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EXISTENCE AND LOCALIZATION OF SOLUTIONS FOR
FOURTH-ORDER BOUNDARY-VALUE PROBLEMS

RICARDO ENGUIÇA, LUÍS SANCHEZ

Abstract. In this paper, we study the existence of solutions for the differen-
tial equation

u(4)(t) = f
`
t, u(t), u′′(t)

´
,

where f satisfies one-sided Lipschitz conditions with respect to u and u′′, with

periodic conditions or boundary conditions from “simply supported” beam

theory. We assume the existence of lower and upper solutions (well-ordered
and in some cases reversely ordered) and we make use of a fourth-order linear

differential operator factorization.

1. Introduction

It is well known that fourth order boundary value problems are motivated by the
theory of beam deflection. However, the corresponding boundary value problems
are also mathematically interesting as they are usually not so simple as similar 2nd
order problems, and well known results for the second order case do not necessarily
hold for the corresponding fourth order problems without some strengthening of
assumptions. An example of this is the theorem that states that if a given boundary-
value problem has well ordered lower and upper solutions, then it has a solution
lying between those two functions: Roughly, this is true in the second-order case,
but one needs to add monotonicity assumptions to obtain some true statement in
the fourth order case. In this note we propose a step in the direction of establishing
this type of results.

Recently, several authors have studied the existence and multiplicity of solutions
to the equation

u(4)(t) = f
(
t, u(t), u′′(t)

)
, t ∈ [0, 2π] (1.1)

with various boundary conditions. Here we are interested in the periodic boundary
conditions

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)

and the “simply supported” boundary conditions

u(0) = u(π) = u′′(0) = u′′(π) = 0.
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The periodic problem with f independent of u′′ was studied by Cabada [2], via
maximum principles and the monotone method. Jiang, Gao and Wan [6] obtained
results for the full nonlinear problem using the monotone method. Allowing a linear
dependence of f on u′′, Li [8] and Liu and Li [9] have obtained existence results
with fixed point theory.

For the “simply supported” case, Bai and Wang [1] have obtained existence and
multiplicity results without dependence on u′′. With linear dependence on u′′, we
can find results of existence in Li [7] and existence and multiplicity in Yao [11].
Cabada, Cid and Sanchez [3] obtained results for the problem without dependence
on u′′, using upper and lower solutions in reversed order. The superlinear case has
been studied by Rynne [10] using a bifurcation technique.

Our paper deals with fourth-order boundary-value problems in a way that Gao,
Weng, Jiang and Hou [4] did for second order. We consider equation (1.1) with
periodic as well as “simply supported” boundary conditions, and prove existence
results (considering f one-sided Lipschitz in both variables u and u′′) if there exist
lower and upper solutions (ordered or in reversed order for the periodic case, and
ordered in the “simply supported” case). Habets and Sanchez [5] have obtained
results similar to those we obtain here, using Lipschitz conditions. The main dif-
ference is that in our case only localization is obtainable, no iterative method is
available.

In section 2 we present some maximum principles, in sections 3 and 4 we prove
existence results for the periodic case, respectively, for ordered and reversely ordered
upper and lower solutions. In section 5 we deal with the “simply supported” case
with ordered upper and lower solutions.

2. Auxiliary results

In this section we state some simple maximum principles that will be useful in
following sections.

Lemma 2.1 (Maximum Principle 1). Let L < 0, p, q, r ∈ R with p < r < q and
y ∈ C[p, q] ∩W 2,1(p, r) ∩W 2,1(r, q) such that

y′′(t) + Ly(t) = f(t) ≥ 0 a.e. (p, q),

y(p) = y(q), y′(p) ≥ y′(q), y′(r+) ≥ y′(r−).

Then y(t) ≤ 0 for all t ∈ [0, 2π]. Moreover, if y′′(t) + Ly(t) 6≡ 0, then y(t) < 0 for
all t ∈ ]0, 2π[.

Proof. Suppose that y(t) > 0 for all t ∈]p, q[. Then we would have the contradiction

0 ≥ y′(r−)− y′(r+) + y′(q)− y′(p) =
∫ r

p

f(t)− Ly(t) dt +
∫ q

r

f(t)− Ly(t) dt > 0.

