\rho+s)=u(x)+\rho \Lambda(o)$, $\rho \leq r-s$. The rest now follows from the comments following (3.3), see [7].

Remark 3.2. An analogous version of Lemma 3.1 holds for the case of minima.
In the rest of this work we will have occasion to use a version of Rolle's property. We refer the reader to the Appendix for a proof in the case $n \geq 3$.

Remark 3.3. Suppose that $B_{r}(o) \subset \Omega$; let $p_{r} \in B_{r}(o)$ be any point such that $u\left(p_{r}\right)=M(r)$. Set $\omega_{r}=p_{r} / r$; we claim that for $0 \leq \rho<r, \Lambda(\rho \omega) \leq \Lambda\left(p_{r}\right)$. To see this note that $B_{(r-\rho)}(\rho \omega) \subset B_{r}(o)$ and $M_{\rho \omega}(r-\rho)=M(r)$. Thus using the first part of 3.1) (iii) in $B_{(r-\rho)}(\rho \omega)$, we see that $\Lambda(\rho \omega) \leq(M(r)-u(\rho \omega)) /(r-\rho) \leq \Lambda\left(p_{r}\right)$. Moreover, we claim that there is a sequence of points x_{k} on the line segment $o p_{r}$ such that $x_{k} \rightarrow p_{r}$ and $\Lambda\left(x_{k}\right) \uparrow \Lambda\left(p_{r}\right)$. To see this note that for $0 \leq s \leq t<r$, (3.1) (iii) implies

$$
\begin{equation*}
\sup (\Lambda(o), \Lambda(s w)) \leq \frac{M(r)-u(s \omega)}{r-s} \leq \frac{M(r)-u(t \omega)}{r-t} \leq \Lambda\left(p_{r}\right) \tag{3.5}
\end{equation*}
$$

An application of Rolle's property to $u\left(p_{r}\right)-u(s \omega)$ and $u\left(p_{r}\right)-u(t \omega)$ in 3.5) implies there are $\theta_{s} \in(s, r), \theta_{t} \in(t, r)$ and $\omega_{\theta_{s}}, \omega_{\theta_{t}} \in S^{n-1}$ such that $\Lambda(o) \leq$ $\Lambda\left(\theta_{s} \omega\right)\left\langle\omega_{\theta_{s}}, \omega\right\rangle \leq \Lambda\left(\theta_{t} \omega\right)\left\langle\omega_{\theta_{t}}, \omega\right\rangle \leq \Lambda\left(p_{r}\right)$. Also from (3.5), we see that $\Lambda(o) \leq$ $\Lambda(s \omega) \leq \Lambda\left(\theta_{s} \omega\right) \leq \Lambda\left(p_{r}\right)$. We iterate the latter using (3.5) as follows. Starting with $s \geq 0$ and setting $s_{1}=s, s_{2}=\theta_{s_{1}}$ and $s_{k+1}=\theta_{s_{k}}, k=2, \ldots$, we employ

$$
\begin{equation*}
\Lambda\left(s_{k} \omega\right) \leq \frac{M(r)-u\left(s_{k} \omega\right)}{r-s_{k}}=\Lambda\left(s_{k+1} \omega\right)\left\langle\omega, \omega_{s_{k+1}}\right\rangle \leq \Lambda\left(s_{k+1} \omega\right) \leq \Lambda\left(p_{r}\right) \tag{3.6}
\end{equation*}
$$

to see that (i) $s_{k} \uparrow r$, (ii) $\Lambda\left(s_{1} \omega\right) \leq \Lambda\left(s_{1} \omega\right) \leq \Lambda\left(s_{2} \omega\right) \leq \ldots \leq \Lambda\left(s_{k} \omega\right) \leq \cdots \leq \Lambda(p)$. To see (i) suppose that $s_{k} \uparrow s<r$, then (3.1)(i) and the second inequality in (3.6) would then imply that $\Lambda(s) \leq[M(r)-u(s \omega)] /(r-s) \leq \Lambda(s)$. Lemma 3.1 would then hold and for $s<t<r, \Lambda(t)=\Lambda(s)=\Lambda\left(p_{r}\right)$. We may now select $s_{k} \uparrow r$. Finally, employing the definition of s_{k} and the second part of (3.1) (iii) in (3.6), we obtain that $\Lambda\left(s_{k} \omega\right) \uparrow \Lambda(p)$ as $s_{k} \uparrow r$ and $\omega_{s_{k}} \rightarrow \omega$.

Next we discuss the nature of u near points of maximum of Λ. We recall 3.3) and the discussion just following it. Let $B_{r}(o) \Subset \Omega$; for $0<t \leq r$, again p_{t} will denote any point of maximum of u on $\partial B_{t}(o)$ and q_{t} any point of minimum. Once again set $\omega_{t}=p_{t} / t$ and $\nu_{t}=q_{t} / t$. We restate (3.3) for ease of presentation. If
$t_{k} \downarrow 0$ with $\omega_{t_{k}} \rightarrow \omega$ then $\nu_{t_{k}} \rightarrow \nu=-\omega$ and

$$
\begin{align*}
\lim _{t_{k} \downarrow 0} \frac{u\left(t_{k} \omega\right)-u(o)}{t_{k}} & =\lim _{t_{k} \downarrow 0} \frac{u\left(t_{k} \omega_{t_{k}}\right)-u(o)}{t_{k}} \\
& =-\lim _{t_{k} \downarrow 0} \frac{u\left(t_{k} \nu_{t_{k}}\right)-u(o)}{t_{k}} \tag{3.7}\\
& =-\lim _{t_{k} \downarrow 0} \frac{u\left(t_{k} \nu\right)-u(o)}{t_{k}}=\Lambda(o)
\end{align*}
$$

Also $M\left(t_{k}\right)$ and $m\left(t_{k}\right)$ occur near $t_{k} \omega$ and $-t_{k} \omega$ when t_{k} is small. We refer to ω, ν as limit directions.

