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ASYMPTOTIC FORMS OF WEAKLY INCREASING
POSITIVE SOLUTIONS FOR QUASILINEAR
ORDINARY DIFFERENTIAL EQUATIONS

KEN-ICHI KAMO, HIROYUKI USAMI

Abstract. Asymptotic forms are determined for positive solutions which are

called weakly increasing solutions to quasilinear ordinary differential equations.

1. Introduction

In this paper we consider the equation

(|u′|α−1u′)′ + p(t)|u|β−1u = 0 (1.1)

under the following conditions:
(A1) α and β are positive constants satisfying α 6= β;
(A2) p(t) is a C1−function defined near +∞ satisfying the asymptotic condition

p(t) ∼ t−σ for some σ ∈ R as t →∞.
By condition (A2) equation (1.1) can be rewritten in the form

(|u′|α−1u′)′ + t−σ(1 + ε(t))|u|β−1u = 0, (1.2)

where ε(t) = tσp(t) − 1 satisfies limt→∞ ε(t) = 0. Of course, here and in what
follows the symbol “f(t) ∼ g(t) as t →∞” means that limt→∞ f(t)/g(t) = 1. Some
preparatory results for equation (1.1) are still valid for more general equations than
(1.1); so it is convenient to consider the auxiliary equation

(|u′|α−1u′)′ + q(t)|u|β−1u = 0, (1.3)

where we assume that α and β satisfy condition (A1) and q ∈ C([t0,∞); (0,∞)).
A function u is defined to be a solution of equation (1.3) if u ∈ C1[t1,∞) and
|u′|α−1u′ ∈ C1[t1,∞) and it satisfies equation (1.3) on [t1,∞) for sufficiently large
t1.

It is easily seen that all positive solutions u(t) of (1.3) are classified into the
following three types according as their asymptotic behavior as t →∞:

(I) Asymptotically linear solution: u(t) ∼ c1t for some constant c1 > 0;
(II) Weakly increasing solution: u′(t) ↓ 0 and u(t) ↑ ∞;

(III) Asymptotically constant solution: u(t) ∼ c1 for some constant c1 > 0.

2000 Mathematics Subject Classification. 34E10, 34C41.

Key words and phrases. Quasilinear ordinary differential equation; positive solution.
c©2007 Texas State University - San Marcos.
Submitted May 24, 2007. Published September 28, 2007.

1



2 K. KAMO, H. USAMI EJDE-2007/126

Concerning qualitative properties of positive solutions, the study of asymptotic
behavior of asymptotically linear solutions and asymptotically constant solutions
are rather easy, because their first approximations are given by definition. On the
other hand, we can not easily know how the weakly increasing positive solutions
behave except in the case α = 1; see [1, 3].

In [3, Section 20], equation (1.1) with α = 1 has been considered systematically,
and asymptotic forms of weakly increasing positive solutions are given by means
of the parameters β and σ. When α 6= 1, as far as the authors are aware, there
are no works in which asymptotic forms of weakly increasing positive solutions are
studied systematically.

Motivated by these facts in this paper we make an attempt to find out asymptotic
forms of weakly increasing positive solutions of (1.1) for the general case α > 0.
Furthermore we will also establish more than obtained in [3] in the case α > β. In
fact, some of our results are new even though α = 1.

To gain an insight into our problem, we consider the typical equation

(|u′|α−1u′)′ + t−σ|u|β−1u = 0, (1.4)

where σ ∈ R is a constant. Note that equation (1.1) can be regarded as a perturba-
tion of (1.4). Equation (1.4) has a weakly increasing positive solution of the form
ctρ, (c > 0, 0 < ρ < 1) if and only if min{α, β} + 1 < σ < max{α, β} + 1. This
solution is uniquely given by

u0(t) = Ĉtk, (1.5)
where

k =
α− σ + 1

α− β
∈ (0, 1), Ĉ = {α(1− k)kα}

1
β−α . (1.6)

From this simple observation we can see that asymptotic forms of weakly increasing
positive solutions of (1.3) may be strongly affected by that of the coefficient function
q(t). Furthermore we conjecture that weakly increasing positive solutions u of (1.1)
behave like u0(t) given by (1.5) and (1.6) if |ε(t)| is sufficiently small at ∞.