If y(p) > 0, then y(q) > 0 and therefore there exist two intervals [p, p1] and [q1, q]
where y > 0, y(p1) = y(q1) = 0, y′(p1) ≤ 0 and y′(q1) ≥ 0. If r belongs to one of
the intervals, then we would have the contradiction

0 ≥ y′(r−)− y′(r+) + y′(q)− y′(p) + y′(p1)− y′(q1)

=
∫ p1

p

f(t)− Ly(t) dt +
∫ q

q1

f(t)− Ly(t) dt > 0,

otherwise, the contradiction is the same, without the terms involving r.
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If y(p) < 0 then the exists an interval ]p1, q1[ where y > 0 and y(p1) = y(q1) = 0,
and we can apply the arguments used in the first case. �

Lemma 2.2 (Maximum Principle 2). Let 0 < L < 1
4 , p < r < q with q − p ≤ 2π

and y ∈ C[p, q] ∩W 2,1(p, r) ∩W 2,1(r, q) such that

y′′(t) + Ly(t) = f(t) ≥ 0 a.e. (p, q), y(p) = y(q), y′(p) ≥ y′(q), y′(r+) ≥ y′(r−).

Then y(t) ≥ 0 for all t ∈ [0, 2π]. Moreover, if y′′(t) + Ly(t) 6≡ 0, then y(t) > 0 for
all t ∈ ]0, 2π[.

Proof. It follows easily combining the arguments used in the proof of the previous
lemma and the proof of [5, Proposition 2.3]. �

Lemma 2.3 (Maximum Principle 3). Let L < 1 and y ∈ W 2,1(0, π) such that

y′′(t) + Ly(t) ≥ 0 a.e. (0, π), y(0) ≤ 0, y(π) ≤ 0.

Then y(t) ≤ 0 for all t ∈ [0, π]. Moreover, if y′′(t) + Ly(t) 6≡ 0, then y(t) < 0 for
all t ∈ ]0, π[.

Lemma 2.4 (Maximum Principle 4). Let L < 1, M ∈ R and y ∈ W 2,1(0, π) such
that

y′′(t) + Ly+(t)−My−(t) ≥ 0 a.e. (0, π), y(0) ≤ 0, y(π) ≤ 0,

where y+, y− are respectively the positive and negative parts of y. Then y(t) ≤ 0
for all t ∈ [0, π].

3. Periodic problem with ordered upper and lower solutions

Let us consider the fourth-order equation

u(4)(t) = f
(
t, u(t), u′′(t)

)
, t ∈ [0, 2π] (3.1)

where f is a L1-Carathéodory function, with periodic boundary conditions

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π). (3.2)

We say that α ∈ W 4,1(0, 2π) is a lower solution of the boundary-value problem
(3.1)–(3.2) if

α(4)(t) ≤ f (t, α(t), α′′(t)) , t ∈ [0, 2π]

α(0) = α(2π), α′(0) = α′(2π), α′′(0) = α′′(2π), α′′′(0) ≤ α′′′(2π).

A function β ∈ W 4,1(0, 2π) satisfying the reversed inequalities is called an upper
solution.

Let α, β be respectively a lower and an upper solution of (3.1)–(3.2), such that
α(t) ≤ β(t) for all t ∈ [0, 2π].

In the following, we assume the hypothesis
(H1) There exist constants C,D > 0 with D2 > 4C, such that

f (t, u2, v2)− f (t, u1, v1) ≥ −C (u2 − u1) + D (v2 − v1) (3.3)

for a.e. t ∈ [0, 2π], α(t) ≤ u1 ≤ u2 ≤ β(t), v1 ≤ v2.

Remark 3.1. If f(t, u, v) is a C1 function in (u, v), the inequality in (H1) is
equivalent to ∂f

∂u ≥ −C and ∂f
∂v ≥ D.
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Let m,M < 0 be the two roots of the equation x2 + Dx + C = 0 (note that
C = mM, D = −(m+M)). Setting a(t) = α′′(t)+mα(t) and b(t) = β′′(t)+mβ(t),
we have the following result.

