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PERIODIC SOLUTIONS OF MULTISPECIES-COMPETITION
PREDATOR-PREY SYSTEM WITH HOLLING’S TYPE III

FUNCTIONAL RESPONSE AND PREY SUPPLEMENT

JIWEI HE

Abstract. In this paper, we consider a nonautonomous multispecies compe-
tition predator-prey system with Holling’s type III functional response and

prey supplement. It is proved that the system is uniformly persistent under
some conditions. Furthermore, we show that the system has a unique positive

periodic solution which is globally asymptotically stable.

1. Introduction

The ecological predator-prey systems with Holling’s type functional response
have been studied extensively by many authors [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14,
15]. One of the most interesting questions in mathematical biology concerns the
existence of positive periodic solutions for population dynamical systems [6, 11,
16, 17, 18]. For the continuous Lotka-Volterra systems, such a problem has been
investigated extensively, and many skills and techniques have been developed.

The existence of positive periodic solutions for such systems can be obtained by
standard techniques of bifurcation theory [5], or by theory of topological degree [11].
In fact, these methods have been widely applied to various Lotka-Volterra systems
[16, 17, 18]. However, in population dynamics, in order to keep the persistence
of Lotka-Volterra system, human always give some supplement of prey. To the
author’s knowledge, the population dynamical systems with prey supplement are
seldom discussed.

The purpose of this paper is to study the asymptotic behavior of a nonau-
tonomous multispecies predator-prey system with Holling’s type III functional re-
sponse and prey supplement. Moreover, the competition among predator species
and among prey species is simultaneously considered. We will investigate the fol-
lowing nonautonomous predator-prey system of differential equations

2000 Mathematics Subject Classification. 92D25, 34C25.
Key words and phrases. Competition predator-prey system; periodic solution;
Holling’s type III functional response; global attractivity.
c©2007 Texas State University - San Marcos.
Submitted May 2, 2007. Published July 25, 2007.
Supported by grant 200611003 from the Youthful Teacher Research Foundation of

North China Electric Power University.

1



2 J. HE EJDE-2007/103

ẋi(t) = xi(t)
[
bi(t)−

n∑
k=1

aik(t)xk(t)−
m∑

k=1

cik(t)xi(t)yk(t)
fik(t) + x2

i (t)

]
+ φi(t), (1.1)

ẏj(t) = yj(t)
[
− rj(t) +

n∑
k=1

djk(t)x2
k(t)

fjk(t) + x2
k(t)

−
m∑

k=1

ejk(t)yk(t)
]
. (1.2)

Here, xi(t) denotes the density of prey species xi at time t, yj(t) denotes the
density of predator species yj at time t, φi(t) represents the supplement of prey,
the functions bi(t), rj(t), aij(t), cij(t), dij(t), eij(t) (i = 1, 2, . . . , n, j = 1, 2, . . . ,m)
are continuous, nonnegative and bi(t), fjk(t), aii(t), ejj(t) are below bounded by
positive constants. In section 2, we prove the uniform persistence of the system.
In section 3, we prove the existence of positive periodic solution of the system. In
section 4, the sufficient conditions for the uniqueness and global attractivity of the
positive periodic solution of system (1.1)–(1.2) are obtained.

2. Uniform Persistence

For the sake of simplicity, we take some notations as following:

X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , ym), F = (X, Y ).

It is obvious that there exists a unique solution of the system (1.1)–(1.2) corre-
sponding to any initial value F = (X, Y ) ∈ Rn+m. Assume that

F (t, F ) = (X(t, F ), Y (t, F ))

= (x1(t, F ), x2(t, F ), . . . , xn(t, F ), y1(t, F ), y2(t, F ), . . . , ym(t, F )),

and F (0, F ) = F, t > 0.

Lemma 2.1. If a > 0, b > 0 and dx
dt ≤ (≥)x(b− ax), when t ≥ 0, for any positive

initial value we have

lim sup
t→∞

x(t) ≤ b

a
(lim inf

t→∞
x(t) ≥ b

a
).

Lemma 2.2. Both positive and nonnegative cones of Rn+m are invariant with
respect to system (1.1)–(1.2).

It follows from this lemma that any solution of system (1.1)–(1.2) with nonneg-
ative initial conditions remains nonnegative.

