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REMARKS ON THE GRADIENT OF AN
INFINITY-HARMONIC FUNCTION

TILAK BHATTACHARYA

Abstract. In this work we (i) prove a maximum principle for the modulus of

the gradient of infinity-harmonic functions, (ii) prove some local properties of

the modulus, and (iii) prove that if the modulus is constant on the boundary
of a planar disc then it is constant inside.

1. Introduction

In this work we discuss some local properties of the modulus of the gradient
of the gradient of an infinity-harmonic function. Differentiability remains an open
problem, except in the planar case [11]; however, a quantity, which would be the
modulus should differentiability hold, does exist. Our effort in this note is to prove a
maximum principle for the modulus and record some local properties of an infinity-
harmonic function at points where the modulus is a maximum. In particular, we
prove that if the modulus is constant on the boundary of a planar disc then it is
constant inside.

We start with some notations. Let Ω ⊂ Rn, n ≥ 2, will denote a bounded
domain, the origin o will be assumed to lie in Ω. Let Br(x), x ∈ Rn, be the ball
of radius r with center x. Let Ā denote the closure of a set A and Ac = Rn \ A.
An upper semicontinuous function u, defined in Ω, is infinity-subharmonic in Ω if
it solves

∆∞u(x) =
n∑

i,j=1

Diu(x)Dju(x)Diju(x) ≥ 0, x ∈ Ω, (1.1)

in the viscosity sense. A lower semicontinuous function u is infinity-superharmonic
in Ω if ∆∞u(x) ≤ 0, x ∈ Ω, in the viscosity sense. Moreover, u is infinity-
harmonic in Ω if it is both infinity-subharmonic and infinity-superharmonic in Ω.
Our work exploits the cone comparison property satisfied by u, see [6]. Also see
[1, 3, 4, 5, 8] in this connection. For x ∈ Ω and Br(x) b Ω, for 0 ≤ t ≤ r, we
define Mx(t) = supBt(x) u, mx(t) = infBt(x) u. For infinity-subharmonic functions,
Mx(t) = sup∂Bt(x) u, and for infinity-superharmonic functions, mx(t) = inf∂Bt(x) u.
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The existence of the following limits is well known [6, Lemma 2.7],

lim
t↓0

Mx(t)− u(x)
t

= Λ+(x), when u is infinity-subharmonic,

lim
t↓0

u(x)−mx(t)
t

= Λ−(x), when u is infinity-superharmonic.
(1.2)

Moreover, if u is infinity-harmonic then Λ+(x) = Λ−(x) = Λ(x), and if also differ-
entiable at x, then Λ(x) = |Du(x)|. See [1, 4, 6, 7]. We now state the two main
results of this work.

Theorem 1.1 (Maximum Principle). Let Ω ⊂ Rn and Ω1 b Ω. Recall the
statements in (1.2). (i) If u is infinity-subharmonic in Ω, then supx∈Ω̄1

Λ+(x) =
supx∈∂Ω1

Λ+(x), and (ii) if u is infinity-superharmonic in Ω, then supx∈Ω̄1
Λ−(x) =

supx∈∂Ω1
Λ−(x). In particular, if u is infinity-harmonic then supx∈Ω̄1

Λ(x) =
supx∈∂Ω1

Λ(x).

The anonymous referee pointed out this general version of Theorem 1.1. An older
version of this theorem was stated only for infinity-harmonic functions. A proof
will be presented in Section 2. The main idea of the proof is to exploit the result
about increasing slope estimate in [6, Lemma 3.3]. In [4], these have been referred
to as Hopf derivatives in the case of infinity-harmonic functions. The properties of
the latter will be used to prove the second main result of this work.

Theorem 1.2. Let Ω ⊂ R2 and Br(x) b Ω. Let u be infinity-harmonic in Ω.
Suppose that for some L > 0 and for every y ∈ ∂Br(x), Λ(y) = |Du(y)| = L, then

(i) for any w ∈ Br(x), |Du(w)| = L, and
(ii) given any point z ∈ Br(x) there is a straight segment T , with its end points

on ∂Br(x) and containing z, such that u is linear on T . Also, if eT is
a unit vector parallel to T then for any ξ on T either Du(ξ) = LeT , or
Du(ξ) = −LeT . In addition, if T1 and T2 are any two such segments then
either T1 coincides with T2 or they are distinct.

At this time it is unclear whether or not this holds in Rn with n ≥ 3. Theorem 1.2
does not hold in general and the convexity of the domain seems to play a role in the
proof this result. Consider the example u(x, y) = x4/3 − y4/3 on R2, where a point
is described as (x, y). Then Λ(x, y) = |Du(x, y)| = 4/3

√
x2/3 + y2/3, and consider

the regions Dc of the type bounded by x2/3 + y2/3 = c > 0. While |Du(x, y)| is
constant on ∂Dc, |Du(o)| = 0 and |Du(x, y)| < 4c2/3, (x, y) ∈ Dc.

We have divided our work as follows. Section 2 presents a proof of Theorem 1.1.
In Section 3, we study the behaviour of an infinity-harmonic function u near points
of maximum of Λ(x). In Section 4, we prove the rigidity result in Theorem 1.2.