We will show that the above conjecture is true in many cases. In fact, we can
obtain the following theorems which are the main results of the paper:

Theorem 1.1. Let α > β.
(i) Suppose that β + 1 < σ < α + 1. Then, every weakly increasing positive

solution u of (1.1) has the asymptotic form

u(t) ∼ u0(t) as t →∞,

where u0 is given by (1.5) and (1.6).
(ii) Suppose that σ = α + 1; namely p(t) ∼ t−α−1 as t → ∞. Then, every

weakly increasing positive solution u of (1.1) has the asymptotic form

u(t) ∼ α−
1

α−β
( α

α− β

)− α
α−β (log t)

α
α−β as t →∞.

Theorem 1.2. Let α < β. Suppose that α ≤ 1 and 1/2 < k < 1 (⇔ (α+β+2)/2 <
σ < β + 1). Suppose furthermore that either∫ ∞ ε(t)2

t
dt < ∞ (1.7)

or ∫ ∞
|ε′(t)|dt < ∞ (1.8)
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holds. Then, every weakly increasing positive solution u of (1.1) has the asymptotic
form

u(t) ∼ u0(t) as t →∞,

where u0 is given by (1.5) and (1.6).

Theorem 1.3. Let α < β. Suppose that α ≥ 1 and 0 < k < 1/2(⇔ α + 1 < σ <
(α + β + 2)/2). Suppose furthermore that either (1.7) or (1.8) holds. Then, the
same conclusion as in Theorem 1.2 holds.

Remark 1.4. (i) In Theorem 1.1 the differentiability of p is actually unnec-
essary. Similarly, in Theorems 1.2 and 1.3, the differentiability of p is
unnecessary when (1.7) is assumed.

(ii) When α = 1 and ε(t) ≡ 0, Theorems 1.1, 1.2 and 1.3 were obtained by [1]
and [3, Corollaries 20.2, 20.3].

Remark 1.5. Let α < β. We can not prove whether or not our conjecture is true
in the following cases: (i) α ≤ 1 and 0 < k < 1/2; (ii) α ≥ 1 and 1/2 < k < 1; and
(iii) k = 1/2.

We note that existence results of weakly increasing positive solutions to (1.3) and
(1.1) are known for the case α > β. In fact, equation (1.1) has a weakly increasing
positive solution if and only if β + 1 < σ ≤ α + 1; see Remark 3.4 in Section 3. In
contrast, it seems that there are not such useful results for the case α < β. But we
can show many concrete examples of those equations that have weakly increasing
positive solutions.

The paper is organized as follows. In Section 2 we give preparatory lemmas
employed later. In Section 3 we consider equation (1.1), as well as (1.3), under the
sub-homogeneity condition α > β. When q(t) satisfies 0 < lim inft→∞ q(t)/t−σ ≤
lim supt→∞ q(t)/t−σ < ∞ for some σ ∈ R, we can obtain a result which may
be called as asymptotic equivalence theorem for equation (1.3); see Corollary 3.3.
Theorem 1.1 is a direct consequence of this corollary. In Section 4 we consider
only equation (1.1) under the super-homogeneity condition α < β, and we prove
Theorems 1.2 and 1.3 there. Other related results are found in [2, 4, 5, 6].

2. Preparatory lemmas

Lemma 2.1. Let w ∈ C1[t0,∞), w′(t) = O(1) as t → ∞, and w ∈ Lλ[t0,∞) for
some λ > 0. Then, limt→∞ w(t) = 0.

Proof. We have

|w(t)|λw(t) = |w(t0)|λw(t0) +
∫ t

t0

(|w(s)|λw(s))′ds

= |w(t0)|λw(t0) + (λ + 1)
∫ t

t0

|w(s)|λw′(s)ds.

By our assumptions the above integral converges. Hence limt→∞ |w(t)|λw(t) exists
in R. Since w ∈ Lλ[t0,∞), the limit must be 0. The proof is complete. �

Lemma 2.2. Let u ∈ C1[t0,∞), u(t) > 0 and u′(t) ↓ 0 as t →∞. Then, tu′(t) ≤
u(t) for sufficiently large t, and the function u(t)/t is decreasing near ∞.