Proposition 3.2. If f is a L1-Carathéodory function satisfying (H1) for α(t), β(t)
lower and upper solutions such that α(t) ≤ β(t) for all t ∈ [0, 2π], then b(t) ≤ a(t).

Proof. Setting y(t) = b(t)−a(t), we have y(0) = y(2π) and y′(0) ≥ y′(2π). Suppose
towards a contradiction that there exists t0 ∈ [0, 2π] such that y(t0) > 0.

If y(t) > 0 for all t ∈ [0, 2π], we have (noting that b(t) −mβ(t) ≥ a(t) −mα(t)
and m2 + mD + C = 0)

y′′(t) + My(t) =b′′(t)− a′′(t) + Mb(t)−Ma(t)

=β(4)(t) + (m + M)β′′(t) + (m + M)mβ(t)−m2β(t)−

− (α(4)(t) + (m + M)α′′(t) + (m + M)mα(t)−m2α(t))

≥f(t, β(t), b(t)−mβ(t))− f(t, α(t), a(t)−mα(t))

+ (m + M)y(t)−m2(β(t)− α(t)) ≥ 0,

and this is a contradiction, since by the Maximum Principle 2.1 we would have
y(t) ≤ 0.

Otherwise, considering if necessary the periodic extension of y(t), there exists
an interval [p, q] with q − p < 2π such that y(p) = y(q) = 0, y′(p) ≥ 0 ≥ y′(q),
and y(t) > 0 for t ∈ ]p, q[, possibly with p < 0 < q, in which case y′(0+) ≥ y′(0−).
Applying Maximum Principle 2.1 again, we reach a contradiction. �

Let

p(t, x) =


b(t), x < b(t)
x, b(t) ≤ x ≤ a(t)
a(t), x > a(t).

Consider the boundary-value problem

u′′(t) + mu(t) ≡ Lm u(t) = q(t), u(0) = u(2π), u′(0) = u′(2π),

with q ∈ L1[0, 1]. Since m < 0, the operator Lm is invertible so that we can
write its unique solution u as u = L−1

m q, and by the Maximum principle 2.1 we
know that if q(t) ≥ 0 then u(t) ≤ 0. Since α(t) = L−1

m a(t), β(t) = L−1
m b(t) and

b(t) ≤ p(t, x(t)) ≤ a(t), we have

α(t) ≤ L−1
m p(t, x(t)) ≤ β(t).

Let us consider the modified problem

x′′(t) + Mx(t) = (Fx)(t) ≡ f
(
t, L−1

m p(t, x(t)), p(t, x(t))−mL−1
m p(t, x(t))

)
+ (m + M)p(t, x(t))−m2L−1

m p(t, x(t)),

x(0) = x(2π), x′(0) = x′(2π).

(3.4)

Considering the operator Φ : C[0, 2π] → C[0, 2π] with Φx = L−1
M (Fx), since

p(t, x(t)) and L−1
m p(t, x(t)) are bounded and f is a Carathéodory function, there

exists a L1[0, 2π] function g(t) such that |(Fx)(t)| ≤ g(t) for a.e. t ∈ [0, 2π]. There-
fore, applying Leray-Schauder’s fixed point Theorem, we can conclude that Φ has
a fixed point x(t) which is a solution of the modified problem (3.4).
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Proposition 3.3. Let x(t) be a solution of the modified problem (3.4). Assuming
(H1), for given lower and upper solutions α(t) and β(t), with α ≤ β for all t ∈
[0, 2π], we have

b(t) ≤ x(t) ≤ a(t).

Proof. We will only prove that x(t) ≤ a(t), since the other inequality can be ob-
tained with similar arguments. We have

a′′(t) + Ma(t) ≤ f
(
t, L−1

m a(t), a(t)−mL−1
m a(t)

)
+ (m + M)a(t)−m2L−1

m a(t),

a(0) = a(2π), a′(0) ≤ a′(2π).