2. Proof of main results

We first state results we will use in the proof of Theorem 1.1. Recall the state-
ments in (1.2). Let Ω ⊂ Rn and Br(x) b Ω. Let (a) pt ∈ ∂Bt(x), t ≤ r, denote
a point of maximum of u(p) on Bt(x), when u is infinity-subharmonic in Ω, and
(b) qt ∈ ∂Bt(x) denote a point of minimum of u on Bt(x), when u is infinity-
superharmonic in Ω. For part (i) of the theorem we will use the following.

Λ+(x) ≤ Mx(t)− u(x)
t

≤ inf
pt

Λ+(pt), and Λ+ is upper-semicontinuous. (2.1)
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While for part (ii) we use

Λ−(x) ≤ u(x)−mx(t)
t

≤ inf
qt

Λ−(qt), and Λ−(x) is upper-semicontinuous. (2.2)

See [6, Lemma 3.3]. We also point out that minor modifications of the arguments
in [3, 4] will also yield (2.1) and (2.2). We now prove Theorem 1.1 by employing
the above repeatedly.

Proof of Theorem 1.1. We first prove part (i). Let L = supx∈Ω̄1
Λ+(x), we assume

that L > 0. Since Λ+ is upper semi-continuous, for some y ∈ Ω̄1 we have Λ(y) = L.
If y ∈ ∂Ω1 then we are done. Assume then that y ∈ Ω1. We will show that in this
case there is a point ȳ ∈ ∂Ω1 with Λ(ȳ) = L. Set y1 = y and let d1 = dist(y1,Ωc

1).
Clearly, Bd1(y1) ⊂ Ω1; by (2.1), Λ+(p) ≥ (u(p)− u(y1))/d1 ≥ Λ+(y1) = L, for any
p ∈ ∂Bd1(y1) with u(p) = My1(d1). Thus Λ+(p) = L and u(p) = u(y1) + Ld1. If
p ∈ ∂Ω1 then we are done, otherwise set y2 = p. As already noted u(y2) = u(y1) +
Ld1. Let d2 = dist(y2,Ωc

1), and any p ∈ ∂Bd2(y2) be such that u(p) = Md2(y2).
Again by (2.1), Λ+(p) ≥ (u(p) − u(y2))/d2 ≥ Λ+(y2) = L. Thus Λ+(p) = L and
u(p) = u(y1)+L(d1 +d2). If p ∈ ∂Ω1 then we are done. Suppose now that we have
obtained sequences {yi}k

i=1, {di}k
i=1 such that

(a) di = dist(yi,Ωc
1), yi ∈ ∂Bdi−1(yi−1) and yi /∈ ∂Ω1, 2 ≤ i < k,

(b) u(yi) = Myi−1(di−1) = u(y1) + L
∑i−1

j=1 dj , 2 ≤ i ≤ k, and
(c) Λ+(yi) = Λ+(yj) = L, for all i, j = 1, 2, . . . , k.

Suppose that yk /∈ ∂Ω1. For any p ∈ ∂Bdk
(yk), with u(p) = Mdk

(yk), (2.1) implies
Λ+(p) ≥ (u(p) − u(yk))/dk ≥ Λ+(yk) = L. Thus Λ+(p) = L, u(p) = u(yk) + Ldk.
If p ∈ ∂Ω1 then we are done otherwise set yk+1 = p and note that u(yk+1) =
u(y1) + L

∑k
i=1 di and Λ+(yk+1) = L. By the maximum principle, for every k,

u(y1) + L
∑k

i=1 di = u(yk+1) ≤ supΩ1
u < ∞. Thus

∑∞
i=1 di < ∞ and di → 0.

Moreover, for i < j, |yi − yj | ≤
∑j−1

l=i |yl − yl+1| =
∑j−1

l=i dl is small if i is large.
Thus for some ȳ ∈ ∂Ω1, yi → ȳ and Λ+(ȳ) ≥ lim supk→∞ Λ+(yk) = L. Part
(ii) may now be proved analogously by using points of minima and (2.2). The
conclusion follows. �

Remark 2.1. In the case of infinity-harmonic functions, we can show using Lemma
3.1 (see Section 2) that the points y1, y2, . . . . all lie on a straight segment termi-
nating at ȳ. We also mention in passing that if Λs(r) = supx∈∂Br(o) Λ(x) then the
upper-semicontinuity of Λ and Theorem 1.1 implies that Λs(r) is right continuous.

3. Comments on the function Λ

For the remainder of this work u will denote an infinity-harmonic function. Our
effort in this section will be to describe the behaviour of u near points of maximum
of Λ. We recall some previously defined notations for ease of presentation. Let
Br(x) b Ω; a point pt ∈ ∂Bt(x), t ≤ r, will denote a point of maximum of u on
Bt(x). The direction (pt − x)/t will be denoted by ωt. The quantities Mx(t) and
mx(t) continue to denote the maximum and the minimum of u on Bt(x). Note that
Mx(t) and −mx(t) are convex in t. We will drop the subscript x when x = o. Next
we summarize the properties of the Hopf-derivaties which will be used repeatedly
in the rest of this work, see [4, Theorems 1 and 2]. We work in Br(o).