4 K. KAMO, H. USAMI EJDE-2007/126

Proof. Since

u(t) = u(t0) +
∫ t

t0

u′(s)ds ≥ u(t0) + u′(t)(t− t0),

we have
tu′(t)− u(t) ≤ t0u

′(t)− u(t0).
Noting the assumption u′(∞) = 0 we find that tu′(t) − u(t) < 0 near ∞. Since
(u(t)/t)′ = (tu′(t)− u(t))/t2, the proof is completed. �

3. Sub-homogeneous case: α > β

Throughtout the section we assume that α > β. As a first step we give the
growth estimates for weakly increasing positive solutions of (1.3):

Lemma 3.1. Let u be a weakly increasing positive solution of (1.3). Then the
following estimates hold near ∞:(α− β

α

) α
α−β

{∫ t

t1

( ∫ ∞

s

q(r)dr
)1/α

ds
} α

α−β

≤ u(t)

≤
(α− β

α

) α
α−β

{∫ t

t1

s−β/α
( ∫ ∞

s

rβq(r)dr
)1/α

ds
} α

α−β

(3.1)

where t1 is a sufficiently large number.

Note that
∫∞

sβq(s)ds < ∞ if equation (1.3) has a weakly increasing positive
solution; see (ii) of Remark 3.4.

Proof of Lemma 3.1. We may assume that u, u′ > 0 for t ≥ t1. Since u satisfies for
large t,

u′(t)α =
∫ ∞

t

q(s)u(s)βds, (3.2)

and u is increasing, we have

u′(t)α ≥ u(t)β

∫ ∞

t

q(s)ds,

that is

u′(t)u(t)−β/α ≥
( ∫ ∞

t

q(s)ds
)1/α

. (3.3)

An integration of this inequality on the interval [t1, t] gives

α

α− β

{
u(t)

α−β
α − u(t1)

α−β
α

}
≥

∫ t

t1

( ∫ ∞

s

q(r)dr
)1/α

ds,

which proves the first inequality of (3.1). On the other hand, by the decreasing
nature of u(t)/t shown in Lemma 2.2, we find from (3.2) that

u′(t)α ≤
(u(t)

t

)β
∫ ∞

t

sβq(s)ds.

Accordingly,

u′(t)u(t)−β/α ≤ t−β/α
( ∫ ∞

t

sβq(s)ds
)1/α

.

As before we can get the second inequality in (3.1). The proof is complete. �
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To give the main result in this section, let us consider the two equations, of the
same type,

(|u′|α−1u′)′ + q1(t)|u|β−1u = 0, (3.4)

(|u′|α−1u′)′ + q2(t)|u|β−1u = 0. (3.5)

Here, we assume that 0 < α < β and q1, q2 ∈ C([t0,∞); (0,∞)).

Theorem 3.2. Suppose that

q1(t) ∼ q2(t) as t →∞, (3.6)

C

∫ t

t0

s−β/α
( ∫ ∞

s

rβq1(r)dr
)1/α

ds ≤
∫ t

t0

( ∫ ∞

s

q1(r)dr
)1/α

ds (3.7)

hold for some constant C > 0. If u1 and u2 are weakly increasing positive solutions
of equations (3.4) and (3.5), respectively, then u1(t) ∼ u2(t) as t →∞.

Corollary 3.3. Suppose that q1 and q2 satisfy (3.6) and

0 < lim inf
t→∞

q1(t)/t−σ ≤ lim sup
t→∞

q1(t)/t−σ < ∞

for some σ ∈ (β + 1, α + 1]. If u1 and u2 are weakly increasing positive solutions of
equations (3.4) and (3.5), respectively, then u1(t) ∼ u2(t) as t →∞.

Theorem 1.1 is an immediate consequence of Corollary 3.3. Indeed, to see (ii) of
Theorem 1.1, it suffices to notice the fact that the equation

(|u′|α−1u′)′ + t−α−1
(
1− β

(α− β) log t

)
|u|β−1u = 0

has a weakly increasing positive solution given explicitly by

α−
1

α−β
( α

α− β

)− α
α−β (log t)

α
α−β .