Setting y(t) = x(t)− a(t), we have y(0) = y(2π), y′(0) ≥ y′(2π). Suppose towards
a contradiction that there exists t0 ∈ [0, 2π] such that y(t0) > 0.

If y(t) > 0 for all t, we have x(t) > a(t) and, therefore, p(t, x(t)) = a(t), so

x′′(t) + Mx(t) =f
(
t, L−1

m a(t), a(t)−mL−1
m a(t)

)
+ (m + M)a(t)−m2L−1

m a(t)

≥a′′(t) + Ma(t),

which is a contradiction, since by the Maximum Principle 2.1 we would have y(t) ≤
0.

Otherwise, considering if necessary the periodic extension of y(t), there exists
an interval [p, q] with q − p < 2π such that y(p) = y(q) = 0, y′(p) ≥ 0 ≥ y′(q),
y(t) > 0 for t ∈ ]p, q[, possibly with p < 0 < q, in which case y′(0+) ≥ y′(0−). Then,
recalling that L−1

m p(t, x(t)) ≥ L−1
m a(t),

y′′(t) + My(t)

= x′′(t) + Mx(t)− a′′(t)−Ma(t)

≥ f
(
t, L−1

m p(t, x(t)), p(t, x(t))−mL−1
m p(t, x(t))

)
− f(t, L−1

m a(t), a(t)−mL−1
m a(t))

+ (m + M)y(t)−m2(L−1
m p(t, x(t))− α(t)) ≥ 0,

so, we have again a contradiction by the Maximum Principle 2.1. �

Theorem 3.4. Assuming (H1), for given lower and upper solutions α and β, with
α ≤ β, the boundary value problem (3.1)–(3.2) has a solution u(t) ∈ W 4,1(0, 2π)
such that α ≤ u ≤ β.

Proof. Let u(t) = L−1
m x(t), where x(t) is a solution of the modified problem (3.4).

Since x(t) = u′′(t) + mu(t), we have x′′(t) + Mx(t) = u(4)(t)−Du′′(t) + Cu(t). On
the other hand,

x′′(t) + Mx(t) =f
(
t, L−1

m p(t, x(t)), p(t, x(t))−mL−1
m p(t, x(t))

)
+ (m + M)p(t, x(t))−m2L−1

m p(t, x(t))

=f
(
t, u(t), u′′(t)

)
−Du′′(t) + Cu(t),

so u(t) satisfies (3.1)–(3.2). Moreover, from

β′′ + mβ ≤ u′′ + mu ≤ α′′ + mα,

taking into account the boundary conditions and Maximum Principle 2.1, we obtain
α ≤ u ≤ β. �

We can reach a similar conclusion, assuming the following hypothesis
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(H1’) there exist constants C,D > 0 with D < 4C +1/4 and D2 > 4C, such that

f (t, u2, v1)− f (t, u1, v2) ≥ −C (u2 − u1)−D (v1 − v2) (3.5)
for a.e. t ∈ [0, 2π], α(t) ≤ u1 ≤ u2 ≤ β(t), v1 ≤ v2.

Remark 3.5. If f(t, u, v) is a C1 function in (u, v), the inequality in (H1’) is
equivalent to ∂f

∂u ≥ −C and ∂f
∂v ≤ −D.

Let 0 < m, M < 1
4 be the two roots of the equation x2 −Dx + C = 0 (note that

C = mM , D = m + M)). Defining a(t) and b(t) as above, we have the following
result.

Proposition 3.6. If f is a L1-Carathéodory function satisfying (H1’) for α(t), β(t)
lower and upper solutions such that α(t) ≤ β(t), then b(t) ≥ a(t).

Proof. Setting y(t) = b(t)−a(t), we have y(0) = y(2π) and y′(0) ≥ y′(2π). Suppose
towards a contradiction that there exists t0 ∈ [0, 2π] such that y(t0) < 0. We can
reach a contradiction with similar arguments from the ones used in Proposition 3.2,
using instead the Maximum principle 2.2. �

Using the same arguments as in the previous case, we prove the following result.