(i) M(t)−u(o)
t decreases to Λ(o) as t ↓ 0,
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(ii) for 0 ≤ s ≤ τ ≤ t ≤ r, we have Λ(o) ≤ supps∈∂Bs(o) Λ(ps) ≤ Λ(pτ ) ≤
infpt∈∂Bt(o) Λ(pt) ≤ Λ(pr), and

lim
t↓0

sup
pt∈∂Bt(o)

Λ(pt) = Λ(o), t ≤ r, (3.1)

(iii) Λ(o) ≤ M(r)−u(tωr)
r−t ≤ Λ(pr), and M(r)−u(tωr)

r−t increases to Λ(pr) as t ↑ r.
Moreover,

(i) u is differentiable at any pt ∈ ∂Bt(o) and Du(pt) = Λ(pt)ωt, t ≤ r,
(ii)

M ′(t−) ≤ inf
pt∈∂Bt(o)

Λ(pt) ≤ sup
pt∈∂Bt(o)

Λ(pt) ≤ M ′(t+), (3.2)

(iii) There exists pt ∈ ∂Bt(o) such that Λ(pt) = M ′(t+).
Analogous statements also hold for qt and m(t). Moreover, for any pair of sequences
rk ↓ 0, ωrk

∈ Sn−1, with ωrk
→ ω (by compactness such pairs do exist, also see [7]),

we have

lim
rk↓0

u(rkωrk
)− u(o)

rk
= lim

rk↓0

u(rkω)− u(o)
rk

= Λ(o),

lim
rk↓0

u(θrkη)− u(o)
rk

= θΛ(o)〈ω, η〉, ∀ η ∈ Sn−1,

(3.3)

for any fixed θ > 0. Note that M(rk) = u(rkωrk
). The above statements also apply

to points of minima. In particular, if νt = qt/t where u(qt) = m(t), then νrk
→ −ω.

If ω is the only limit point of ωt as t ↓ 0, then u is differentiable at o, see [7]. Also, if
ω ∈ Sn−1 is such that (3.3)(ii) holds for any sequence then ω is a gradient direction
and u is differentiable at o. We now prove the following result.

Lemma 3.1. Let u 6= 0 be infinity-harmonic in Ω and Br(o) b Ω.
(a) If Λ(o) = (M(r)−u(o))/r, then u is differentiable at o and Du(o) = Λ(o)ω,

for some ω ∈ Sn−1. Moreover, for 0 ≤ t ≤ r, M(t) = u(tω) = u(o)+ tΛ(o),
and for very t > 0 there is exactly one point pt ∈ ∂Bt(o) such that u(pt) =
M(t).

(b) If pr ∈ ∂Br(o) is such that Λ(pr) = Λ(o) then the same conclusion holds
for u with ω = pr/r, and M(t) = u(tω) = u(o) + tΛ(o), 0 ≤ t ≤ r.

Furthermore, if x is any point on the segment opr then Du(x) = Λ(o)ω.

Proof. We prove part (a). Recall that M(t) is convex in t, thus by 5(i) and the first
part of (3.1)(iii),

Λ(o) ≤ M(t)− u(o)
t

≤ M(r)− u(o)
r

= Λ(o), 0 ≤ t ≤ r. (3.4)

Thus M(t) = u(o) + tΛ(o), and u(tω) ≤ u(o) + tΛ(o), for all 0 ≤ t ≤ r. For
0 < t < r, let pt ∈ ∂Bo(t) be any point of maximum of u, set ωt = pt/t. Since
M ′(t) = Λ(o), using (3.2)(ii) and (3.4), we have that Λ(pt) = Λ(o). For a fixed
t ≤ r, an application of (3.1)(iii) to the ball Bt(o) results in

Λ(o) ≤ M(t)− u(sωt)
t− s

≤ Λ(pt) = Λ(o), ∀ 0 ≤ s < t.

Thus u(sωt) = u(o) + sΛ(o), 0 ≤ s ≤ t, and this holds for every 0 ≤ t < r. Clearly,
for a fixed 0 < t < r, (u(sωt) − u(o))/s → Λ(o) as s ↓ 0. By the comments
following (3.3), u is differentiable at o and the gradient direction is ωt. This is true
of any ωt and any 0 < t < r. Clearly, ω = ωt, 0 < t ≤ r, is unique. Moreover,
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M(t) = u(tω) = u(o) + tΛ(o), 0 ≤ t ≤ r. By the second part of (3.1)(iii) and
(3.2)(iii), Λ(rω) = Λ(o) = M ′(r−), for any pr ∈ Br(o). It is also clear that rω is a
point of maximum of u on ∂Br(o).

Now suppose that ω1 ∈ Sn−1 is such that u(rω1) = M(r). Using the special
nature of M(t), we see from the second part of (3.1)(iii) that Λ(rω1) = Λ(o). Using
(3.1)(i) and arguing as above we see that ω1 is another gradient direction at o. Thus
by (3.3), ω1 = ω. Also note that by (3.2)(iii), M ′(r) = Λ(o). This also proves part
(b). To show the last statement let 0 ≤ s ≤ r be such that x = sω. Then Bρ(x) ⊂
Bρ+s(o), u(x) = u(o) + sΛ(o) and Mx(ρ) = supBρ(x) u = M(ρ + s) = u(x) + ρΛ(o),
ρ ≤ r − s. The rest now follows from the comments following (3.3), see [7]. �

Remark 3.2. An analogous version of Lemma 3.1 holds for the case of minima.

In the rest of this work we will have occasion to use a version of Rolle’s property.
We refer the reader to the Appendix for a proof in the case n ≥ 3.