Proof of Theorem 3.2. Put z(t) = u1(t)/u2(t), t ≥ t0, t0 being sufficiently large.
Then, z satisfies the equation

z′′ +
2u′2(t)
u2(t)

z′ +
u2(t)β−1

α

[
(u2(t)z′ + u′2(t)z)1−αq1(t)zβ − q2(t)u′2(t)

1−αz
]

= 0.

If z′(T ) = 0 for some T , then

z′′(T ) = α−1q1(T )u2(T )β−1u′2(T )1−αz(T )
(q2(T )

q1(T )
− z(T )β−α

)
.

Thus, if z′ = 0 in the region z > (q1(t)/q2(t))1/(α−β), then z attains a local minimum
here; while if z′ = 0 in the region 0 < z < (q1(t)/q2(t))1/(α−β), then z attains a
local maximum here. Note that by our assumption limt→∞(q1(t)/q2(t))1/(α−β) = 1.
These simple observations are used below.

Since Lemma 3.1 and conditions (3.6) and (3.7) imply that z(t) is bounded and
bounded from 0, we can put 0 < ` = lim inft→∞ z(t) ≤ lim supt→∞ z(t) = L < ∞.
We claim that ` = L; that is limt→∞ z(t) ∈ (0,∞) exists. Suppose for contradiction
that ` 6= L. We treat the following four cases separately: (a)L ≥ 1 > `; (b)L > 1 ≥
`; (c)L > ` ≥ 1; (d)1 ≥ L > `.

Suppose that case (a) occurs. We can find two sequences {Tn} and {tn} satisfying

lim
n→∞

Tn = lim
n→∞

tn = ∞ (3.8)
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and

lim
n→∞

z(Tn) = L, lim
n→∞

z(tn) = `, tn < Tn < tn+1 for n = 1, 2, . . . . (3.9)

Since limt→∞(q1(t)/q2(t))1/(α−β) = 1, we may assume that

z(tn) < (q1(tn)/q2(tn))1/(α−β).

For sufficiently large n ∈ N the minimum of z(t) on the interval [Tn−1, Tn] must
be attained at an interior point, say t∗ ∈ (Tn−1, Tn). Obviously, z′(t∗) = 0 and
z′′(t∗) ≥ 0. However, since z(t∗) ≤ z(tn) for sufficiently large n, we get a contra-
diction to the above observation. Hence case (a) does not occur.

Next suppose that case (c) occurs. As in case (a) we can find two sequences
{Tn} and {tn} satisfying (3.8) and (3.9). For sufficiently lage n ∈ N the maximum
of z(t) on the interval [tn, tn+1] must be attained at an interior point, say t∗ ∈
(tn, tn+1). Obviously, z′(t∗) = 0 and z′′(t∗) ≤ 0. Since z(t∗) ≥ z(Tn) and z(Tn) >
(q1(Tn)/q2(Tn))1/(α−β) for sufficiently large n, we get a contradiction as before.
Hence case (c) does not occur. Similarly we can show that the other cases can not
occur. Therefore limt→∞ z(t) = limt→∞ u1(t)/u2(t) = m ∈ (0,∞) exists. Finally,
by L’Hospital’s rule we have

m = lim
t→∞

u1(t)
u2(t)

=
(

lim
t→∞

u′1(t)
α

u′2(t)α

)1/α

=
(

lim
t→∞

[u′1(t)
α]′

[u′2(t)α]′
)1/α

=
(

lim
t→∞

−q1(t)u1(t)β

−q2(t)u2(t)β

)1/α

= mβ/α;

that is m = mβ/α. Since α > β, we have m = 1. This completes the proof. �

Remark 3.4. Concerning the existence properties of weakly increasing positive
solutions, we know the following results:

(i) If ∫ ∞
tβq(t)dt < ∞; and

∫ ∞ ( ∫ ∞

t

q(s)ds
)1/α

dt = ∞, (3.10)

Then, equation (1.3) has weakly increasing positive solutions [2, Example
1].