Lemma 3.4. Let u be infinity-harmonic in Ω and $B_{r}(o) \Subset \Omega$. Also set $\Lambda^{s}=$ $\sup _{x \in \bar{B}_{r}(o)} \Lambda(x)>0$, let $y \in \partial B_{r}(o)$ be such that $\Lambda(y)=\Lambda^{s}$. Let H_{y} denote the $n-1$ dimensional plane tangential to $\partial B_{r}(o)$ at y. Then only one of the following happens.
Case(a): There is a straight segment $x y$ with $x \in \partial B_{r}(o)$ such that u is a linear function on $x y$. More precisely, for every $0 \leq t \leq|x-y|$, either (i) $u(y+t e)=$ $u(y)+t \Lambda^{s}$, or (ii) $u(y+t e)=u(y)-t \Lambda^{s}$, where $e=(x-y) /|x-y|$. Moreover, u is differentiable on the segment $x y$, and if $z \in x y$ then in (i) $D u(z)=\Lambda^{s} e$, and in (ii) $D u(z)=-\Lambda^{s} e$.

Case (b): For every $s>0$, all the points of extrema of u on $\partial B_{s}(y)$ lie outside $\bar{B}_{r}(o)$. In particular all limit directions ω, ν (see comment following (3.7) lie in H_{y}. Moreover, if ω is a limit direction, $s_{k} \downarrow 0$ the corresponding sequence, $\eta \in S^{n-1}$ and $y_{k} \in \partial B_{r}(o)$ is the point nearest to $y+s_{k} \eta$ then $\lim _{s_{k} \downarrow 0}\left(u\left(y_{k}\right)-u(y)\right) / s_{k}=\Lambda^{s}\langle\omega, \eta\rangle$.

Proof. Assume that Case (b) is not true. There is a ball $B_{\delta}(y)$ and a point $p \in$ $\partial B_{\delta}(y) \cap \bar{B}_{r}(o)$ such that $u(p)=M_{y}(\delta)$. Our assumption of a point of maximum of u on $\partial B_{\delta}(y)$, lying in $\bar{B}_{r}(o)$, is not restrictive and the arguments we use will apply equally to a minimum. By (3.1)(iii) or even (2.1), $\Lambda(p) \geq \Lambda(y)$ implying that $\Lambda(p)=\Lambda^{s}$. Set $\omega=(p-y) / \delta$; by Lemma 3.1, we see that (i) $u(y+t \omega)=u(y)+t \Lambda^{s}$, $0 \leq t \leq \delta$, (ii) u is differentiable everywhere on the segment $y p$ with $D u(z)=\Lambda^{s} \omega$, for any z on $y p$, and (iii) p is the only point of maximum on $\partial B_{\delta}(y)$. If $p \in \partial B_{r}(o)$, then $x=p$ and the lemma holds. Assume that $p \in B_{r}(o)$; set $y_{1}=y, y_{2}=p$, $\omega_{1}=\omega$ and $d_{1}=\delta$. Note that ω_{1} points into $B_{r}(o)$. We repeat the argument at y_{2} as follows. Set $d_{2}=r-\left|y_{2}\right|$ and $y_{3} \in \partial B_{d_{2}}\left(y_{2}\right)$ be a point of maximum. By 5 (iii), $\Lambda\left(y_{3}\right) \geq \Lambda\left(y_{2}\right)=\Lambda^{s}$ implying $\Lambda\left(y_{3}\right)=\Lambda^{s}$; set $\omega_{2}=\left(y_{3}-y_{2}\right) / d_{2}$. Again by Lemma 3.1, u is differentiable on $y_{2} y_{3}$ with $u\left(y_{2}+t \omega_{2}\right)=u\left(y_{2}\right)+t \Lambda^{s}=u\left(y_{1}\right)+\left(t+d_{1}\right) \Lambda^{s}$, $0 \leq t \leq d_{2}$. By the uniqueness of gradient direction at $y_{2}, \omega_{2}=\omega_{1}=\omega$ and $y_{1} y_{3}$ is a straight segment. If $y_{3} \in \partial B_{r}(o)$ the process stops. Otherwise assume that we have a sequence of points $\left\{y_{i}\right\}_{i=1}^{k} \in B_{r}(o)$, with $\omega_{i}=\left(y_{i+1}-y_{i}\right) / d_{i}=\omega$, $i=1,2, \ldots, k-1$; i.e., $y_{1} y_{k}$ a straight segment parallel to ω, and $u\left(y_{1}+t \omega\right)=$ $u\left(y_{1}\right)+t \Lambda^{s}, 0 \leq t \leq \sum_{i=1}^{k} d_{i}$. Moreover, u is differentiable at every point z on $y_{1} y_{k}$ and $D u(z)=\Lambda^{s} \omega$. Now let $d_{k+1}=r-\left|y_{k}\right|$ and $y_{k+1} \in \partial B_{d_{k+1}}\left(y_{k}\right)$ such that $u\left(y_{k+1}\right)=M_{y_{k}}\left(d_{k+1}\right)$. Set $\omega_{k+1}=\left(y_{k+1}-y_{k}\right) / d_{k}$; then by Lemma 3.1, $\Lambda\left(y_{k+1}\right)=\Lambda\left(y_{k}\right)=\Lambda^{s}, y_{k} y_{k+1}$ is a straight segment and u is differentiable on $y_{k} y_{k+1}$. Thus $\omega_{k+1}=\omega$, i.e., $y_{1} y_{k+1}$ is a straight segment parallel to ω. Moreover, on $y_{1} y_{k+1}, u\left(y_{1}+t \omega\right)=u\left(y_{1}\right)+t \Lambda^{s}, 0 \leq t \leq \sum_{i=1}^{k+1} d_{i}$, and $D u(z)=\Lambda^{s} \omega$, for any z on $y_{1} y_{k+1}$. Either $y_{k+1} \in \partial B_{r}(o)$ in which case the process stops or we continue. By the maximum principle, $u\left(y_{1}\right)+\Lambda^{s} \sum_{i=1}^{k} d_{i} \leq M_{o}(r)<\infty$, for all $k \geq 1$. Thus
$d_{i} \rightarrow 0, y_{k} \rightarrow x$ where $x \in \partial B_{r}(o)$. Thus we obtain a straight segment $x y$ where $x \in \partial B_{r}(o)$ and the conclusions of Case (a) hold with $e=\omega$.