Remark 3.3. Suppose that Br(o) ⊂ Ω; let pr ∈ Br(o) be any point such that
u(pr) = M(r). Set ωr = pr/r; we claim that for 0 ≤ ρ < r, Λ(ρω) ≤ Λ(pr). To see
this note that B(r−ρ)(ρω) ⊂ Br(o) and Mρω(r−ρ) = M(r). Thus using the first part
of (3.1)(iii) in B(r−ρ)(ρω), we see that Λ(ρω) ≤ (M(r) − u(ρω))/(r − ρ) ≤ Λ(pr).
Moreover, we claim that there is a sequence of points xk on the line segment opr

such that xk → pr and Λ(xk) ↑ Λ(pr). To see this note that for 0 ≤ s ≤ t < r,
(3.1)(iii) implies

sup(Λ(o),Λ(sw)) ≤ M(r)− u(sω)
r − s

≤ M(r)− u(tω)
r − t

≤ Λ(pr). (3.5)

An application of Rolle’s property to u(pr) − u(sω) and u(pr) − u(tω) in (3.5)
implies there are θs ∈ (s, r), θt ∈ (t, r) and ωθs

, ωθt
∈ Sn−1 such that Λ(o) ≤

Λ(θsω)〈ωθs , ω〉 ≤ Λ(θtω)〈ωθt , ω〉 ≤ Λ(pr). Also from (3.5), we see that Λ(o) ≤
Λ(sω) ≤ Λ(θsω) ≤ Λ(pr). We iterate the latter using (3.5) as follows. Starting
with s ≥ 0 and setting s1 = s, s2 = θs1 and sk+1 = θsk

, k = 2, . . . , we employ

Λ(skω) ≤ M(r)− u(skω)
r − sk

= Λ(sk+1ω)〈ω, ωsk+1〉 ≤ Λ(sk+1ω) ≤ Λ(pr), (3.6)

to see that (i) sk ↑ r, (ii) Λ(s1ω) ≤ Λ(s1ω) ≤ Λ(s2ω) ≤ . . . . ≤ Λ(skω) ≤ · · · ≤ Λ(p).
To see (i) suppose that sk ↑ s < r, then (3.1)(i) and the second inequality in (3.6)
would then imply that Λ(s) ≤ [M(r) − u(sω)]/(r − s) ≤ Λ(s). Lemma 3.1 would
then hold and for s < t < r, Λ(t) = Λ(s) = Λ(pr). We may now select sk ↑ r.
Finally, employing the definition of sk and the second part of (3.1)(iii) in (3.6), we
obtain that Λ(skω) ↑ Λ(p) as sk ↑ r and ωsk

→ ω.

Next we discuss the nature of u near points of maximum of Λ. We recall (3.3)
and the discussion just following it. Let Br(o) b Ω; for 0 < t ≤ r, again pt will
denote any point of maximum of u on ∂Bt(o) and qt any point of minimum. Once
again set ωt = pt/t and νt = qt/t. We restate (3.3) for ease of presentation. If
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tk ↓ 0 with ωtk
→ ω then νtk

→ ν = −ω and

lim
tk↓0

u(tkω)− u(o)
tk

= lim
tk↓0

u(tkωtk
)− u(o)
tk

= − lim
tk↓0

u(tkνtk
)− u(o)
tk

= − lim
tk↓0

u(tkν)− u(o)
tk

= Λ(o).

(3.7)

Also M(tk) and m(tk) occur near tkω and −tkω when tk is small. We refer to ω, ν
as limit directions.

Lemma 3.4. Let u be infinity-harmonic in Ω and Br(o) b Ω. Also set Λs =
supx∈B̄r(o) Λ(x) > 0, let y ∈ ∂Br(o) be such that Λ(y) = Λs. Let Hy denote the
n− 1 dimensional plane tangential to ∂Br(o) at y. Then only one of the following
happens.
Case(a): There is a straight segment xy with x ∈ ∂Br(o) such that u is a linear
function on xy. More precisely, for every 0 ≤ t ≤ |x − y|, either (i) u(y + te) =
u(y) + tΛs, or (ii) u(y + te) = u(y)− tΛs, where e = (x− y)/|x− y|. Moreover, u
is differentiable on the segment xy, and if z ∈ xy then in (i) Du(z) = Λse, and in
(ii) Du(z) = −Λse.
Case (b): For every s > 0, all the points of extrema of u on ∂Bs(y) lie outside B̄r(o).
In particular all limit directions ω, ν (see comment following (3.7)) lie in Hy.
Moreover, if ω is a limit direction, sk ↓ 0 the corresponding sequence, η ∈ Sn−1 and
yk ∈ ∂Br(o) is the point nearest to y+skη then limsk↓0(u(yk)−u(y))/sk = Λs〈ω, η〉.