Definition 2.3. System (1.1)–(1.2) is said to be uniformly persistent if for any
positive initial value, there exist positive constants A,B,C, D such that 0 < A ≤
lim inft→+∞ xi(t) ≤ lim supt→+∞ xi(t) ≤ B < +∞ (i = 1, 2, . . . , n) and 0 < C ≤
lim inft→+∞ yj(t) ≤ lim supt→+∞ yj(t) ≤ D < +∞ (j = 1, 2, . . . ,m).
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Assume that 0 < fL = inft≥0 f(t) ≤ supt≥0 f(t) = fM < +∞. In the following,
it is convenient to assume that

pi =
bM
i

aL
ii

+

√
φM

i

aL
ii

, qj =
1

eL
jj

(−rL
j +

n∑
k=1

dM
jk),

αi =
1

aM
ii

(bL
i −

n∑
k=1,k 6=i

aM
ik pk −

m∑
k=1

cM
ik qkpi

fL
ik

) +

√
φL

i

aM
ii

,

βj =
1

eM
jj

(−rM
j +

n∑
k=1

dL
jkα2

k

fM
jk + p2

k

−
m∑

k=1,k 6=j

eM
jkqk)

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m). It is obvious that if qj > 0, then αi < pi, and if
qj > 0, αi > 0, then βj < qj (i = 1, 2, . . . , n; j = 1, 2, . . . ,m). So, from now on, we
suppose that qj > 0 (j = 1, 2, . . . ,m).

Theorem 2.4. If αi > 0, βj > 0, qj > 0, (i = 1, 2, . . . , n; j = 1, 2, . . . ,m), then
system (1.1)–(1.2) is uniformly persistent.

Proof. It follows from Lemma 2.2 that any solution of system (1.1)–(1.2) which has
a nonnegative initial condition remains nonnegative. From equation (1.1), we have
ẋi ≤ xi(bM

i − aL
iixi) + φM

i . For any initial value xi(0) > 0, from Lemma 2.1, we
have

lim sup
t→∞

xi(t) ≤
bM
i

aL
ii

+

√
φM

i

aL
ii

= pi, (i = 1, 2, . . . , n). (2.1)

From (1.2), we have ẏj ≤ yj(−rL
j +

∑n
k=1 dM

jk − eL
jjyj). Thus for any yj(0) > 0,

from Lemma 2.1, we have

lim sup
t→∞

yj(t) ≤
1

eL
jj

(−rL
j +

n∑
k=1

dM
jk) = qj , (j = 1, 2, . . . ,m). (2.2)

For ε1 > 0 small enough, there exists t1 > 0 such that

xk(t) < pk + ε1, and yk(t) < qk + ε1, (2.3)

for t > t1. From (1.1) and inequality (2.3), we have

ẋi ≥ xi(bL
i −

n∑
k=1,k 6=i

aM
ik (pk + ε1)−

m∑
k=1

cM
ik (qk + ε1)(pi + ε1)

fL
ik

− aM
ii xi) + φL

i , (2.4)

(i = 1, 2, . . . , n) for t > t1. From the above inequality, for any initial value xi(0) > 0,
using Lemma 2.1, we get

lim inf
t→+∞

xi(t) ≥
1

aM
ii

(bL
i −

n∑
k=1,k 6=i

aM
ik (pk + ε1)−

m∑
k=1

cM
ik (qk + ε1)(pi + ε1)

fL
ik

) +

√
φL

i

aM
ii

,

(i = 1, 2, . . . , n). Let ε1 → 0, we have

lim inf
t→+∞

xi(t) ≥
1

aM
ii

(bL
i −

n∑
k=1,k 6=i

aM
ik pk −

m∑
k=1

cM
ik qkpi

fL
ik

) +

√
φL

i

aM
ii

= αi, (2.5)

(i = 1, 2, . . . , n). For ε2 > 0 small enough, there exists t2 > t1 such that

xk(t) > αk − ε2 > 0, (k = 1, 2, . . . , n), (2.6)
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for t > t2. Using equation (1.2) and inequalities (2.3) and (2.6), we have

ẏj ≥ yj(−rM
j +

n∑
k=1

dL
jk(αk − ε2)2

fM
jk + (pk + ε1)2

−
m∑

k=1,k 6=j

eM
jk(qk + ε1)− eM

jj yj), t > t2.