Theorem 3.7. Assuming (H1’), for given lower and upper solutions α and β, with
α ≤ β, the boundary value problem (3.1)–(3.2) has a solution u(t) ∈ W 4,1(0, 2π)
such that α ≤ u ≤ β.

4. Periodic problem with upper and lower solutions in reversed
order

In this section we prove similar results from the ones above, but with lower and
upper solutions in reversed order, that is β(t) ≤ α(t), for all t ∈ [0, 2π].

(H2) There exist constants C,D with C < 0 and D > −4C − 1/4, such that

f (t, u1, v2)− f (t, u2, v1) ≥ −C (u1 − u2) + D (v2 − v1) (4.1)

for a.e. t ∈ [0, 2π], β(t) ≤ u1 ≤ u2 ≤ α(t), v1 ≤ v2.

Remark 4.1. If f(t, u, v) is a C1 function in (u, v), the inequality in (H2) is
equivalent to ∂f

∂u ≤ −C and ∂f
∂v ≥ D.

Let M < 0 and 0 < m < 1
4 be the two roots of the equation x2 + Dx + C = 0

(note that C = mM, D = −(m + M)). Defining a(t) = α′′(t) + mα(t) and b(t) =
β′′(t) + mβ(t), we have the following result.

Proposition 4.2. If f is a L1-Carathéodory function satisfying (H2) for α(t), β(t)
lower and upper solutions such that β(t) ≤ α(t), then b(t) ≤ a(t).

Proof. Setting y(t) = b(t)−a(t), we have y(0) = y(2π) and y′(0) ≥ y′(2π). Suppose
towards a contradiction that there exists t0 ∈ [0, 2π] such that y(t0) > 0.

If y(t) > 0 for all t, we have (noting that b(t)−mβ(t) ≥ a(t)−mα(t))

y′′(t) + My(t) ≥f(t, β(t), b(t)−mβ(t))− f(t, α(t), a(t)−mα(t))

+ (m + M)y(t)−m2(β(t)− α(t)) ≥ 0,

and this is a contradiction, since by the Maximum Principle 2.1 we would have
y(t) ≤ 0.
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Otherwise, considering if necessary the periodic extension of y(t), there exists an
interval [p, q] with q−p < 2π such that y(p) = y(q) = 0, y′(p) ≥ 0 ≥ y′(q), y(t) > 0
for t ∈ ]p, q[, possibly with p < 0 < q, in which case y′(0+) ≥ y′(0−). Applying
Maximum Principle 2.1 again, we reach a contradiction. �

Let

p(t, x) =


b(t), x < b(t)
x, b(t) ≤ x ≤ a(t)
a(t), x > a(t).

Consider the boundary-value problem

u′′(t) + mu(t) ≡ Lm u(t) = q(t), u(0) = u(2π), u′(0) = u′(2π),

with q ∈ L1[0, 1]. Since m < 1 , the operator Lm is invertible so that we can
write its unique solution u as u = L−1

m q, and by the Maximum principle 2.2 we
know that if q(t) ≥ 0, then u(t) ≥ 0. Since α(t) = L−1

m a(t), β(t) = L−1
m b(t) and

b(t) ≤ p(t, x(t)) ≤ a(t), we have

β(t) ≤ L−1
m p(t, x(t)) ≤ α(t).

Let us consider the modified problem

x′′(t) + Mx(t) = (Fx)(t) ≡ f
(
t, L−1

m p(t, x(t)), p(t, x(t))−mL−1
m p(t, x(t))

)
+ (m + M)p(t, x(t))−m2L−1

m p(t, x(t)),

x(0) = x(2π), x′(0) = x′(2π).

(4.2)

Considering the operator Φ : C[0, 2π] → C[0, 2π] with Φx = L−1
M (Fx) since

p(t, x(t)) and L−1
m p(t, x(t)) are bounded and f is a Carathodory function, there

exists a L1[0, 2π] function g(t) such that |(Fx)(t)| ≤ g(t) for a.e. t ∈ [0, 2π]. There-
fore, applying Leray-Schauder’s fixed point Theorem, we can conclude that Φ has
a fixed point x(t) which is a solution of the modified problem (4.2).