Proof. Assume that Case (b) is not true. There is a ball Bδ(y) and a point p ∈
∂Bδ(y) ∩ B̄r(o) such that u(p) = My(δ). Our assumption of a point of maximum
of u on ∂Bδ(y), lying in B̄r(o), is not restrictive and the arguments we use will
apply equally to a minimum. By (3.1)(iii) or even (2.1), Λ(p) ≥ Λ(y) implying that
Λ(p) = Λs. Set ω = (p−y)/δ; by Lemma 3.1, we see that (i) u(y+tω) = u(y)+tΛs,
0 ≤ t ≤ δ, (ii) u is differentiable everywhere on the segment yp with Du(z) = Λsω,
for any z on yp, and (iii) p is the only point of maximum on ∂Bδ(y). If p ∈ ∂Br(o),
then x = p and the lemma holds. Assume that p ∈ Br(o); set y1 = y, y2 = p,
ω1 = ω and d1 = δ. Note that ω1 points into Br(o). We repeat the argument at y2

as follows. Set d2 = r − |y2| and y3 ∈ ∂Bd2(y2) be a point of maximum. By 5(iii),
Λ(y3) ≥ Λ(y2) = Λs implying Λ(y3) = Λs; set ω2 = (y3 − y2)/d2. Again by Lemma
3.1, u is differentiable on y2y3 with u(y2 + tω2) = u(y2) + tΛs = u(y1) + (t + d1)Λs,
0 ≤ t ≤ d2. By the uniqueness of gradient direction at y2, ω2 = ω1 = ω and
y1y3 is a straight segment. If y3 ∈ ∂Br(o) the process stops. Otherwise assume
that we have a sequence of points {yi}k

i=1 ∈ Br(o), with ωi = (yi+1 − yi)/di = ω,
i = 1, 2, . . . , k − 1; i.e., y1yk a straight segment parallel to ω, and u(y1 + tω) =
u(y1) + tΛs, 0 ≤ t ≤

∑k
i=1 di. Moreover, u is differentiable at every point z on

y1yk and Du(z) = Λsω. Now let dk+1 = r − |yk| and yk+1 ∈ ∂Bdk+1(yk) such
that u(yk+1) = Myk

(dk+1). Set ωk+1 = (yk+1 − yk)/dk; then by Lemma 3.1,
Λ(yk+1) = Λ(yk) = Λs, ykyk+1 is a straight segment and u is differentiable on
ykyk+1. Thus ωk+1 = ω, i.e., y1yk+1 is a straight segment parallel to ω. Moreover,
on y1yk+1, u(y1 + tω) = u(y1) + tΛs, 0 ≤ t ≤

∑k+1
i=1 di, and Du(z) = Λsω, for any

z on y1yk+1. Either yk+1 ∈ ∂Br(o) in which case the process stops or we continue.
By the maximum principle, u(y1) + Λs

∑k
i=1 di ≤ Mo(r) < ∞, for all k ≥ 1. Thus
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di → 0, yk → x where x ∈ ∂Br(o). Thus we obtain a straight segment xy where
x ∈ ∂Br(o) and the conclusions of Case (a) hold with e = ω.

Now assume that Case (b) holds. We suppose that for every s > 0, the points of
extrema of u on ∂Bs(o) lie outside B̄r(o). Given any sequence sk ↓ 0 and ωsk

→ ω
we also have νsk

→ −ω, see remarks preceding (3.7). Thus any limit direction
ω lies in Hy. Let ω be a limit direction and sk ↓ 0 be such that (u(y + skω) −
u(y))/sk → Λ(y). For k = 1, 2, . . . , let yk ∈ ∂BR(o)∩ ∂Bsk

(y) be the point nearest
to y + skω. Thus yk = y + skζk, where ζk ∈ Sn−1. Since the sphere is C2 at y,
|yk − (y + skω)|/sk → 0 and 〈ω, ζk〉 → 1. Thus we have that, near y,∣∣u(yk)− u(y)

sk
− Λs

∣∣ ≤ ∣∣u(yk)− u(y + skω)
sk

∣∣ +
∣∣u(y + skω)− u(y)

sk
− Λs

∣∣
≤ C|ζk − ω|+

∣∣u(y + skω)− u(y)
sk

− Λs
∣∣,

where C > 0 is the local Lipschitz constant. Clearly, the conclusion holds when
η = ω by letting sk → 0. The statement for general η may now be derived by using
(3.3). �

Remark 3.5. In Case (a) of Lemma 3.4, if z is any point in the interior of the
segment xy and Bs(z) ⊂ Br(o), then u has exactly one point of maximum and one
point of minimum on ∂Bs(z). Both these lie on xy. One may show this by applying
(3.1)(iii) or (2.2). Lemma 3.4 also holds if a limit direction ω or −ω, at y, points
into B̄r(o). One can find a small δ > 0 such that My(δ) occurs near δω (analogous
for a minimum) and hence lies in B̄r(o). See discussion at the beginning of this
section. Using Lemma 3.1, one may show that xy is parallel to ω.

Remark 3.6. By (3.2)(iii) there is at least one point pr ∈ ∂Br(o), where Λ(pr) =
M ′(r+). Thus Λs ≥ M ′(r+). The existence of a straight line segment on which u
is linear need not imply that u is affine. Take u(x) = |x|, x 6= 0. Also see capacitary
rings [3].