Now assume that Case (b) holds. We suppose that for every $s>0$, the points of extrema of u on $\partial B_{s}(o)$ lie outside $\bar{B}_{r}(o)$. Given any sequence $s_{k} \downarrow 0$ and $\omega_{s_{k}} \rightarrow \omega$ we also have $\nu_{s_{k}} \rightarrow-\omega$, see remarks preceding (3.7). Thus any limit direction ω lies in H_{y}. Let ω be a limit direction and $s_{k} \downarrow 0$ be such that $\left(u\left(y+s_{k} \omega\right)-\right.$ $u(y)) / s_{k} \rightarrow \Lambda(y)$. For $k=1,2, \ldots$, let $y_{k} \in \partial B_{R}(o) \cap \partial B_{s_{k}}(y)$ be the point nearest to $y+s_{k} \omega$. Thus $y_{k}=y+s_{k} \zeta_{k}$, where $\zeta_{k} \in S^{n-1}$. Since the sphere is C^{2} at y, $\left|y_{k}-\left(y+s_{k} \omega\right)\right| / s_{k} \rightarrow 0$ and $\left\langle\omega, \zeta_{k}\right\rangle \rightarrow 1$. Thus we have that, near y,

$$
\begin{aligned}
\left|\frac{u\left(y_{k}\right)-u(y)}{s_{k}}-\Lambda^{s}\right| & \leq\left|\frac{u\left(y_{k}\right)-u\left(y+s_{k} \omega\right)}{s_{k}}\right|+\left|\frac{u\left(y+s_{k} \omega\right)-u(y)}{s_{k}}-\Lambda^{s}\right| \\
& \leq C\left|\zeta_{k}-\omega\right|+\left|\frac{u\left(y+s_{k} \omega\right)-u(y)}{s_{k}}-\Lambda^{s}\right|
\end{aligned}
$$

where $C>0$ is the local Lipschitz constant. Clearly, the conclusion holds when $\eta=\omega$ by letting $s_{k} \rightarrow 0$. The statement for general η may now be derived by using (3.3).

