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COEXISTENCE STATE OF A REACTION-DIFFUSION SYSTEM

YIJIE MENG, YIFU WANG

Abstract. Taking the spatial diffusion into account, we consider a reaction-
diffusion system that models three species on a growth-limiting, nonrepro-

ducing resources in an unstirred chemostat. Sufficient conditions for the ex-
istence of a positive solution are determined. The main techniques is the

Leray-Schauder degree theory.

1. Introduction

The chemostat is a laboratory apparatus used for the continuous culture of mi-
croorganisms. It can be used to study competition between different populations
of microorganisms, and has the advantage that the parameters are readily measur-
able. Experimental verification of the match between theory and experiment in the
chemostat can be found in [7]. For a general discussion of competition, see [6, 11],
while a detailed mathematical description of competition in the chemostat can be
found in [12].

In article [2], a mathematical analysis is given to a competition model in a well-
mixed chemostat with the equation the

S′ = (S0 − S)D − m1S

a1 + S

u1

η1
− m2S

a2 + S

u2

η2
,

u′1 = u1(
m1S

a1 + S
−D − γu3),

u′2 = u2((1− k(u1, u2))
m2S

a2 + S
−D),

u′3 = k(u1, u2)
m2Su2

a2 + S
−Du3,

(1.1)

where S(t) denotes the nutrient concentration at time t, u1(t) is the density of
the sensitive microorganism at time t, u2(t) is the density of the toxin-producing
organism at time t, and u3(t) is the concentration of the toxicant at time t, which
is lethal to the microorganism u1(t). S(0) is the input concentration of nutrient,
D is the washout rate, mi are the maximal growth rates, ai are the Michaelis-
Menten constants and ηi, i = 1, 2 are the yield constants. S(0) and D are under the
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control of the experimenter, and the other parameters are a function of the organism
selected. The function k(u1, u2) represents the fraction of potential growth devoted
to producing the toxin and we assume that it is smooth. System (1.1) with constant
k is studied in [8] and it is noted that system (1.1) is asymptotic to the standard
chemostat when k ≡ 0. The introduction of k(u1, u2) requires that a bacterium has
the ability to sense the current state of its habitat and the presence of other bacteria.
The interaction between the allelopathic agent and the sensitive microorganism has
been taken to be mass action form, −γu3u1. This is common modelling when an
interaction depends on the two concentrations.

In the current paper, taking the spatial diffusion into account, we remove the
well-stirred hypothesis in system (1.1), and thus are led to consider the following
reaction-diffusion (rescaled) system

d0∆S −m1u1f1(S)−m2u2f2(S) = 0, x ∈ Ω

d1∆u1 +m1u1f1(S)− γu1u3 = 0,

d2∆u2 +m2(1− k)u2f2(S) = 0,

d3∆u3 +m2ku2f2(S) = 0,

(1.2)

subject to boundary conditions
∂S

∂n
+ b(x)S = S0(x), x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3),

(1.3)

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, and ∂
∂n

denotes the outward normal derivative, 0 < k < 1. fi(S) = S
ai+S (i = 1, 2), b(x) and

S0(x) are continuous on ∂Ω, and b(x), S0(x) ≥ 0, 6≡ 0, on ∂Ω. d0 is the diffusive
coefficient for the nutrient S, di(i = 1, 2, 3) are the random motility coefficient of
the microbial population ui, respectively.

Since only nonnegative solutions (S, u1, u2, u3) are of biological interest, we re-
define f̂i(S)(i = 1, 2) for S < 0 as follows:

f̂i(S) =

{
fi(S), S ≥ 0,
arctan( 2S

ai
+ 1)− π

4 , S < 0.

It is easily seen that f̂i(S) ∈ C1(R).
The organization of this paper is as follows. In section 2, we obtain the existence

and uniqueness of nonnegative semi-trivial solutions by the principle eigenvalue
problem and the maximum principle. In section 3, the existence of the positive
solution of (1.2)–(1.3) is obtained by making use of the theory of Leray-Schauder
degree [14].