Remark 3.7. If y ∈ ∂Br(o) is a point of extrema of u and Λ(y) = Λs, then by
(3.2)(i) Du(y) = ±Λsω, where ω = y/r. Clearly, case (a) of Lemma 3.4 applies
and u is linear and differentiable on xy, where x = −y. For 0 ≤ t ≤ r, either
u(x + tω) = u(x) + tΛs or u(x + tω) = u(x) − tΛs. Since Λ(y) = Λ(o) = Λs, by
Lemma 3.1 and Remark 3.2, for 0 ≤ t ≤ r, we have M ′(t) = −m′(t) = Λs; we also
have |M(t)−m(t)| ≤ 2tΛs. Assume that u(y) = M(r); linearity implies that for any
0 ≤ t ≤ r, u(o) = M(t) − tΛs, m(t) = u(−tω) = M(t) − 2tΛs, and in particular,
u(x) = m(r) = M(r) − 2rΛs. Employing Lemma 3.1, we see that tω, −tω are
the only points of extrema on ∂Bt(o), tω being the maximum and −tω being the
minimum. Thus for every 0 < t ≤ r, m(t) < u(x) < M(t), x ∈ ∂Bt(o) \ {±tω}.

Next we show a property of u in the situation when Case (a) of Lemma 3.4 holds.
For z ∈ Rn and e ∈ Sn−1, let γ(z, e) be the interior of the cone that has vertex z,
aperture π/3 and opens along e.

Lemma 3.8. Let y ∈ ∂Br(o) be such that Λ(y) = Λs. Assume Case (a) of Lemma
3.4 holds, that is, there is a segment xy in B̄r(o), with x ∈ ∂Br(o), such that u is
linear and differentiable on xy. Assume that u(y + te) = u(y) + tΛs, 0 ≤ t ≤ d,
where d = |x−y| and e = (x−y)/d. Let yt = y+te, 0 ≤ t < d, then (i) u(z) ≥ u(yt),
z ∈ γ(yt, e)∩Br(o)∩Bd−t(yt), and (ii) u(z) ≤ u(yt), z ∈ γ(yt,−e)∩Br(o)∩Bt(yt).
The case when u(y + te) = u(y)− tΛs, 0 ≤ t ≤ d, is analogous.
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Proof. Let 0 ≤ ε ≤ d−t, set yt+ε = yt+εe. Now select z ∈ Br(o) such that |z−yt| =
ε and set eε = (z − yt+ε)/|z − yt+ε|. Let θ be the angle between segments zyt and
xyt. By the Rolle’s property, for some point a on the straight segment zyt and limit
direction ω, we have u(z)− u(yt+ε) = u(z)− u(yt)− εΛs = 2εΛ(a)〈ω, eε〉 sin(θ/2).
Thus u(z)−u(yt) = 2ε (Λs + Λ(a)〈ω, eε〉 sin(θ/2)) ≥ εΛs (1− 2 sin(θ/2)). It follows
that u(z) ≥ u(yt), if θ ≤ π/3. We now take yt−ε = yt−εe, z ∈ Br(o) with |z−yt| = ε
and ēε = (z−yt−ε)/|z−yt−ε|. With θ as defined before, argue similarly to see that
for some ā on zyt−ε and a limit direction ω̄, u(z)− u(yt−ε) = u(z)− u(yt) + εΛs =
2εΛ(ā)〈ω̄, ēε〉 sin[(π − θ)/2]. Thus u(z) − u(yt) ≤ εΛs(−1 + 2 sin[(π − θ)/2]). If
θ ≥ 2π/3 then u(z) ≤ u(yt). �

Remark 3.9. Let Br(o), x, y and e and be as in Lemma 3.8. Set 2l = |x− y| and
consider the triangle 4oyx. The angles ∠oyx = ∠oxy ≤ π/3 if and only if l ≥ r/2.
Let l ≥ r/2 and yt = y + te be such that ∠oytx = π/3 then t = l −

√
(r2 − l2)/3.

Since o lies in the cone γ(yt, e), Lemma 3.8 implies

u(y) + Λs[l −
√

(r2 − l2)/3] ≤ u(o) ≤ u(x)− Λs[l −
√

(r2 − l2)/3].

Also u(o)− rΛs ≤ u(y) ≤ u(x) ≤ u(o)+ rΛs. If l ↑ r, we have u(y) → u(o)− rΛs(=
m(r)) and u(x) → u(o) + rΛs(= M(r)). See Remark 3.7.

4. Proof of Theorem 1.2

Let D ⊂ R2 be the unit disc centered at o. We will often describe a point z ∈ R2

as z = (x, y). Also set e1 and e2 to be the unit vectors along the positive x-axis and
the positive y-axis. Let u be infinity-harmonic in a domain Ω ⊂ R2 and D b Ω.
Recall that u is C1 [11], and the use of this fact simplifies our presentation. However,
a proof can be worked out without using this fact. Without any loss of generality,
assume that u(o) = 0. Let M = supD u and m = infD u. Also let p, q ∈ ∂D be such
that u(p) = M and u(q) = m. By Theorem 1.1, L = supx∈D̄ |Du(x)|. By Remark
3.7, p and q are antipodal points and we may take both of them on the y-axis with
p = (0, 1) and q = (0,−1). Also u(0, t) = m+(t+1)L = M − (1− t)L, −1 ≤ t ≤ 1.
Moreover, for −1 ≤ t ≤ 1, and Du(0, t) = Le2. Let H+ = {z ∈ R2 : x(z) ≥ 0}
denote the right half disc and H− = {z ∈ R2 : x(z) ≤ 0} the left half-disc. Let
the right semi-circle be denoted by I+ = ∂D ∩ H+ and the left semi-circle by
I− = ∂D ∩ H−. We will work in H− and the analysis is analogous in H+. Let
a, b ∈ I− with a 6= b. We will denote the circular arc on ∂D, with end points a

and b, by âb, and use āb for the straight segment with end points a and b. Also
l(a, b) will denote the arc length of âb.
Step 1. Let a, b ∈ I− with a 6= b. Then

(i) there is a point point c ∈ D, on the straight segment ab
such that u(a) − u(b) = 〈Du(c), a − b〉, and (ii) there is a
point d ∈ ∂D, on âb, and a vector ed ∈ S1, with ed tangen-
tial to ∂D (perpendicular to the segment od) at d, such that
u(a)− u(b) = 〈Du(d), ed〉l(a, b).