Remark 3.5. In Case (a) of Lemma 3.4 if z is any point in the interior of the segment $x y$ and $B_{s}(z) \subset B_{r}(o)$, then u has exactly one point of maximum and one point of minimum on $\partial B_{s}(z)$. Both these lie on $x y$. One may show this by applying 3.1 (iii) or 2.2. Lemma 3.4 also holds if a limit direction ω or $-\omega$, at y, points into $\bar{B}_{r}(o)$. One can find a small $\delta>0$ such that $M_{y}(\delta)$ occurs near $\delta \omega$ (analogous for a minimum) and hence lies in $\bar{B}_{r}(o)$. See discussion at the beginning of this section. Using Lemma 3.1, one may show that $x y$ is parallel to ω.
Remark 3.6. By 3.2 (iii) there is at least one point $p_{r} \in \partial B_{r}(o)$, where $\Lambda\left(p_{r}\right)=$ $M^{\prime}(r+)$. Thus $\Lambda^{s} \geq M^{\prime}(r+)$. The existence of a straight line segment on which u is linear need not imply that u is affine. Take $u(x)=|x|, x \neq 0$. Also see capacitary rings [3].
Remark 3.7. If $y \in \partial B_{r}(o)$ is a point of extrema of u and $\Lambda(y)=\Lambda^{s}$, then by 3.2)(i) $D u(y)= \pm \Lambda^{s} \omega$, where $\omega=y / r$. Clearly, case (a) of Lemma 3.4 applies and u is linear and differentiable on $x y$, where $x=-y$. For $0 \leq t \leq r$, either $u(x+t \omega)=u(x)+t \Lambda^{s}$ or $u(x+t \omega)=u(x)-t \Lambda^{s}$. Since $\Lambda(y)=\Lambda(o)=\Lambda^{s}$, by Lemma 3.1 and Remark 3.2, for $0 \leq t \leq r$, we have $M^{\prime}(t)=-m^{\prime}(t)=\Lambda^{s}$; we also have $|M(t)-m(t)| \leq 2 t \Lambda^{s}$. Assume that $u(y)=M(r)$; linearity implies that for any $0 \leq t \leq r, u(o)=M(t)-t \Lambda^{s}, m(t)=u(-t \omega)=M(t)-2 t \Lambda^{s}$, and in particular, $u(x)=m(r)=M(r)-2 r \Lambda^{s}$. Employing Lemma 3.1, we see that $t \omega,-t \omega$ are the only points of extrema on $\partial B_{t}(o), t \omega$ being the maximum and $-t \omega$ being the minimum. Thus for every $0<t \leq r, m(t)<u(x)<M(t), x \in \partial B_{t}(o) \backslash\{ \pm t \omega\}$.

Next we show a property of u in the situation when Case (a) of Lemma3.4 holds. For $z \in \mathbb{R}^{n}$ and $e \in S^{n-1}$, let $\gamma(z, e)$ be the interior of the cone that has vertex z, aperture $\pi / 3$ and opens along e.

Lemma 3.8. Let $y \in \partial B_{r}(o)$ be such that $\Lambda(y)=\Lambda^{s}$. Assume Case (a) of Lemma 3.4 holds, that is, there is a segment $x y$ in $\bar{B}_{r}(o)$, with $x \in \partial B_{r}(o)$, such that u is linear and differentiable on $x y$. Assume that $u(y+t e)=u(y)+t \Lambda^{s}, 0 \leq t \leq d$, where $d=|x-y|$ and $e=(x-y) / d$. Let $y_{t}=y+t e, 0 \leq t<d$, then (i) $u(z) \geq u\left(y_{t}\right)$, $z \in \gamma\left(y_{t}, e\right) \cap B_{r}(o) \cap B_{d-t}\left(y_{t}\right)$, and (ii) $u(z) \leq u\left(y_{t}\right), z \in \gamma\left(y_{t},-e\right) \cap B_{r}(o) \cap B_{t}\left(y_{t}\right)$. The case when $u(y+t e)=u(y)-t \Lambda^{s}, 0 \leq t \leq d$, is analogous.

Proof. Let $0 \leq \varepsilon \leq d-t$, set $y_{t+\varepsilon}=y_{t}+\varepsilon e$. Now select $z \in B_{r}(o)$ such that $\left|z-y_{t}\right|=$ ε and set $e_{\varepsilon}=\left(z-y_{t+\varepsilon}\right) /\left|z-y_{t+\varepsilon}\right|$. Let θ be the angle between segments $z y_{t}$ and $x y_{t}$. By the Rolle's property, for some point a on the straight segment $z y_{t}$ and limit direction ω, we have $u(z)-u\left(y_{t+\varepsilon}\right)=u(z)-u\left(y_{t}\right)-\varepsilon \Lambda^{s}=2 \varepsilon \Lambda(a)\left\langle\omega, e_{\varepsilon}\right\rangle \sin (\theta / 2)$. Thus $u(z)-u\left(y_{t}\right)=2 \varepsilon\left(\Lambda^{s}+\Lambda(a)\left\langle\omega, e_{\varepsilon}\right\rangle \sin (\theta / 2)\right) \geq \varepsilon \Lambda^{s}(1-2 \sin (\theta / 2))$. It follows that $u(z) \geq u\left(y_{t}\right)$, if $\theta \leq \pi / 3$. We now take $y_{t-\varepsilon}=y_{t}-\varepsilon e, z \in B_{r}(o)$ with $\left|z-y_{t}\right|=\varepsilon$ and $\bar{e}_{\varepsilon}=\left(z-y_{t-\varepsilon}\right) /\left|z-y_{t-\varepsilon}\right|$. With θ as defined before, argue similarly to see that for some \bar{a} on $z y_{t-\varepsilon}$ and a limit direction $\bar{\omega}, u(z)-u\left(y_{t-\varepsilon}\right)=u(z)-u\left(y_{t}\right)+\varepsilon \Lambda^{s}=$ $2 \varepsilon \Lambda(\bar{a})\left\langle\bar{\omega}, \bar{e}_{\varepsilon}\right\rangle \sin [(\pi-\theta) / 2]$. Thus $u(z)-u\left(y_{t}\right) \leq \varepsilon \Lambda^{s}(-1+2 \sin [(\pi-\theta) / 2])$. If $\theta \geq 2 \pi / 3$ then $u(z) \leq u\left(y_{t}\right)$.