Proposition 4.3. Let x(t) be a solution of the modified problem (4.2). Assuming
(H2), for given lower and upper solutions α and β, with α ≤ β, we have

b(t) ≤ x(t) ≤ a(t).

The proof of the above proposition is similar to the one of proposition 3.3.

Theorem 4.4. Assuming (H2), for given lower and upper solutions α and β, with
β ≤ α, the boundary value problem (3.1)–(3.2) has a solution u(t) ∈ W 4,1(0, 2π)
such that β ≤ u ≤ α.

The proof of the above theorem is similar to the one of theorem 3.4.
We can reach a similar conclusion, assuming the following hypothesis

(H2’) there exist constants C,D with C < 0 and D < 4C + 1/4 such that

f (t, u1, v1)− f (t, u2, v2) ≥ −C (u1 − u2)−D (v1 − v2) (4.3)

for a.e. t ∈ [0, 2π], β(t) ≤ u1 ≤ u2 ≤ α(t), v1 ≤ v2.

Remark 4.5. If f(t, u, v) is a C1 function in (u, v), the inequality in (H2’) is
equivalent to ∂f

∂u ≤ −C and ∂f
∂v ≤ −D.

Let m < 0 and 0 < M < 1
4 be the two roots of the equation x2 −Dx + C = 0

(note that C = mM, D = m + M)). Defining a(t) and b(t) as above, we have the
following result.



8 R. ENGUIÇA, L. SANCHEZ EJDE-2007/127

Proposition 4.6. If f is a L1-Carathéodory function satisfying (H2’) for α(t), β(t)
lower and upper solutions such that β(t) ≤ α(t), then b(t) ≥ a(t).

Proof. Setting y(t) = b(t)−a(t), we have y(0) = y(2π) and y′(0) ≥ y′(2π). Suppose
towards a contradiction that there exists t0 ∈ [0, 2π] such that y(t0) < 0. We can
reach a contradiction with similar arguments from the ones used in Proposition 4.2,
using instead the Maximum principle 2.2. �

Using the same arguments as in the previous case, we prove the following result.

Theorem 4.7. Assuming (H2’), for given lower and upper solutions α and β, with
β ≤ α, the boundary value problem (3.1)–(3.2) has a solution u(t) ∈ W 4,1(0, 2π)
such that β ≤ u ≤ α.

5. “Simply supported” problem with ordered upper and lower
solutions

Let us now consider the fourth-order equation

u(4)(t) = f
(
t, u(t), u′′(t)

)
, t ∈ [0, π] (5.1)

where f is a L1-Carathéodory function, with the boundary conditions

u(0) = u(π) = u′′(0) = u′′(π) = 0. (5.2)

We say that α ∈ W 4,1(0, π) is a lower solution of the boundary value problem
(5.1)–(5.2) if

α(4)(t) ≤ f (t, α(t), α′′(t)) , t ∈ [0, π]

α(0) ≤ 0, α(π) ≤ 0, α′′(0) ≥ 0, α′′(π) ≥ 0.

A function β ∈ W 4,1(0, π) satisfying the reversed inequalities is called an upper
solution.

Let α, β be respectively a lower and an upper solution of (3.1)–(3.2), such that
α(t) ≤ β(t) for all t ∈ [0, π].

In the following, we assume the hypothesis
(H3) There exist constants C,D such that C < 0 or D > 0, with D > −C − 1,

D2 > 4C , and

f (t, u2, v2)− f (t, u1, v1) ≥ −C (u2 − u1) + D (v2 − v1) (5.3)

for a.e. t ∈ [0, 2π], α(t) ≤ u1 ≤ u2 ≤ β(t), v1 ≤ v2.

Remark 5.1. If f(t, u, v) is a C1 function in (u, v), the inequality in (H3) is
equivalent to ∂f

∂u ≥ −C and ∂f
∂v ≥ D.

Let m < 0 and M < 1 be the two roots of the equation x2+Dx+C = 0 (note that
C = mM, D = −(m+M)). Defining a(t) = α′′(t)+mα(t) and b(t) = β′′(t)+mβ(t),
we have the following result.