(ii) Conversely, if equation (1.3) has a weakly increasing positive solution, then
we can show that∫ ∞

tβq(t)dt < ∞; and
∫ ∞

t−β/α
( ∫ ∞

t

sβq(s)ds
)1/α

dt = ∞. (3.11)

In fact, the first condition in (3.11) follows from [2, Example 2]; while the second
one is an immediate consequence of the estimates in Lemma 3.1. In paricular, when
α = 1, we find that conditions (3.10) and (3.11) are the same; that is, equation
(1.3) (with α = 1) has a weakly increasing positive solution if and only if (3.10)
(with α = 1) holds.
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4. Super-homogeneous case: α < β

Throughout this section we assume that α < β. In this case the situation seems
to be more complicated than in the previous case. The main purpose of the section
is to give the proofs of Theorems 1.2 and 1.3. To this end we need several lemmas.

Lemma 4.1. Let 0 < lim inft→∞ q(t)/t−σ ≤ lim supt→∞ q(t)/t−σ < ∞ for some
σ ∈ (α+1, β+1). Then every weakly increasing positive solution u of (1.1) satisfies
u(t) = O(u0(t)) and u′(t) = O(u′0(t)) as t → ∞, where u0 is the exact solution of
(1.4) given by (1.5) and (1.6).

Proof. As in the proof of Lemma 3.1 we obtain (3.3). An integration of (3.3) on
the interval [t,∞) for t large will give

u(t) ≤ C1

{∫ ∞

t

( ∫ ∞

s

q(r)dr
)1/α

ds
}−α/(β−α)

≤ C2u0(t),

where C1 and C2 are positive constant. Furthermore, by (3.2) we find that

u′(t) =
( ∫ ∞

t

q(s)u(s)βds
)1/α

≤ C3

( ∫ ∞

t

s−σ+kβds
)1/α

= C4t
k−1 = O(u′0(t))

as t →∞, where C3 and C4 are positive constants. This completes the proof. �

Lemma 4.2. Let σ ∈ (α + 1, β + 1), and u be a weakly increasing positive solution
of equation (1.1). Put s = log u0(t) and v = u/u0. Then

(i) v, v̇ = O(1) as s →∞, and v + v̇ > 0 near ∞, where · = d/ds;
(ii) v(s) satisfies near ∞ the equation

v̈ + av̇ − bv + b(v̇ + v)1−αvβ + bδ(s)(v̇ + v)1−αvβ = 0, (4.1)

where a = 2− 1
k 6= 0, b = 1−k

k > 0, and δ(s) = ε(t).

Proof. We will prove only (i), because (ii) can be proved by direct computations.
We note that u, u′ > 0. Since u = u0v, the boundedness of v follows from Lemma
4.1. Noting du/dt = Ĉktk−1(v + v̇), we have v + v̇ > 0. On the other hand, since
dt/ds = t/k, we have

|v̇| =
∣∣ d

dt

( u

u0

) dt

ds

∣∣ =
∣∣u′u0 − u′0u

u2
0

∣∣ t

k
≤ C

tk−1tkt

t2k
= O(1) as s →∞.

This completes the proof. �

Lemma 4.3. Let the assumption either of Theorem 1.2 or Theorem 1.3 hold, and
v be as in Lemma 4.2. Then v̇ ∈ L2[s0,∞) for sufficiently large s0.

Proof. We note that conditions (1.7) and (1.8), respectively, are equivalent to∫ ∞
δ(s)2ds < ∞ (4.2)

and ∫ ∞
|δ̇(s)|ds < ∞. (4.3)

We firstly consider the case where assumptions of Theorem 1.2 hold. In this case,
the constant a appearing in (4.1) is positive. We multiply the both sides of (4.1)
by v̇. Since α ≤ 1, we have (1 + δ(s))(v̇ + v)1−αv̇ ≥ (1 + δ(s))v1−αv̇; and so we
obtain

v̈v̇ + av̇2 − bvv̇ + bv1−α+β v̇ + bδ(s)v1−α+β v̇ ≤ 0. (4.4)
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An integration gives

v̇2

2
+ a

∫ s

s0

v̇2dr − b

2
v2 +

bv2−α+β

2− α + β
+ b

∫ s

s0

δ(r)v1−α+β v̇dr ≤ const; (4.5)

that is

a

∫ s

s0

v̇2dr + b

∫ s

s0

δ(r)v1−α+β v̇dr ≤ O(1) as s →∞.