So, for any initial value yj(0) > 0, from Lemma 2.1, we obtain

lim inf
t→+∞

yj(t) ≥
1

eM
jj

(−rM
j +

n∑
k=1

dL
jk(αk − ε2)2

fM
jk + (pk + ε1)2

−
m∑

k=1,k 6=j

eM
jk(qk + ε1)),

(j = 1, 2, . . . ,m), by the arbitrariness of ε1 and ε2, we have

lim inf
t→+∞

yj(t) ≥
1

eM
jj

(−rM
j +

n∑
k=1

dL
jkα2

k

fM
jk + p2

k

−
m∑

k=1,k 6=j

eM
jkqk) = βj , (2.7)

(j = 1, 2, . . . ,m). Then, from (2.1), (2.5) and (2.2), (2.7), we conclude that system
(1.1)–(1.2) is uniformly persistent. �

Assume K0 = {F = (X, Y ) ∈ Rn+m
+ : α?

i ≤ xi(t) ≤ p?
i (i = 1, 2, . . . , n), β?

j ≤
yj(t) ≤ q?

j (j = 1, 2, . . . ,m)}, where

0 < α?
i < αi, p?

i > pi, 0 < β?
j < βj , q?

j > qj . (2.8)

Corollary 2.5. K0 is an invariant set with respect to system (1.1)–(1.2) and is
ultimately bounded area of the solution of (1.1)–(1.2).

Proof. Since αi ≤ lim inft→+∞ xi(t) ≤ lim supt→+∞ xi(t) ≤ pi, then there exists
t1 > 0 such that α?

i ≤ xi(t) ≤ P ?
i for t ≥ t1.

By analogy with xi, we know that there exists t2 > t1, such that β?
j ≤ yj(t) ≤ q?

j

for t ≥ t2. It is obvious that 0 < α?
i < p?

i and 0 < β?
j < q?

j are indepen-
dent of any positive solution of system (1.1)–(1.2). So for any solution F =
(x1(t), . . . , xn(t), y1(t), . . . , ym(t)) with positive initial value, we have

(x1(t), . . . , xn(t); y1(t), . . . , ym(t)) ∈ K0

for t ≥ t2. �

3. Existence of Positive Periodic Solution

In this section, we assume that all the coefficient functions are ω-periodic (ω > 0),
continuous and nonnegative, and bi(t), rj(t), aii(t), ejj(t) are positive functions,
then system (1.1)–(1.2) will be a ω period system.

Lemma 3.1 ([10]). Suppose that a continuous operator U maps a closed bounded
convex set Ω ⊂ Rn into itself. Then Ω contains at least one fixed point of U ; that
is, there exists at least one z ∈ Ω for which Uz = z holds.

Theorem 3.2. If system (1.1)–(1.2) satisfies conditions (2.8), then system (1.1)–
(1.2) at least have a positive ω period solution in R+.

Proof. Firstly we define a Poincaré mapping P : Rn+m → Rn+m, i.e. Px0 = x(ω +
t0; t0;x0), here x0 = (x1(t0), x2(t0), . . . , xn(t0); y1(t0), y2(t0), . . . , ym(t0)) ∈ Rn+m

+ .
It is easy to know, if P has a fixed point x? ∈ Rn+m

+ , it is equivalent that system
(1.1)–(1.2) at least have a ω period positive solution. For K0 mentioned above, it
is obvious that K0 ⊂ Rn+m

+ is a bounded closed convex set and a positive invariant
set with system M0.
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Since the solution is continuous with the initial value, if x0 ∈ K0, then P is
continuous with x0 in K0 and P maps K0 into itself. That is to say that if x0 ∈ K0,
then x(t + t0; t0, x0) ∈ K0(t ≥ t0). Let t = ω, we have x(ω + t0; t0, x0) ∈ K0, i.e.
PK0 ⊂ K0. By Lemma 3.1 we know that P at least have a fixed point x?, i.e.
Px? = x?, and then the corresponding system (1.1)–(1.2) at least have a ω positive
period solution. �

4. Global Asymptotic Stability and Uniqueness of the Positive
Period Solution

Without loss of generality, we assume m ≤ n, cik = 0, k = m + 1, . . . , n, i =
1, 2, . . . , n, let p = max1≤i≤n{pi}, α = min1≤i≤n{αi}, q = max1≤j≤m{qj}, and
β = min1≤j≤m{βj}.

