Electron. J. Diff. Eqns., Vol. 2007(2007), No. 130, pp. 1-20.

Variation of constants formula for functional parabolic partial differential equations

Alexander Carrasco, Hugo Leiva

Abstract:
This paper presents a variation of constants formula for the system of functional parabolic partial differential equations
$$\displaylines{
 \frac{\partial u(t,x)}{\partial t}
 = D\Delta u+Lu_t+f(t,x), \quad t>0,\; u\in \mathbb{R}^n  \cr
 \frac{\partial u(t,x)}{\partial \eta} = 0, \quad t>0, \; x\in \partial\Omega
 \cr
 u(0,x) =  \phi(x)  \cr
 u(s,x) = \phi(s,x), \quad s\in[-\tau,0),\; x\in\Omega\,.
 }$$
Here $\Omega$ is a bounded domain in $\mathbb{R}^n$, the $n\times n$ matrix $D$ is block diagonal with semi-simple eigenvalues having non negative real part, the operator $L$ is bounded and linear, the delay in time is bounded, and the standard notation $u_{t}(x)(s) = u(t+s,x)$ is used.

Submitted July 2, 2007. Published October 5, 2007.
Math Subject Classifications: 34G10, 35B40.
Key Words: Functional partial parabolic equations; variation of constants formula; strongly continuous semigroups.

Show me the PDF file (267 KB), TEX file, and other files for this article.

Alexander Carrasco
Universidad Centroccidental Lisandro Alvarado
Decanato de Ciencias, Departamento de Matemática
Barquisimeto 3001, Venezuela
email: acarrasco@ucla.edu.ve
Hugo Leiva
Universidad de los Andes
Department of Mathemátics
Mérida 5101, Venezuela
email: hleiva@ula.ve

Return to the EJDE web page