Remark 3.9. Let $B_{r}(o), x, y$ and e and be as in Lemma 3.8. Set $2 l=|x-y|$ and consider the triangle $\triangle o y x$. The angles $\angle o y x=\angle o x y \leq \pi / 3$ if and only if $l \geq r / 2$. Let $l \geq r / 2$ and $y_{t}=y+t e$ be such that $\angle o y_{t} x=\pi / 3$ then $t=l-\sqrt{\left(r^{2}-l^{2}\right) / 3}$. Since o lies in the cone $\gamma\left(y_{t}, e\right)$, Lemma 3.8 implies

$$
u(y)+\Lambda^{s}\left[l-\sqrt{\left(r^{2}-l^{2}\right) / 3}\right] \leq u(o) \leq u(x)-\Lambda^{s}\left[l-\sqrt{\left(r^{2}-l^{2}\right) / 3}\right]
$$

Also $u(o)-r \Lambda^{s} \leq u(y) \leq u(x) \leq u(o)+r \Lambda^{s}$. If $l \uparrow r$, we have $u(y) \rightarrow u(o)-r \Lambda^{s}(=$ $m(r))$ and $u(x) \rightarrow u(o)+r \Lambda^{s}(=M(r))$. See Remark 3.7 .

4. Proof of Theorem 1.2

Let $D \subset \mathbb{R}^{2}$ be the unit disc centered at o. We will often describe a point $z \in \mathbb{R}^{2}$ as $z=(x, y)$. Also set e_{1} and e_{2} to be the unit vectors along the positive x-axis and the positive y-axis. Let u be infinity-harmonic in a domain $\Omega \subset \mathbb{R}^{2}$ and $D \Subset \Omega$. Recall that u is C^{1} [11], and the use of this fact simplifies our presentation. However, a proof can be worked out without using this fact. Without any loss of generality, assume that $u(o)=0$. Let $M=\sup _{D} u$ and $m=\inf _{D} u$. Also let $p, q \in \partial D$ be such that $u(p)=M$ and $u(q)=m$. By Theorem 1.1, $L=\sup _{x \in \bar{D}}|D u(x)|$. By Remark 3.7. p and q are antipodal points and we may take both of them on the y-axis with $p=(0,1)$ and $q=(0,-1)$. Also $u(0, t)=m+(t+1) L=M-(1-t) L,-1 \leq t \leq 1$. Moreover, for $-1 \leq t \leq 1$, and $D u(0, t)=L e_{2}$. Let $H+=\left\{z \in \mathbb{R}^{2}: x(z) \geq 0\right\}$ denote the right half disc and $H-=\left\{z \in \mathbb{R}^{2}: x(z) \leq 0\right\}$ the left half-disc. Let the right semi-circle be denoted by $I+=\partial D \cap H+$ and the left semi-circle by $I-=\partial D \cap H-$. We will work in $H-$ and the analysis is analogous in $H+$. Let $a, b \in I-$ with $a \neq b$. We will denote the circular arc on ∂D, with end points a and b, by $\widehat{a b}$, and use $\overline{a b}$ for the straight segment with end points a and b. Also $l(a, b)$ will denote the arc length of $\widehat{a b}$.
Step 1. Let $a, b \in I-$ with $a \neq b$. Then
(i) there is a point point $c \in D$, on the straight segment $a b$ such that $u(a)-u(b)=\langle D u(c), a-b\rangle$, and (ii) there is a point $d \in \partial D$, on $\widehat{a b}$, and a vector $e_{d} \in S^{1}$, with e_{d} tangential to ∂D (perpendicular to the segment od) at d, such that $u(a)-u(b)=\left\langle D u(d), e_{d}\right\rangle l(a, b)$.
In 4.1 (ii), if $u(a)=u(b)$ then $\left\langle D u(d), e_{d}\right\rangle=0$, implying $D u(d) \perp e_{d}$ and parallel to od. Noting that $D u(d)=L$, by Case (a) of Lemma 3.4, we have a straight segment originating at d, along od and lying in D, on which u is linear. Since this segment terminates on ∂D, it passes through o, and differentiability of u at o implies that $\omega_{d}=D u(d) / L=e_{2}$. Thus either $a=b=p$ or $a=b=q$.

Also see Remark 3.7 and the remarks preceding Step 1. Clearly, $u(a) \neq u(b)$ if $a, b \in I-$ and $a \neq b$. Since $u(p)>u(q)$, we see that $u(z)=u(x, y), z \in I-$, is increasing in y. Recalling (4.1)(i) and (ii), we see that for $a, b \in I-, a \neq b$, $u(a)-u(b)=\left\langle D u(d), e_{d}\right\rangle l(a, b)=\langle D u(c), a-b\rangle \neq 0$. Let ω_{d} denote the gradient direction of u at d. Noting that $|D u(d)|=L \geq|D u(c)|$ and $l(a, b)>|a-b|$, it follows that $\left\langle\omega_{d}, e_{d}\right\rangle \neq 0, \pm 1$. This implies that ω_{d} does not lie in the tangent space of ∂D at d nor is it parallel to segment od. Case(a) of Lemma 3.4 now applies and we have a straight segment originating from d and terminating at $d \in \partial D$ such that u is linear on the segment $d \bar{d}$, and $|D u(z)|=L, z \in d \bar{d}$, and if $\zeta=(d-\bar{d}) /|d-\bar{d}|$ then $D u(z)= \pm L \zeta$.