Proposition 5.2. If f is a L1-Carathéodory function satisfying (H3) for α(t), β(t)
lower and upper solutions such that α(t) ≤ β(t), then b(t) ≤ a(t).

Proof. Setting y(t) = b(t)− a(t), we have y(0) ≤ 0 and y(π) ≤ 0. Suppose towards
a contradiction that there exists t0 ∈ [0, π] such that y(t0) > 0. The result follows
using similar arguments to the ones of Proposition 3.2 (using Maximum principle
2.3 instead). �
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Let

p(t, x) =


b(t), x < b(t)
x, b(t) ≤ x ≤ a(t)
a(t), x > a(t).

Consider the boundary value problem

u′′(t) + mu(t) ≡ Lm u(t) = q(t), u(0) = 0, u(π) = 0,

with q ∈ L1[0, 1]. Since m < 0, the operator Lm is invertible so that we can write
its unique solution u as u = L−1

m q.
Let us define ã(t) such that ã′′ + mã = 0, ã(0) = α(0), ã(π) = α(π), and b̃(t)

such that b̃′′ + mb̃ = 0, b̃(0) = β(0), b̃(π) = β(π). It is obvious that ã(t) ≤ 0 and
b̃(t) ≥ 0 for all t ∈ [0, π].

We have α(t) = L−1
m a(t)+ ã(t) and β(t) = L−1

m b(t)+ b̃(t), then, by the Maximum
principle 2.3,

α(t) ≤ L−1
m p(t, x(t)) ≤ β(t).

Proceeding in a similar way as in the previous cases, we can reach an analogue
conclusion:

Theorem 5.3. Assuming (H3), for given lower and upper solutions α and β, with
α ≤ β, the boundary value problem (5.1)–(5.2) has a solution u(t) ∈ W 4,1(0, π)
such that α ≤ u ≤ β.

Let us now consider a hypothesis somehow different from the ones considered
above. Suppose that

(H4) There exist constants C,D with C > 0, 0 < D < 1, and

f (t, u2, v2)− f (t, u1, v1) ≥ C (u2 − u1)−D |v2 − v1| (5.4)

for a.e. t ∈ [0, 2π], α(t) ≤ u1 ≤ u2 ≤ β(t), v1, v2 ∈ R.

Remark 5.4. If f(t, u, v) is a C1 function in (u, v), the inequality in (H4) is
equivalent to ∂f

∂u ≥ C and |∂f
∂v | ≤ D.

Let m < 0 be such that C + Dm −m2 > 0 and D −m < 1. Defining a(t) =
α′′(t) + mα(t) and b(t) = β′′(t) + mβ(t), we have the following result.

Proposition 5.5. If f is a L1-Carathéodory function satisfying (H4) for α(t), β(t)
lower and upper solutions such that α(t) ≤ β(t), then b(t) ≤ a(t).

Proof. Setting y(t) = b(t)− a(t), we have y(0) ≤ 0, y(π) ≤ 0 and

y′′(t) =β(4)(t)− α(4)(t) + m(β′′(t)− α′′(t)) + m2(β(t)− α(t))−m2(β(t)− α(t))

≥f(t, β(t), b(t)−mβ(t))− f(t, α(t), a(t)−mα(t)) + my(t)−m2(β(t)− α(t))

≥C(β(t)− α(t))−D |y(t)−m(β(t)− α(t))|+ my(t)−m2(β(t)− α(t))

≥(C + Dm−m2)(β(t)− α(t))−D |y(t)|+ my(t).

To apply Maximum principle 2.4, we rewrite the previous inequality as

y′′(t) + (D −m)y+(t) + (D + m)y−(t) ≥ 0

and conclude that y(t) ≤ 0. �

Proceeding in a similar way as above, we can reach an analogue conclusion:
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Theorem 5.6. Assuming (H4), for given lower and upper solutions α and β, with
α ≤ β, the boundary value problem (5.1)–(5.2) has a solution u(t) ∈ W 4,1(0, π)
such that α ≤ u ≤ β.
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