Here we have employed (i) of Lemma 4.2. Let the integral condition (1.7) hold;
that is, let (4.2) hold. By the Schwarz inequality we have

a

∫ s

s0

v̇2dr − C1

( ∫ ∞

s0

δ(r)2dr
)1/2( ∫ s

s0

v̇2dr
)1/2

≤ O(1)

for some constant C1 > 0. Therefore v̇ ∈ L2[s0,∞). Next let (1.8) hold. Using
integral by parts, we obtain from (4.5)

v̇2

2
+ a

∫ s

s0

v̇2dr − b

2
v2 +

b[1 + δ(r)]v2−α+β

2− α + β
− b

2− α + β

∫ s

s0

δ̇(r)v2−α+βdr ≤ const.

Noting (i) of Lemma 4.2, we find that v̇ ∈ L2[s0,∞).
Secondly we consider the case where assumptions of Theorem 1.3 hold. As above,

we multiply both the sides of (4.1) by v̇. Since α ≥ 1, we have (1+δ(s))(v+v̇)1−αv̇ ≤
(1 + δ(s))v1−αv̇, and so we obtain

|a|v̇2 ≤ v̇v̈ − bvv̇ + b(1 + δ(s))v1−α+β v̇.

An integration on the interval [s0, s] gives

|a|
∫ s

s0

v̇2dr ≤ v̇2

2
− bv2

2
+

bv2−α+β

2− α + β
+ b

∫ s

s0

δ(r)v1−α+β v̇dr + const.

As before, we will obtain v̇ ∈ L2[s0,∞). This completes the proof. �

Proof of Theorem 1.2. To this end it suffices to show that lims→∞ v(s) = 1, where
v(s) is the function introduced in Lemma 4.2. The proof is divided into three steps.

Step 1. We claim that lim infs→∞ v(s) > 0; or equivalently lim inft→∞ u(t)/u0(t) >
0. The proof is done by contradiction. Suppose that lim infs→∞ v(s) = 0. Firstly,
we suppose that v(s) decrease to 0 as s →∞. This means that u(t)/u0(t) decreases
to 0 as t →∞. Accordingly we have

u′(t)α =
∫ ∞

t

p(r)u(r)βdr

=
∫ ∞

t

p(r)u0(r)β
( u(r)

u0(r)

)β

dr

≤
( u(t)
u0(t)

)β
∫ ∞

t

p(r)u0(r)βdr

= C1t
1−σu(t)β ,

where C1 > 0 is a constant. Consequently we obtain the differential inequality
u′ ≤ C2t

(1−σ)/αuβ/α for some constant C2 > 0 near ∞. But this differential
inequality implies that u(t)/u0(t) ≡ v(s) ≥ C3 > 0 for some constant C3 > 0.
This is an obvious contradiction. Next suppose that lim infs→∞ v(s) = 0 and
v̇(s) changes the sign in any neighborhood of ∞. We notice that, if v̇ = 0 in
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the region 0 < v < [1 + δ(s)]−1/(β−α), then v̈ > 0; while if v̇ = 0 in the region
v > [1 + δ(s)]−1/(β−α), then v̈ < 0. Therefore, in this case the curve v = v(s) must
cross the curve v = [1 + δ(s)]−1/(β−α) infinitely many times as s →∞. Therefore,
we can find out two sequences {ξn} and {ηn} satisfying

ξn < ηn < ξn+1, n = 1, 2, . . . ; lim
n→∞

ξn = lim
n→∞

ηn = ∞

and

v(ηn) → 0 as n →∞, v(ξn) = [1 + δ(ξn)]
−1

β−α → 1 as n →∞.

An integration of (4.4) on [ξn, ηn] yields

1
2
{v̇(ηn)2 − v̇(ξn)2}+ a

∫ ηn

ξn

v̇2dr − b

2
{v(ηn)2 − v(ξn)2}

+
b

2− α + β
{v(ηn)2−α+β − v(ξn)2−α+β}+ b

∫ ηn

ξn

δ(r)v1−α+β v̇dr ≤ 0.