2. The Semi-trivial Solution

In this section, we shall consider the semi-trivial solutions of (1.2)–(1.3). To this
end, we first investigate the following problem

∆S = 0, x ∈ Ω,
∂S

∂n
+ b(x)S = S0(x), x ∈ ∂Ω,

(2.1)
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Lemma 2.1. There exists a unique positive solution S∗(x).

The proof can be seen in [13, 15], and is omitted here.
From the maximum principle, the nonnegative solution (S, u1, u2, u3) of system

(1.2)–(1.3) satisfies

d0S + d1u1 + d2u2 + d3u3 ≤ d0S
∗(x), x ∈ Ω.

Let λi > 0(i = 1, 2) be the principal eigenvalue of the problem

di∆φ+ λfi(S∗)φ = 0, x ∈ Ω,
∂φ

∂n
+ b(x)φ = 0, x ∈ ∂Ω,

(2.2)

with the corresponding eigenfunction φi > 0(i = 1, 2).

Theorem 2.2. If m1 > λ1, then (1.2)–(1.3) admits a unique semi-trivial solution
(S1, u1, 0, 0) with d0S1 + d1u1 = d0S

∗, S1 > 0, u1 > 0.

Proof. Taking u2 ≡ 0, u3 ≡ 0, system (1.2)–(1.3) is reduced to the system

d0∆S −m1u1f1(S) = 0, x ∈ Ω,

d1∆u1 +m1u1f1(S) = 0,
∂S

∂n
+ b(x)S = S0(x), x ∈ ∂Ω,

∂u1

∂n
+ b(x)u1 = 0.

(2.3)

Let Z = d0S + d1u1, then Z satisfies

∆Z = 0, x ∈ Ω,
∂Z

∂n
+ b(x)Z = d0S0(x), x ∈ ∂Ω,

(2.4)

from Lemma 2.1, (2.4) have a unique positive solution S∗, it satisfies d0S+ d1u1 =
d0S

∗. Thus u1 satisfies

d1∆u1 +m1u1f1(
d0S

∗ − d1u1

d0
) = 0, x ∈ Ω,

∂u1

∂n
+ b(x)u1 = 0, x ∈ ∂Ω,

(2.5)

Arguing exactly as [13, lemma 3.2], (2.5) have a unique positive solution u1. Thus
we complete the proof of the theorem. �

Similar to the proof of [13, Lemma 3.2], we can also show that the system

d2∆ψ +m2(1− k)ψf2(S∗ −
d2ψ

d0
) = 0, x ∈ Ω,

∂ψ

∂n
+ b(x)ψ = 0, x ∈ ∂Ω

(2.6)

has a unique positive solution ψ < d0
d2
S∗ if m2 >

λ2
1−k .

Theorem 2.3. If m2 >
λ2

1−k , then system (1.2)–(1.3) admits a unique semi-trivial
solution (S2, 0, u2, u3) with d0S2 + d2u2 + d3u3 = d0S

∗, S2 > 0, u2 > 0, u3 > 0.
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Proof. We take u1 ≡ 0 and thus reduce (1.2)–(1.3) to the system
d0∆S −m2u2f2(S) = 0, x ∈ Ω

d2∆u2 +m2(1− k)u2f2(S) = 0,

d3∆u3 +m2ku2f2(S) = 0,
∂S

∂n
+ b(x)S = S0(x), x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 2, 3),

(2.7)

Let z = d0S + d2u2 + d3u3, then z
d0

satisfies (2.1), and thus z = d0S
∗(x). Substi-

tuting it into (2.7), we get the reduced boundary-value problem

d2∆u2 +m2(1− k)u2f2(S∗ −
d2u2 + d3u3

d0
) = 0, x ∈ Ω,

d3∆u3 +m2ku2f2(S∗ −
d2u2 + d3u3

d0
) = 0,

∂ui

∂n
+ b(x)ui = 0(i = 2, 3), x ∈ ∂Ω.