From here on T will denote a segment of the type $d \bar{d}$, as described in Step 1. Let $z_{T}=\left(x_{T}, y_{T}\right)$ and $\bar{z}_{T}=\left(\bar{x}_{T}, \bar{y}_{T}\right)$ denote the two end points that lie on the unit circle ∂D. We set z_{T} to be the higher end point and \bar{z}_{T} will denote the lower end point, i.e., $y_{T} \geq \bar{y}_{T}$. Also set e_{T} to be the unit vector parallel to T and pointing towards z_{T}. By the comments in Step $1, u\left(z_{T}\right) \geq u\left(\bar{z}_{T}\right), u$ is linear on T and $D u(x)=L e_{T}$ for any x on T. Also let $\lambda(T)$ denote the length of T. ¿From now on we will call such segments T, as described in Step 1, as segments of type S.
Step 2. By taking arbitrary points $a, b \in I-, a \neq b$ in 4.1)(ii), we see that the points d, on the arc $\widehat{a b}$ form a dense set in the unit circle ∂D. By Step 1, we obtain infinitely many such segments T of type S. By the uniqueness of gradient directions any two such segments intersect if and only if they are identical. By the discussion preceding Step 1, $p q$ is one such segment. It also follows then that segments T of type S either lie completely in $H+$ or in $H-$. Suppose that T_{1} and T_{2} are two such non-overlapping segments in H - then one lies to the "left" of the other. More precisely, if $y_{T_{1}}>y_{T_{2}}$, then

$$
\begin{equation*}
\bar{y}_{T_{1}}<\bar{y}_{T_{2}}, \quad \lambda\left(T_{1}\right)>\lambda\left(T_{2}\right), \quad \operatorname{dist}\left(o, T_{1}\right)<\operatorname{dist}\left(o, T_{2}\right) . \tag{4.2}
\end{equation*}
$$

An analogous property holds in $H+$.
Step 3. For $k=1,2,3, \ldots$ let T_{k} be a segment of type S in $H-$ such that $y_{T_{k}} \uparrow 1$. Since the end points $z_{T_{k}}$ and $\bar{z}_{T_{k}}$ lie on the unit circle, $z_{T_{k}} \rightarrow p$ and $x_{T_{k}} \uparrow 0$. Moreover by Step 2 and (4.2), $\bar{y}_{T_{k}} \downarrow y_{\infty} \geq-1$ and $\bar{x}_{T_{k}} \rightarrow x_{\infty}$. Set $e_{\infty}=\left(-x_{\infty}, 1-y_{\infty}\right) / \sqrt{x_{\infty}^{2}+\left(1-y_{\infty}\right)^{2}}$, clearly, $e_{T_{k}} \rightarrow e_{\infty}$. Thus the segments T_{k} tend to the segment T_{∞} with end points $z_{T_{\infty}}=(0,1)$ and $\bar{z}_{T_{\infty}}=\left(x_{\infty}, y_{\infty}\right)$. Also by Step 1 , for every k and any $0 \leq t \leq \lambda\left(T_{k}\right), u\left(z_{T_{k}}-t e_{T_{k}}\right)=u\left(z_{T_{k}}\right)-t L$, and $D u\left(z_{T_{k}}-t e_{T_{k}}\right)=L e_{T_{k}}$. Since u is C^{1} we see that for any $0 \leq t \leq \lambda\left(T_{\infty}\right)$, $u\left(p-t e_{\infty}\right)=M-t L, D u\left(p-t e_{\infty}\right)=L e_{\infty}$, and T_{∞} is of type S. By the comments preceding Step 1, $D u(p)=L e_{2}=L e_{\infty}$, and $\left(x_{0}, y_{0}\right)=q$. Thus the segments T_{k} move right to the segment $p q$. As noted in Step 1, since the set of end points z_{T} and \bar{z}_{T}, of segments T of type S, are dense in ∂D, it is clear now that we can always find segments T arbitrarily close to the segment $p q$ and lying in $H-$.
Step 4. Suppose now that there is an $a \in D$ such that $|D u(a)|<L$, then there is a disc $D_{\varepsilon}(a) \subset D$ such that $|D u(w)|<L, w \in D_{\varepsilon}(a)$. Since $D_{\varepsilon}(a)$ cannot intersect the segment $p q$, it lies either in $H+$ or in $H-$. Assume that $D_{\varepsilon}(a) \subset H-$. Let $\eta_{a}=a /|a|$ and w_{ε} be the point on $\partial D_{\varepsilon}(a)$ nearest to o, i.e., $w_{\varepsilon}=(|a|-\varepsilon) \eta_{a}$. By the comment made at the end of Step 3, there are segments T of type S that intersect the segment $o w_{\varepsilon}$. These lie completely in $H-$. Consider now the set of such segments T and set y_{0} to be the infimum of y_{T} 's $(y$-coordinates of the higher end points) of these segments. Let $z_{0}=\left(x_{0}, y_{0}\right) \in I-$. Also by 4.2 , the supremum
\bar{y}_{0} of the \bar{y}_{T} 's (y-coordinates of the lower end points) of these particular segments exists. Clearly, $\bar{y}_{0} \leq y_{0}$; set $\bar{z}_{0}=\left(\bar{x}_{0}, \bar{y}_{0}\right) \in I-$. By employing 4.2), one can easily find a sequence segments T_{k} of type S, that intersect $o w_{\varepsilon}$, such that T_{k} 's tend to the segment $z_{0} \bar{z}_{0}$, i.e., $e_{T_{k}} \rightarrow e$, where $e=\left(z_{0}-\bar{z}_{0}\right) /\left|z_{0}-\bar{z}_{0}\right|$. Morever, since u is C^{1}, the straight segment $z_{0} \bar{z}_{0}$ is of type S, it intersects $o w_{\varepsilon}$ and