(4.6)

From equation (4.1) and (i) of Lemma 4.2 we know that v̈ = O(1) as s →∞. This
fact and the fact that v̇ ∈ L2[s0,∞) imply that lims→∞ v̇(s) = 0 by Lemma 2.1.
Accordingly (4.6) is equivalent to

o(1) + o(1)− b

2
(o(1)− 1) +

b

2− α + β
(o(1)− 1) + o(1) ≤ 0 as s →∞.

Letting n →∞, we get b/2− b/(2− α + β) ≤ 0 a contradiction to the assumption
β > α. Therefore, lim infs→∞ v(s) > 0.

Step 2. We claim that there is a limit lims→∞ v(s) ∈ (0,∞). To see this, we
integrate (4.1) multiplied by v̇:

v̇2

2
+ a

∫ s

s0

v̇2dr − b

2
v2 + b

∫ s

s0

(v̇ + v)1−αvβ v̇dr

+ b

∫ s

s0

δ(r)(v̇ + v)1−αvβ v̇dr = const.
(4.7)

Suppose that condition (1.7) holds; or equivalently (4.2) holds. Since v̇ ∈ L2[s0,∞),
the first, and the third integrals in the left hand side of (4.7) converge as s → ∞.
The mean value theorem shows that

(v + v̇)1−α =
(
1 +

v̇

v

)1−α
v1−α = v1−α + (1− α) (v + θ(r)v̇)−α

v̇, (4.8)

where θ(r) is a quantity satisfying 0 < θ(r) < 1. Therefore,∫ s

s0

(v̇ + v)1−αvβ v̇dr =
∫ s

s0

{v1−α+β v̇ + (1− α)(v + θ(r)v̇)−αvβ v̇2}dr

=
v(s)2+β−α

2 + β − α
+

∫ s

s0

O(1)v̇2dr + const.

So we find that the function −v2/2+v2+β−α/(2+β−α) has a finite limit. This fact
shows that lims→∞ v(s) = m ∈ (0,∞) exists. Suppose that (1.8) or equivalently
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(4.3) holds. By (4.8), we have∫ s

s0

δ(r)(v̇ + v)1−αvβ v̇dr

=
∫ s

s0

{δ(r)v1−α+β v̇ + δ(r)(1− α)(v + θ(r)v̇)−αvβ v̇2}dr

=
δ(s)v2+β−α

2 + β − α
− 1

2 + β − α

∫ s

s0

δ̇(r)v2+β−αdr + const +
∫ s

s0

O(1)v̇2dr

as s →∞. Hence, as before we know that the function −v2/2+v2+β−α/(2+β−α)
has a finite limit. Therefore m = lims→∞ v(s) ∈ (0,∞) exists.

Step 3. Finally, we let s → ∞ in equation (4.1). Then, we have lims→∞ v̈(s) =
b(m −m1+β−α). Since v̇ = o(1), we must have lims→∞ v̈(s) = 0, implying m = 1.
The proof of Theorem 1.2 is complete. �

Proof of Theorem 1.3. Firstly we show that lim infs→∞ v(s) > 0. The proof is
done by contradiction. Suppose that lim infs→∞ v(s) = 0. We may assume that v̇
changes the sign in any neighborhood of ∞, because the case in which v decreases
to 0 can be treated as in the proof of Theorem 1.2 (Step 1). Since v(s) takes local
maxima in the region v ≥ (1+δ(s))−1/(β−α), there are the following sequences {sn}
and {sn} satisfying

sn < sn < sn+1, lim
n→∞

sn = lim
n→∞

sn = ∞,

v̇(sn) = v̇(sn) = 0, lim
n→∞

v(sn) = 0, v(sn) ≥ (1 + δ(sn))−1/(β−α).

Now, we decompose α in the form α = m− ρ, where m ∈ N and ρ > 0. Although
there are infinitely many such choices of decomposition for α, we fix one choice for
a moment. We rewrite equation (4.1) as

v̈ − |a|v̇ − bv + b(v̇ + v)−m+1+ρvβ + bδ(s)(v̇ + v)−m+1+ρvβ = 0.

We multiply both the sides by (v + v̇)mv̇ and then integrate the resulting equation
on the interval [sn, sn] to obtain∫ sn

sn

v̈v̇(v + v̇)mdr − |a|
∫ sn

sn

(v + v̇)mv̇2dr − b

∫ sn

sn

vv̇(v + v̇)mdr

+ b

∫ sn

sn

(v + v̇)1+ρv̇vβdr + b

∫ sn

sn

δ(r)(v + v̇)1+ρv̇vβdr = 0.