(2.8)

It is easy to check that ((1− k)ψ, d2
d3
kψ) is exactly a positive solution of (2.8).

Let (u2, u3) be the positive solution of (2.8), and w = d2ku2− d3(1− k)u3, then
w satisfies

∆w = 0, x ∈ Ω,
∂w

∂n
+ b(x)w = 0, x ∈ ∂Ω.

By the maximum principle, we get w = 0 and d2ku2 = d3(1− k)u3.
Substituting d2ku2 = d3(1− k)u3 into (2.8), we have

d2∆u2 +m2(1− k)u2f2(S∗ −
d2u2

d0(1− k)
) = 0,

∂u2

∂n
+ b(x)u2 = 0.

Then by the uniqueness of the positive solution of (2.6), it follows that u2 = (1−k)ψ
and thus u3 = d2

d3
kψ. The proof is complete. �

At this position, we can get the following result which implies that m1 >
λ1,m2 >

λ2
1−k is necessary to the existence of coexistence states of system (1.2)–

(1.3).

Theorem 2.4. If m1 ≤ λ1 or m2 ≤ λ2
1−k are satisfied, then the nonnegative solution

(S, u1, u2, u3) of system (1.2)–(1.3) satisfies u1 = 0 or u2 = u3 = 0.

The proof is omitted here and the reader may refer to [9, 10, 13]. Therefore we
suppose m1 > λ1,m2 >

λ2
1−k in what follows.

3. Coexistence State

In this section, following some ideas of Dung and Smith [5], we shall determine
the sufficient conditions for the existence of positive solutions of (1.2)–(1.3) by the
theory of Leray-Schauder degree . Now we state some results about Leray-Schauder
degree, which appeared in [1, 14].
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Theorem 3.1. Let X be a retract of some Banach space E, let U be an open subset
of X, and let A : U → X be a compact map. Suppose that x0 ∈ U is a fixed point of
A, and suppose that there exists a positive number ρ such that x0 + ρB ⊂ U , where
B denotes the open unit ball of E. Finally, suppose that A is differentiable at x0,
such that 1 is not an eigenvalue of the derivative A′(x0). Then x0 is an isolated
fixed point of A, and

index(x0, A) = deg(I −A,B, 0) = deg(I −A′(x0), B, 0) = (−1)m,

where m is the sum of the multiplicities of all the eigenvalues of A′(x0) which are
greater than one.

For every ρ > 0, we denote by Pρ the positive part of ρB, that is Pρ = ρB∩P =
ρB+.

Lemma 3.2. Let A : P ρ → P be a compact map such that A(0) = 0. Suppose that
A has a right derivative A′

+(0) at zero such that 1 is not an eigenvalue of A′
+(0) to

a positive eigenvector. Then there exists a constant σ ∈ (0, σ0],
(i) index(Pρ, A) = deg(I − A,Pρ, 0) = 1 if A′

+(0) has no positive eigenvector
to an eigenvalue greater than one;

(ii) index(Pρ, A) = 0 if A′
+(0) possesses a positive eigenvector to an eigenvalue

greater than one.

Let

C0(Ω) = {φ ∈ C(Ω) :
∂φ

∂n
+ b(x)φ = 0 on ∂Ω}

K = {φ ∈ C0(Ω) : φ ≥ 0 in Ω},

then C0(Ω) is a Banach space and K is a positive cone in C0(Ω). We define

E = C0(Ω)× C0(Ω)× C0(Ω)× C0(Ω), E+ = K ×K ×K ×K.

Let s(x) = S∗(x)− S(x), then system (1.2)–(1.3) becomes

d0∆s+m1u1f1(S∗ − s) +m2u2f2(S∗ − s) = 0, x ∈ Ω,

d1∆u1 +m1u1f1(S∗ − s)− γu1u3 = 0,

d2∆u2 +m2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 +m2ku2f2(S∗ − s) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3).