(4.1)

In (4.1)(ii), if u(a) = u(b) then 〈Du(d), ed〉 = 0, implying Du(d) ⊥ ed and parallel
to od. Noting that Du(d) = L, by Case (a) of Lemma 3.4, we have a straight
segment originating at d, along od and lying in D, on which u is linear. Since
this segment terminates on ∂D, it passes through o, and differentiability of u at
o implies that ωd = Du(d)/L = e2. Thus either a = b = p or a = b = q.
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Also see Remark 3.7 and the remarks preceding Step 1. Clearly, u(a) 6= u(b) if
a, b ∈ I− and a 6= b. Since u(p) > u(q), we see that u(z) = u(x, y), z ∈ I−,
is increasing in y. Recalling (4.1)(i) and (ii), we see that for a, b ∈ I−, a 6= b,
u(a) − u(b) = 〈Du(d), ed〉l(a, b) = 〈Du(c), a − b〉 6= 0. Let ωd denote the gradient
direction of u at d. Noting that |Du(d)| = L ≥ |Du(c)| and l(a, b) > |a − b|, it
follows that 〈ωd, ed〉 6= 0,±1. This implies that ωd does not lie in the tangent space
of ∂D at d nor is it parallel to segment od. Case(a) of Lemma 3.4 now applies and
we have a straight segment originating from d and terminating at d̄ ∈ ∂D such that
u is linear on the segment dd̄, and |Du(z)| = L, z ∈ dd̄, and if ζ = (d− d̄)/|d− d̄|
then Du(z) = ±Lζ.

From here on T will denote a segment of the type dd̄, as described in Step 1.
Let zT = (xT , yT ) and z̄T = (x̄T , ȳT ) denote the two end points that lie on the unit
circle ∂D. We set zT to be the higher end point and z̄T will denote the lower end
point, i.e., yT ≥ ȳT . Also set eT to be the unit vector parallel to T and pointing
towards zT . By the comments in Step 1, u(zT ) ≥ u(z̄T ), u is linear on T and
Du(x) = LeT for any x on T . Also let λ(T ) denote the length of T . ¿From now on
we will call such segments T , as described in Step 1, as segments of type S.
Step 2. By taking arbitrary points a, b ∈ I−, a 6= b in (4.1)(ii), we see that the
points d, on the arc âb form a dense set in the unit circle ∂D. By Step 1, we obtain
infinitely many such segments T of type S. By the uniqueness of gradient directions
any two such segments intersect if and only if they are identical. By the discussion
preceding Step 1, pq is one such segment. It also follows then that segments T of
type S either lie completely in H+ or in H−. Suppose that T1 and T2 are two
such non-overlapping segments in H− then one lies to the ”left” of the other. More
precisely, if yT1 > yT2 , then

ȳT1 < ȳT2 , λ(T1) > λ(T2), dist(o, T1) < dist(o, T2). (4.2)

An analogous property holds in H+.
Step 3. For k = 1, 2, 3, . . . let Tk be a segment of type S in H− such that
yTk

↑ 1. Since the end points zTk
and z̄Tk

lie on the unit circle, zTk
→ p and

xTk
↑ 0. Moreover by Step 2 and (4.2), ȳTk

↓ y∞ ≥ −1 and x̄Tk
→ x∞. Set

e∞ = (−x∞, 1 − y∞)/
√

x2
∞ + (1− y∞)2, clearly, eTk

→ e∞. Thus the segments
Tk tend to the segment T∞ with end points zT∞ = (0, 1) and z̄T∞ = (x∞, y∞).
Also by Step 1, for every k and any 0 ≤ t ≤ λ(Tk), u(zTk

− teTk
) = u(zTk

) − tL,
and Du(zTk

− teTk
) = LeTk

. Since u is C1 we see that for any 0 ≤ t ≤ λ(T∞),
u(p− te∞) = M − tL, Du(p− te∞) = Le∞, and T∞ is of type S. By the comments
preceding Step 1, Du(p) = Le2 = Le∞, and (x0, y0) = q. Thus the segments Tk

move right to the segment pq. As noted in Step 1, since the set of end points zT and
z̄T , of segments T of type S, are dense in ∂D, it is clear now that we can always
find segments T arbitrarily close to the segment pq and lying in H−.
Step 4. Suppose now that there is an a ∈ D such that |Du(a)| < L, then there is
a disc Dε(a) ⊂ D such that |Du(w)| < L, w ∈ Dε(a). Since Dε(a) cannot intersect
the segment pq, it lies either in H+ or in H−. Assume that Dε(a) ⊂ H−. Let
ηa = a/|a| and wε be the point on ∂Dε(a) nearest to o, i.e., wε = (|a| − ε)ηa.
By the comment made at the end of Step 3, there are segments T of type S that
intersect the segment owε. These lie completely in H−. Consider now the set of
such segments T and set y0 to be the infimum of yT ’s(y-coordinates of the higher
end points) of these segments. Let z0 = (x0, y0) ∈ I−. Also by (4.2), the supremum
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ȳ0 of the ȳT ’s(y-coordinates of the lower end points) of these particular segments
exists. Clearly, ȳ0 ≤ y0; set z̄0 = (x̄0, ȳ0) ∈ I−. By employing (4.2), one can easily
find a sequence segments Tk of type S, that intersect owε, such that Tk’s tend to
the segment z0z̄0, i.e., eTk