$$
\begin{equation*}
u\left(z_{0}-t e\right)=u\left(z_{0}\right)-t L, \quad 0 \leq t \leq\left|z_{0}-\bar{z}_{0}\right|, \quad D u\left(z_{0}-t e\right)=L e \tag{4.3}
\end{equation*}
$$

Now let T_{k} be segments of type S with $z_{T_{k}} \rightarrow z_{0}$ (this is possible by the density of z_{T} 's). We choose these to lie to the left of $z \bar{z}$, i.e., $y_{T_{k}} \uparrow y_{0}$ (see above). By the definition of z_{0} and our assumption about $D_{\varepsilon}(a)$, the segments T_{k} neither intersect ow w_{ε} nor $D_{\varepsilon}(a)$. We now consider the lower end points $\bar{z}_{T_{k}}$ of these T_{k} 's. Since $y_{T_{k}} \leq y_{0}$, 4.2) implies that $\inf _{k} \bar{y}_{T_{k}}>\bar{y}_{0}$ and $\inf _{k} \operatorname{dist}\left(o, T_{k}\right)>\operatorname{dist}\left(o, z_{0} \bar{z}_{0}\right)$. Let $\bar{y}_{1}=\inf _{k} \bar{y}_{T_{k}}$ and $\bar{z}_{1}=\left(\bar{x}_{1}, \bar{y}_{1}\right) \in I-$. It follows easily that the segment $z_{0} \bar{z}_{1}$ is type S. Let $\bar{e}=\left(z_{0}-\bar{z}_{1}\right) /\left|z_{0}-\bar{z}_{1}\right|$, then $e \neq \bar{e}$ since $\bar{z}_{0} \neq \bar{z}_{1}$. It now follows that on the segment $z_{0} \bar{z}_{1}$,

$$
u\left(z_{0}-t \bar{e}\right)=u\left(z_{0}\right)-t L, \quad 0 \leq t \leq\left|z_{0}-\bar{z}_{1}\right|, \quad D u\left(z_{0}-t \bar{e}\right)=L \bar{e}
$$

By (4.3), $D u\left(z_{0}\right)=L e=L \bar{e}$ and we have a contradiction. Thus the theorem holds and $|D u(w)|=L$, for all $w \in D$.

5. Appendix

We now prove a version of the Rolle's property in $\mathbb{R}^{n}, n \geq 3$.
Lemma 5.1. Let u be infinity-harmonic in $\Omega \subset \mathbb{R}^{n}, n \geq 3$. Let $x, y \in \Omega$ and $\sigma(s)$, $0 \leq s \leq 1$ be a C^{1} curve that lies completely in Ω with $\sigma(0)=x$ and $\sigma(1)=y$. Let $l(s)$ denote the arclength of the curve from $\sigma(0)$ to $\sigma(s)$. Then for some $0<\tau<1$, and vector $\omega_{\tau} \in S^{n-1}$, we have

$$
u(y)-u(x)=\Lambda(\sigma(\tau)) l(1)\left\langle\omega_{\tau}, \sigma^{\prime}(\tau)\right\rangle /\left|\sigma^{\prime}(\tau)\right|
$$

Proof. The proof utilizes simple calculus ideas and (3.3)(i). Without any loss of generality, take $x=o, u(o)=0$, and set $v(s)=u(\sigma(s))-u(y) l(s) / l(1), 0 \leq$ $s \leq 1$. Then $v(s)$ is continuous and $v(0)=v(1)=0$. Suppose that v has a positive maximum at some $0<\tau<1$. Thus $u(\sigma(\tau))-u(y) l(\tau) / l(1) \geq u(\sigma(s))-$ $u(y) l(s) / l(1), 0 \leq s \leq 1$, and

$$
\begin{equation*}
u(\sigma(s))-u(\sigma(\tau)) \leq u(y)(l(s)-l(\tau)) / l(1), \quad 0 \leq s \leq 1 \tag{5.1}
\end{equation*}
$$