(3.1)

Since S(x) ≥ 0, the nonnegative solution of (3.1) satisfies s(x) ≤ S∗(x). Define
A : E+ → E by

A(s, u1, u2, u3) =
(
(−d0∆)−1(m1u1f1(S∗ − s) +m2u2f2(S∗ − s)),

(−d1∆)−1(m1u1f1(S∗ − s)− γu1u3),

(−d2∆)−1(m2(1− k)u2f2(S∗ − s)),

(−d3∆)−1(m2ku2f2(S∗ − s))
)
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for (s, u1, u2, u3) ∈ E+, then it is observed that A is a compact operator and every
nonnegative solution of (1.2)–(1.3) corresponds to the fixed point of the operator
A on the cone E+.

Clearly, e0 = (0, 0, 0, 0), e1 = (S∗−S1, u1, 0, 0), e2 = (S∗−S2, 0, u2, u3) are fixed
points of compact operator A.

Let λ′i(q)(i = 1, 2) be the principal eigenvalue of

−di∆ω + q(x)ω = λω,

with q(x) ∈ C(Ω). It is well known [4] that λ′i(q) depends continuously on q, and
q1 ≤ q2, q1 6≡ q2 implies λ′i(q1) < λ′i(q2). From [1, Theorem 4.3, 4.4 and 4.5],
λ′1(−m1f1(S∗)) < 0, λ′2(−m2(1 − k)f2(S∗)) < 0 is equivalent to m1 > λ1,m2 >

λ2
(1−k) , respectively.

Lemma 3.3. index(e0, A) = 0.

Proof. Let A′(e0) be the derivative of A at e0. If λ > 0 is an eigenvalue of A′(e0)
corresponding to the eigenfunction (s, u1, u2, u3)T ∈ E+. Then

d0∆s+
1
λ

(m1u1f1(S∗) +m2u2f2(S∗)) = 0, x ∈ Ω

d1∆u1 +
1
λ
m1u1f1(S∗) = 0,

d2∆u2 +
1
λ
m2(1− k)u2f2(S∗) = 0,

d3∆u3 +
1
λ
m2ku2f2(S∗) = 0,

with homogeneous boundary conditions. From λ′1(−m1f1(S∗)) < 0 and λ′2(−m2(1−
k)f2(S∗)) < 0, we have λ 6= 1. From (2.2) and m1 > λ1, it follows that

d1∆φ1 +
1
λ0
m1φ1f1(S∗) = 0

with λ0 = m1
λ1

> 1. Then

A′(e0)((−d0∆)−1 1
λ0
m1φ1f1(S∗), φ1, 0, 0)T

= λ0((−d0∆)−1 1
λ0
m1φ1f1(S∗), φ1, 0, 0)T .

Thus from Lemma 3.2, it follows that index(e0, A) = 0. �

Lemma 3.4. There exists a constant R > 0 such that deg(I−A,PR, 0) = 1, where
PR = {U ∈ E+ : ‖s‖ < R, ‖ui‖ < R}(i = 1, 2, 3).

Proof. For t ∈ [0, 1], (s, u1, u2, u3) = tA(s, u1, u2, u3) and (s, u1, u2, u3) ∈ E+ im-
plies

d0∆s+ tm1u1f1(S∗ − s) + tm2u2f2(S∗ − s) = 0, x ∈ Ω,

d1∆u1 + tm1u1f1(S∗ − s)− tγu1u3 = 0,

d2∆u2 + tm2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 + tm2ku2f2(S∗ − s) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3).

(3.2)
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We claim that s ≤ S∗. Otherwise, if g(x) = s(x) − S∗(x) attains its maximum at
some point x0 ∈ Ω, then g(x0) > 0 and g(x) satisfies

d0∆g + tm1u1f1(−g) + tm2u2f2(−g) = 0.