(4.9)

The binomial expansion implies

m∑
k=0

ck

∫ sn

sn

v̈v̇k+1vm−kdr − |a|
∫ sn

sn

(v + v̇)mv̇2dr − b
m∑

k=0

ck

∫ sn

sn

vm−k+1v̇k+1dr

+ b

∫ sn

sn

(v + v̇)1+ρv̇vβdr + b

∫ sn

sn

δ(r)(v + v̇)1+ρv̇vβdr = 0,
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where ck =
(
m
k

)
are the binomial coefficients. Now, we evaluate each term in the

left hand side. For k ∈ {0, 1, . . . ,m− 1} we obtain∫ sn

sn

v̈v̇k+1vm−kdr =
∫ sn

sn

d

dr

( v̇k+2

k + 2
)
vm−kdr

= −m− k

k + 2

∫ sn

sn

v̇k+3vm−k−1dr = o(1) as n →∞.

For k = m obviously we have
∫ sn

sn
v̈v̇k+1dr = 0. Hence the first term of the left hand

side of (4.9) tends to 0 as n →∞. The second term is dominated by const
∫ sn

sn
v̇2dr,

and hence it tends to zero as n → ∞. Next, we compute the third term. For
k ∈ {1, 2, . . . ,m} we have |

∫ sn

sn
vm−k+1v̇k+1dr| ≤ const

∫ sn

sn
v̇2dr. For k = 0, we

have∫ sn

sn

vm+1v̇dr =
1

m + 2
(
v(sn)m+2 − v(sn)m+2

)
=

v(sn)m+2

m + 2
+ o(1) as n →∞.

Therefore, the third term is equal to

o(1)− bv(sn)m+2

m + 2
as n →∞.

To evaluate the fourth term we employ the mean value theorem to obtain

(v + v̇)1+ρ = v1+ρ + (1 + ρ) (v + θ(r)v̇)ρ
v̇,

where θ(r) is a quantity between 0 and 1. Hence we can compute∫ sn

sn

(v + v̇)1+ρv̇vβdr

=
∫ sn

sn

v1+ρ+β v̇dr + (1 + ρ)
∫ sn

sn

(v + θ(r)v̇)ρ
v̇2vβdr

=
v(sn)2+ρ+β − v(sn)2+ρ+β

2 + ρ + β
+ (1 + ρ)

∫ sn

sn

O(1)v̇2dr

=
v(sn)2+ρ+β

2 + ρ + β
+ o(1) as n →∞.

Finally by Schwarz’s inequality we find that the last term is dominated by the
quantity

const
( ∫ sn

sn

δ(r)2dr
)1/2( ∫ sn

sn

v̇2dr
)1/2

= o(1) as n →∞.

(Note that (1.7) or equivalently (4.2) is assumed.) Consequently, from (4.9) we
obtain the formula

o(1)− b

m + 2
v(sn)m+2 +

b

2 + ρ + β
v(sn)2+ρ+β + o(1) = 0 as n →∞.

This implies that limn→∞ v(sn) = [(m + 2 + β − α)/(m + 2)]1/(β−α). Since m can
be moved arbitrarily, this is an obvious contradiction. Therefore lim infs→∞ v > 0.

We are now in a position to show lims→∞ v(s) = 1. Since lim infs→∞ v(s) > 0,
we find that lim inft→∞ u(t)/u0(t) > 0. Integrating equation (3.2) (with q replaced
by p), we further find that lim inft→∞ u′(t)/u′0(t) > 0. Since v+ v̇ = u′(t)/u′0(t), we
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obtain lim infs→∞(v + v̇) > 0. Recalling equation (4.1), we find that v̈(s) = O(1)
as s →∞. Since we have already shown that v̇ ∈ L2[s0,∞), Lemma 2.1 shows that
lims→∞ v̇ = 0. Consequently, as in the proof of Theorem 1.2 we can prove that
lims→∞ v(s) = 1. This completes the proof of Theorem 1.3. �
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