In the following, we assume that

(A) qj > 0, αi > 0 and βj > 0, (i = 1, 2, . . . , n; j = 1, 2, . . . ,m).
(B)

α = min
{
aii(t)−

n∑
k=1, k 6=i

(aik(t) +
cik(t)(fik(t) + p2)q

f2
ik(t)

)−
m∑

j=1

2dji(t)p
fji(t)

,

αcjj(t)
fjj(t) + p2

−
n∑

k=1, k 6=j

αcjk(t)
fjk(t) + p2

−
m∑

k=1

ejk(t)
}

> 0,

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m).

Lemma 4.1 ([1]). Let g be a nonnegative function defined on [0,+∞) such that g
is integrable on [0,+∞) and is uniformly continuous on [0,+∞). Then

lim
t→+∞

g(t) = 0.

Theorem 4.2. If system (1.1)–(1.2) satisfies the conditions (A) and (B), then sys-
tem (1.1)–(1.2) has a unique positive period solution which is globally asymptotically
stable.

Proof. Let G(t) = (u1(t), u2(t), . . . , un(t), v1(t), v2(t), . . . , vm(t)) ∈ Rn+m
+ be a pos-

itive periodic solution obtained in the proof of Theorem 3.2, and let F (t) =
(x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t)) ∈ Rn+m

+ be a solution of (1.1)–(1.2)
with F (0) > 0. Since solution of system (1.1)–(1.2) remains positive, we can set

Ui(t) = lnui(t), Xi(t) = lnxi(t) (i = 1, 2, . . . , n),

Vj(t) = ln vj(t), Yj(t) = ln yj(t) (j = 1, 2, . . . ,m).

Consider a Lyapunov function V (t) =
∑n

i=1 |Ui(t)−Xi(t)|+
∑m

j=1 |Vj(t)− Yj(t)|.
Now we calculate and estimate the upper right derivative of V (t) along the solution



6 J. HE EJDE-2007/103

of system (1.1)–(1.2):

D+V (t)

≤
n∑

i=1

Ui(t)−Xi(t)
|Ui(t)−Xi(t)|

(U̇i(t)− Ẋi(t)) +
m∑

j=1

Vj(t)− Yj(t)
|Vj(t)− Yj(t)|

(V̇j(t)− Ẏj(t))

≤
n∑

i=1

Ui(t)−Xi(t)
|Ui(t)−Xi(t)|

[−
n∑

k=1

aik(t)(eUk(t) − eXk(t))−
m∑

k=1

cik(t)ui(t)(eVk(t) − eYk(t))
fik(t) + u2

i (t)

+
m∑

k=1

cik(t)yk(t)(−fik(t) + xi(t)ui(t))(eUi(t) − eXi(t))
(fik(t) + u2

i (t))(fik(t) + x2
i (t))

]

+
m∑

j=1

Vj(t)− Yj(t)
|Vj(t)− Yj(t)|

[−
m∑

k=1

ejk(t)(eVk(t) − eYk(t))

+
n∑

k=1

djk(t)fjk(t)(uk(t) + xk(t))(eUk(t) − eXk(t))
(fjk(t) + u2

k(t))(fjk(t) + x2
k(t))

]

≤
n∑

i=1

[
n∑

k=1,k 6=i

(aik(t) +
cik(t)(fik(t) + p2)q

f2
ik(t)

) +
m∑

j=1

2dji(t)p
fji(t)

− aii(t)]|eUi(t) − eXi(t)|

+
m∑

j=1

[− αcjj(t)
fjj(t) + p2

+
n∑

k=1,k 6=j

αcjk(t)
fjk(t) + p2

+
m∑

k=1

ejk(t)]|eVj(t) − eYj(t)|

≤ −α[
n∑

i=1

|ui(t)− xi(t)|+
m∑

j=1

|vj(t)− yj(t)|].

An integration of the above inequality leads to

V (t) + α

∫ t

0

[
n∑

i=1

|ui(t)− xi(t)|+
m∑

j=1

|vj(t)− yj(t)|] < V (0) < +∞.

Then

lim sup
t→+∞

∫ t

0

[
n∑

i=1

|ui(t)− xi(t)|+
m∑

j=1

|vj(t)− yj(t)|] ≤
V (0)

α
< +∞.

Thus by Lemma 4.1 we have

lim
t→+∞

|ui(t)− xi(t)| = 0 (i = 1, 2, . . . , n);

lim
t→+∞

|vj(t)− yj(t)| = 0 (j = 1, 2, . . . ,m).

This implies that the positive ω periodic solution G(t) is globally asymptotically
stable, and then it is unique. �
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