Now if u1 = 0 and u2 = 0 or t = 0, then from the first equation in (3.2), it follows
s ≡ 0 and thus s ≤ S∗ holds. So we assume that t > 0 and u1 6≡ 0 or u2 6≡ 0. By
the maximum principle, u1 > 0 or u2 > 0.

If x0 ∈ Ω, then ∆g(x0) ≤ 0. However, g(x0) > 0 implies

d0∆g(x0) = tm1u1(x0)f1(−g(x0))− tm2u2(x0)f2(−g(x0)) > 0,

a contradiction. Hence x0 ∈ ∂Ω and thus ∂g
∂n |x0 > 0 by the maximum principle.

On the other hand, ∂g
∂n |x0 + b(x0)g(x0) = −S0(x0) ≤ 0 implies that ∂g

∂n |x0 ≤ 0, a
contradiction. Therefore s ≤ S∗ on Ω. Let Ŝ = S∗ − s, then system (3.2) becomes

d0∆Ŝ − tm1u1f1(Ŝ)− tm2u2f2(Ŝ) = 0, x ∈ Ω,

d1∆u1 + tm1u1f1(Ŝ)− tγu1u3 = 0,

d2∆u2 + tm2(1− k)u2f2(Ŝ) = 0,

d3∆u3 + tm2ku2f2(Ŝ) = 0,

∂Ŝ

∂n
+ b(x)Ŝ = S0(x), x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3),

It follows that d0Ŝ + d1u1 + d2u2 + d3u3 ≤ d0S
∗. Hence ui ≤ d0S∗

di
(i = 1, 2, 3). Let

M = max{1, d0
d1
, d0

d2
, d0

d3
}, R = M maxx∈Ω S

∗(x), Then U = (s, u1, u2, u3) 6∈ ∂PR.
By the homotopy invariance of the degree, we obtain

deg(I −A,PR, 0) = deg(I, PR, 0) = 1.

�

Lemma 3.5. Suppose λ′2(−m2(1− k)f2(S1)) < 0, then index(e1, A) = 0.

Proof. Consider problem (3.1) in the form

d0∆s+m1u1f1(S∗ − s) + tm2u2f2(S∗ − s) = 0, x ∈ Ω

d1∆u1 +m1u1f1(S∗ − s)− tγu1u3 = 0,

d2∆u2 +m2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 +m2ku2f2(S∗ − s) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3),

(3.3)

where the parameter t = 1.
Here we regard t ∈ [0, 1] as the homotopy parameter and hence equivalent fixed

point problem can be denoted by U = H(t, U). It is obvious that H(1, U) = A(U).
We assume that A(U) = U has no one positive solution in PR \ Pr(r << 1),

otherwise there are nothing to do.
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Choose a neighborhood Q = V ×Wof e1 in PR \Pr, where V is a neighborhood
(S∗−S1, u1) in C0(Ω)×C0(Ω), and W is a small neighborhood of (0, 0) in C0(Ω)×
C0(Ω).

If H(0, U) = U has a solution U = (s, u1, u2, u3) ∈ ∂Q, which implies u1 6= 0,
then (s, u1) = (S∗ − S1, u1) by Theorem 2.2. If u2 = 0, then U = e1, but e1 6∈ ∂Q.
Therefore u2 > 0 and thus we have a contradiction to λ′2(−m2(1− k)f2(S1)) < 0.

If there exists t ∈ (0, 1] such that H(t, U) = U has a solution U = (s, u1, u2, u3) ∈
∂Q, then u2 6= 0. Since once u2 ≡ 0, then U = e1 contradicting U ∈ ∂Q. Therefore
u2 > 0, and thus (s, u1, tu2, tu3) is a positive fixed point of A contradicting our
assumption.

By the homotopy invariance of Leray-Schauder degree

index(e1, A) = index(e1,H(1, ·)) = index(e1,H(0, ·)).