Set $z=\sigma(\tau)$ and $e=\sigma^{\prime}(\tau) /\left|\sigma^{\prime}(\tau)\right|$. By 3.3)(i), there exists a limit direction $\omega_{\tau} \in S^{n-1}$ and $r_{k} \downarrow 0$ such that $\lim _{r_{k} \downarrow 0}\left(u\left(z+r_{k} \omega_{\tau}\right)-u(z)\right) / r_{k}=\Lambda(z)$. Let $z_{k}=z-r_{k} e, \xi_{k}=z+r_{k} e$; denote by s_{k}, the largest value of $s \leq \tau$ such that $\sigma(s) \in \partial B_{r_{k}}(z)$, and by \bar{s}_{k}, the smallest value of $s \geq \tau$ such that $\sigma\left(\bar{s}_{k}\right) \in \partial B_{r_{k}}(z)$. Since σ is C^{1} and u is locally Lipschitz, the following hold for small r_{k} :

$$
\begin{gather*}
\left|\sigma^{\prime}(\tau)\right|\left(\tau-s_{k}\right), \quad\left|\sigma^{\prime}(\tau)\right|\left(\bar{s}_{k}-\tau\right) \approx r_{k} \\
|\sigma(s)-z|-\left|\sigma^{\prime}(\tau)(s-\tau)\right|=o(|s-\tau|), \\
\left|\sigma\left(s_{k}\right)-z_{k}\right|, \quad\left|\sigma\left(\bar{s}_{k}\right)-\xi_{k}\right|=o\left(r_{k}\right), \tag{5.2}\\
\mid u\left(z_{k}\right)-u\left(\sigma\left(s_{k}\right)|, \quad| u\left(\xi_{k}\right)-u\left(\sigma\left(\bar{s}_{k}\right) \mid=o\left(r_{k}\right) .\right.\right.
\end{gather*}
$$

From 5.1,

$$
\frac{u\left(\sigma\left(s_{k}\right)\right)-u(z)}{r_{k}} \leq-\frac{u(y)\left[l(\tau)-l\left(s_{k}\right)\right]}{l(1) r_{k}}, \quad \frac{u\left(\sigma\left(\bar{s}_{k}\right)\right)-u(z)}{r_{k}} \leq \frac{u(y)\left[l\left(\overline{s_{k}}\right)-l(\tau)\right]}{l(1) r_{k}}
$$

Using (5.2) and taking limits in the above stated inequalities, we obtain that

$$
\begin{align*}
\lim _{r_{k} \downarrow 0} \frac{u\left(\sigma\left(s_{k}\right)\right)-u(z)}{r_{k}} & =\lim _{r_{k} \downarrow 0} \frac{u\left(z_{k}\right)-u(z)}{r_{k}}=-\Lambda(z)\left\langle\omega_{\tau}, e\right\rangle \\
& \leq \lim _{r_{k} \downarrow 0}-\frac{u(y)\left(l(\tau)-l\left(s_{k}\right)\right)}{l(1) r_{k}}=-\frac{u(y)}{l(1)} \tag{5.3}
\end{align*}
$$

Using \bar{s}_{k} and ξ_{k}, and taking limits as in (5.3), we see that $\Lambda(z)\left\langle\omega_{z}, e\right\rangle \leq u(y) / l(1)$. The conclusion of the lemma holds. The analyses when $v(s)=0$, for all $s>0$, or when $v(s)$ has a negative minimum are analogous.

Acknowledgments. We thank the anonymous referee for several comments that have helped simplify and improve this work.

References

[1] Aronsson G.; Crandall, M. G.; Juutinen, P.; A tour of the Theory of Absolutely Minimizing Functions, Bull. Amer. Math. Soc. (N.S.) 41(2004), no. 4, 439-505
[2] Barles, G; Busca, J,; Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth order term, Comm. Partial Differential equations 26 (2001), no. 11-12, 2323-2337
[3] Bhattacharya, T.; On the properties of ∞-harmonic functions and an application to capacitary convex rings, Electron. J. Differ. Equ, vol 2002(2002), no 101, pp 1-22.
[4] Bhattacharya, T.; Some observations on the local behaviour of infinity-harmonic functions. Differential and Integral Equations, vol 19, no 8(2006), 945-960.
[5] Bhattacharya, T.; DiBenedetto, E.; Manfredi, J. J.; Limits as $p \rightarrow \infty$ of $\Delta_{p} u_{p}=f$ and related extremal problems, Rend. Sem. Mat. Univers. Politecn. Torino, Fascicolo Speciale (1989) Nonlinear PDE's.
[6] Crandall, M. G.; Evans, L. C.; Gariepy, R. F.; Optimal Lipschitz extensions and the infinityLaplacian, Calculus of Variations and Partial Differential Equations, vol 13, issue 2, pp 123-139.
[7] Crandall, M. G.; Evans, L. C.; A note on infinity-harmonic functions, Electronic Journal of Differential Equations, Conf 06, 2001, 123-129.
[8] Crandall, Michael. G.; Gunnarsson, Gunnar; Wang, Peiyong; Uniqueness of the ∞-harmonic functions and the Eikonal equation, Preprint.
[9] Jensen, R. R.; Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 5174.
[10] Lindqvist, P.; Manfredi, J. J.; The Harnack inequality for ∞-harmonic functions, Electron. J. Diff. Equations, 1995 (1995), No. 4, 1-5.
[11] Savin, $\mathrm{O} ; C^{1}$ regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal., 176 (2005), no. 3, 351-361.

Tilak Bhattacharya
Department of Mathematics, Western Kentucky University, Bowling Green, Ky 42101, USA

E-mail address: tilak.bhattacharya@wku.edu