→ e, where e = (z0 − z̄0)/|z0 − z̄0|. Morever, since u is
C1, the straight segment z0z̄0 is of type S, it intersects owε and

u(z0 − te) = u(z0)− tL, 0 ≤ t ≤ |z0 − z̄0|, Du(z0 − te) = Le. (4.3)

Now let Tk be segments of type S with zTk
→ z0 (this is possible by the density of

zT ’s). We choose these to lie to the left of zz̄, i.e., yTk
↑ y0 (see above). By the

definition of z0 and our assumption about Dε(a), the segments Tk neither intersect
owε nor Dε(a). We now consider the lower end points z̄Tk

of these Tk’s. Since
yTk

≤ y0, (4.2) implies that infk ȳTk
> ȳ0 and infk dist(o, Tk) > dist(o, z0z̄0). Let

ȳ1 = infk ȳTk
and z̄1 = (x̄1, ȳ1) ∈ I−. It follows easily that the segment z0z̄1 is type

S. Let ē = (z0 − z̄1)/|z0 − z̄1|, then e 6= ē since z̄0 6= z̄1. It now follows that on the
segment z0z̄1,

u(z0 − tē) = u(z0)− tL, 0 ≤ t ≤ |z0 − z̄1|, Du(z0 − tē) = Lē.

By (4.3), Du(z0) = Le = Lē and we have a contradiction. Thus the theorem holds
and |Du(w)| = L, for all w ∈ D.

5. Appendix

We now prove a version of the Rolle’s property in Rn, n ≥ 3.

Lemma 5.1. Let u be infinity-harmonic in Ω ⊂ Rn, n ≥ 3. Let x, y ∈ Ω and σ(s),
0 ≤ s ≤ 1 be a C1 curve that lies completely in Ω with σ(0) = x and σ(1) = y. Let
l(s) denote the arclength of the curve from σ(0) to σ(s). Then for some 0 < τ < 1,
and vector ωτ ∈ Sn−1, we have

u(y)− u(x) = Λ(σ(τ))l(1)〈ωτ , σ′(τ)〉/|σ′(τ)|.

Proof. The proof utilizes simple calculus ideas and (3.3)(i). Without any loss of
generality, take x = o, u(o) = 0, and set v(s) = u(σ(s)) − u(y)l(s)/l(1), 0 ≤
s ≤ 1. Then v(s) is continuous and v(0) = v(1) = 0. Suppose that v has a
positive maximum at some 0 < τ < 1. Thus u(σ(τ)) − u(y)l(τ)/l(1) ≥ u(σ(s)) −
u(y)l(s)/l(1), 0 ≤ s ≤ 1, and

u(σ(s))− u(σ(τ)) ≤ u(y)(l(s)− l(τ))/l(1), 0 ≤ s ≤ 1. (5.1)

Set z = σ(τ) and e = σ′(τ)/|σ′(τ)|. By (3.3)(i), there exists a limit direction
ωτ ∈ Sn−1 and rk ↓ 0 such that limrk↓0(u(z + rkωτ ) − u(z))/rk = Λ(z). Let
zk = z − rke, ξk = z + rke; denote by sk, the largest value of s ≤ τ such that
σ(s) ∈ ∂Brk

(z), and by s̄k, the smallest value of s ≥ τ such that σ(s̄k) ∈ ∂Brk
(z).

Since σ is C1 and u is locally Lipschitz, the following hold for small rk:
|σ′(τ)|(τ − sk), |σ′(τ)|(s̄k − τ) ≈ rk,

|σ(s)− z| − |σ′(τ)(s− τ)| = o(|s− τ |),
|σ(sk)− zk|, |σ(s̄k)− ξk| = o(rk),

|u(zk)− u(σ(sk)|, |u(ξk)− u(σ(s̄k)| = o(rk).

(5.2)

From (5.1),
u(σ(sk))− u(z)

rk
≤ −u(y)[l(τ)− l(sk)]

l(1)rk
,

u(σ(s̄k))− u(z)
rk

≤ u(y)[l(s̄k)− l(τ)]
l(1)rk

.



EJDE-2007/148 REMARKS ON THE GRADIENT 11

Using (5.2) and taking limits in the above stated inequalities, we obtain that

lim
rk↓0

u(σ(sk))− u(z)
rk

= lim
rk↓0

u(zk)− u(z)
rk

= −Λ(z)〈ωτ , e〉

≤ lim
rk↓0

−u(y)(l(τ)− l(sk))
l(1)rk

= −u(y)
l(1)

.

(5.3)

Using s̄k and ξk, and taking limits as in (5.3), we see that Λ(z)〈ωz, e〉 ≤ u(y)/l(1).
The conclusion of the lemma holds. The analyses when v(s) = 0, for all s > 0, or
when v(s) has a negative minimum are analogous. �
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