Now consider the boundary-value problem with parameter t ∈ [0, 1]

d0∆s+m1u1f1(S∗ − s) = 0, x ∈ Ω,

d1∆u1 +m1u1f1(S∗ − s) = 0,

d2∆u2 +m2(1− k)u2f2(tS1 + (1− t)(S∗ − s)) = 0,

d3∆u3 +m2ku2f2(tS1 + (1− t)(S∗ − s)) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3).

(3.4)

In fixed point form, system (3.4) becomes G(t, U) = U . If G(t, U) = U for some
t ∈ [0, 1] and U = (s, u1, u2, u3) ∈ ∂Q, then obviously (s, u1) = (S∗ − S1, u1), and
so u2 ≡ 0 by λ′2(−m2(1 − k)f2(S1)) < 0. Thus U = e1 contradicting e1 6∈ ∂Q.
Again, by the homotopy invariance of Leray-Schauder degree,

index(e1, A) = index(e1,H(0, ·)) = index(e1, G(0, ·)) = index(e1, G(1, ·)).

However, G(1, ·) can be view as the product of two maps G1 on V and G2 on W ,
which are associated with the boundary value problems

d0∆s+m1u1f1(S∗ − s) = 0,

d1∆u1 +m1u1f1(S∗ − s) = 0,

and

d2∆u2 +m2(1− k)u2f2(S1) = 0,

d3∆u3 +m2ku2f2(S1) = 0,

with homogeneous boundary conditions, respectively.
Now, by the uniqueness of (S∗ − S1, u1) and m1 > λ1,

deg(G1, V, (0, 0)) = index((S∗ − S1, u1), G1) = 1.

Furthermore from λ′2(−m2(1− k)f2(S1)) < 0, it follows

deg(G2,W, (0, 0)) = index((0, 0), G2).
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In fact, if λ > 0 is an eigenvalue of G′
2(0, 0) = G2 corresponding to the eigenfunction

(u2, u3)T ∈W , then

d2∆u2 +
1
λ
m2(1− k)u2f2(S1) = 0,

d3∆u3 +
1
λ
m2ku2f2(S1) = 0.

By λ′2(−m2(1− k)f2(S1)) < 0, λ 6= 1. Therefore there exists λ > 1 and u2 > 0 the
corresponding eigenfunction such that

d2∆u2 +
1
λ
m2(1− k)u2f2(S1) = 0.

Thus G′
2(0, 0)(u2, (−d3∆)−1( 1

λm2kf2(S1)))T = λ(u2, (−d3∆)−1( 1
λm2kf2(S1)))T .

It follows from Lemma 3.2 that index((0, 0), G2) = 0.
By the product theorem of Leray-Schauder degree [14, Theorem 13.F]

index(e1, A) = deg(G1, V, (0, 0)) deg(G2,W, (0, 0)) = 0.

�

Lemma 3.6. Suppose λ′1(−m1f1(S2) + γu3) < 0, then index(e2, A)=0.

Proof. Consider (3.1) in the form

d0∆s+ tm1u1f1(S∗ − s) +m2u2f2(S∗ − s) = 0, x ∈ Ω

d1∆u1 +m1u1f1(S∗ − s)− γu1u3 = 0,

d2∆u2 +m2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 +m2ku2f2(S∗ − s) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3).

(3.5)

with the parameter t = 1.
Here we regard t ∈ [0, 1] as the homotopy parameter and hence equivalent fixed

point problem can be denoted by U = H(t, U). It is obvious that H(1, U) = A(U).
We assume that A(U) = U has no one positive solution in PR \ Pr(r << 1),

otherwise there are nothing to do.
Choose a neighborhood Q = V ×W of e2 in PR \Pr, where V is a neighborhood

(S∗ − S2, u2, u3) in C0(Ω)×C0(Ω)×C0(Ω), and W is a small neighborhood of (0)
in C0(Ω).

If H(0, U) = U has a solution U = (s, u1, u2, u3) ∈ ∂Q, which implies u2 6= 0,
then (s, u2, u3) = (S∗ − S2, u2, u3) by Theorem 2.3. If u1 = 0, then U = e2, but
e2 6∈ ∂Q. Therefore u1 > 0 and thus we have a contradiction to λ′1(−m1f1(S2) +
γu3) < 0.

If there exists t ∈ (0, 1] such that H(t, U) = U has a solution U = (s, u1, u2, u3) ∈
∂Q, then u1 6= 0. Since once u1 ≡ 0, then U = e2 contradicting U ∈ ∂Q. Therefore
u1 > 0, and thus (s, tu1, u2, u3) is a positive fixed point of A contradicting our
assumption.

By the homotopy invariance of Leray-Schauder degree

index(e2, A) = index(e2,H(1, ·)) = index(e2,H(0, ·)).
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Now consider the boundary value problem with parameter t ∈ [0, 1]

d0∆s+m2u2f2(S∗ − s) = 0, x ∈ Ω,

d1∆u1 +m1u1f1(tS2 + (1− t)(S∗ − s))− γu1u3 = 0,

d2∆u2 +m2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 +m2ku2f2(S∗ − s) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3).

(3.6)

In fixed point form, system (3.6) becomes G(t, U) = U . If G(t, U) = U for some
t ∈ [0, 1] and U = (s, u1, u2, u3) ∈ ∂Q, then obviously (s, u2, u3) = (S∗−S2, u2, u3),
and so u1 ≡ 0 by λ′1(−m1f2(S1) + γu3) < 0. Thus U = e2 contradicting e2 6∈ ∂Q.
Again, by the homotopy invariance of Leray-Schauder degree,

index(e2, A) = index(e2,H(0, ·)) = index(e2, G(0, ·)) = index(e2, G(1, ·)).

Next, consider the boundary value problem with parameter t ∈ [0, 1]

d0∆s+m2u2f2(S∗ − s) = 0, x ∈ Ω,

d1∆u1 +m1u1f1(S2)− tγu1u3 = 0,

d2∆u2 +m2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 +m2ku2f2(S∗ − s) = 0,
∂s

∂n
+ b(x)s = 0, x ∈ ∂Ω,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2, 3).

(3.7)

In fixed point form, system (3.7) becomes K(t, U) = U . If K(t, U) = U for some
t ∈ [0, 1] and U = (s, u1, u2, u3) ∈ ∂Q, then obviously (s, u2, u3) = (S∗−S2, u2, u3),
and so u1 ≡ 0 by λ′1(−m1f1(S2) + γu3) < 0. Thus U = e2 contradicting e2 6∈ ∂Q.
Again, by the homotopy invariance of Leray-Schauder degree,

index(e2, A) = index(e2, G(1, ·)) = index(e2,K(1, ·)) = index(e2,K(0, ·)).

However, K(0, ·) can be view as the product of two maps K1 on V and K2 on W ,
which are associated with the boundary value problems

d0∆s+m2u2f2(S∗ − s) = 0,

d2∆u2 +m2(1− k)u2f2(S∗ − s) = 0,

d3∆u3 +m2ku2f2(S∗ − s) = 0,

d1∆u1 +m1u1f1(S2) = 0,

with homogeneous boundary conditions, respectively.
Now, by the uniqueness of (S∗ − S2, u2, u3) and m2 > λ2/(1− k),

deg(K1, V, 0) = index((S∗ − S2, u2, u3),K1) = 1.

Furthermore from λ′1(−m1f1(S2)) < λ′1(−m1f1(S2) + γu3) < 0, it follows that

deg(K2,W, 0) = index(0,K2) = 0.
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In fact, if λ > 0 is an eigenvalue of K ′
2(0) = K2 corresponding to the eigenfunction

u1 ∈W , then

d1∆u1 +
1
λ
m1u1f1(S2) = 0.

By λ′1(−m1f1(S2) + γu3) < 0, λ 6= 1. Therefore there exist λ > 1 and the corre-
sponding eigenfunction u1 > 0 such that

d1∆u1 +
1
λ
m1u1f1(S2) = 0.

It follows from Lemma 3.2 that index(0,K2) = 0.
By the product theorem of Leray-Schauder degree [14],

index(e2, A) = deg(K1, V, , 0)) deg(K2,W, 0) = 0.

�

Therefore, by the additivity property of the fixed point index and above Lemmas,
we have the following result.

Theorem 3.7. Assume that λ′1(−m1f1(S2)+γu3) < 0 and λ′2(−m2(1−k)f2(S1)) <
0, then system (1.2)–(1.3) admits at least one positive solution.

We note that λ′1(−m1f1(S2) + γu3) < 0 and λ′2(−m2(1− k)f2(S1)) < 0 implies
λ′1(−m1f1(S∗) < 0 and λ′2(−m2(1 − k)f2(S∗)) < 0 respectively, since S1, S2 ≤ S∗

and the monotonicity of function fi.
For the other case, we present the following results, whose proofs are very similar

to that of Lemmas 3.5, 3.6 and Theorem 3.7.

Lemma 3.8. Assume that λ′2(−m2(1− k)f2(S1)) > 0, then index(e1, A) = 1.

Lemma 3.9. Assume that λ′1(−m1f1(S2) + γu3) > 0, then index(e2, A) = 1.

Theorem 3.10. Assume that λ′1(−m1f1(S2) + γu3) > 0 and that

λ′2(−m2(1− k)f2(S1)) > 0,

then (1.2)–(1.3) admits at least one positive solution.

Remark 3.11. (1) If (s, u1, u2, u3) is the positive solution of (1.2)–(1.3), then
ui ≤ ui(i = 1, 2, 3) by the maximum principle.
(2) Our results implies that the existence of positive steady sates of (1.2)–(1.3) if
the semi-trivial nonegative solutions are stable or unstable simultaneously.
(3) System (1.2)–(1.3) with γ = 0 is fundamentally more tractable than the general
case and rather complete analysis can be done, due to the existence of a “conserva-
tion principle” which allows the reduction of system (1.1)-(1.2) to the competition
system. In fact, if γ = 0, then d0S + d1u1 + d2u2 + d3u3 = d0S

∗, and thus system
(1.2)–(1.3) reduces to the competition system

d1∆u1 +m1u1f1(S∗ −
d1u1 + d2

1−ku2

d0
) = 0, x ∈ Ω,

d2∆u2 +m2(1− k)u2f2(S∗ −
d1u1 + d2

1−ku2

d0
) = 0,

∂ui

∂n
+ b(x)ui = 0(i = 1, 2), x ∈ ∂Ω,

(3.8)
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noticing d2ku2 = d3(1− k)u3. By the above results, (3.8) has at least one positive
coexistence solution (u1, u2) if λ′1(−m1f1(S2)) · λ′2(−m2(1 − k)f2(S1)) > 0 . Now
we assume that λ′1(−m1f1(S2)) < 0 and λ′2(−m2(1− k)f2(S1)) > 0.

We define un
1 to be the unique nonnegative nontrivial solution of

d1∆u1 +m1u1f1(S∗ −
d1u1 + d2

1−ku
n−1
2

d0
) = 0

and un
2 to be the unique nonnegative nontrivial solution of

d2∆u2 +m2(1− k)u2f2(S∗ −
d1u

n
1 + d2

1−ku2

d0
) = 0,

with u0
2 = u2, respectively. Thus u1

1 < u2
1 < · · · < un

1 < . . . and u1
2 > u2

2 > · · · >
un

2 > . . . . By arguments in [3], we can conclude that if λ′1(−m1f1(S2)) < 0 and
λ′2(−m2(1 − k)f2(S1)) > 0, then system (3.8) has the coexistence solutions if and
only if λ′2(−m2(1− k)f2(S∗ − d1un

1
d0

)) < 0, for all n ∈ N . A similar result holds for
λ′1(−m1f1(S2)) > 0 and λ′2(−m2(1− k)f2(S1)) < 0.
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