Electronic Journal of Differential Equations, Vol. 2006(2006), No. 94, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A BLOW UP CONDITION FOR A NONAUTONOMOUS SEMILINEAR SYSTEM

AROLDO PÉREZ-PÉREZ

Abstract

We give a sufficient condition for finite time blow up of the nonnegative mild solution to a nonautonomous weakly coupled system with fractal diffusion having a time dependent factor which is continuous and nonnegative.

1. Introduction

This paper deals with the blow up of nonnegative solutions of the nonautonomous initial value problem for a weakly coupled system with a fractal diffusion

$$
\begin{align*}
\frac{\partial u(t, x)}{\partial t} & =k(t) \Delta_{\alpha} u(t, x)+v^{\beta_{1}}(t, x), \quad t>0, \quad x \in \mathbb{R}^{d} \\
\frac{\partial v(t, x)}{\partial t} & =k(t) \Delta_{\alpha} v(t, x)+u^{\beta_{2}}(t, x), \quad t>0, \quad x \in \mathbb{R}^{d} \tag{1.1}\\
u(0, x) & =\varphi_{1}(x), \quad x \in \mathbb{R}^{d} \\
v(0, x) & =\varphi_{2}(x), \quad x \in \mathbb{R}^{d}
\end{align*}
$$

where $\Delta_{\alpha}:=-(-\Delta)^{\alpha / 2}, 0<\alpha \leq 2$ denotes the α-Laplacian, $\beta_{1}, \beta_{2}>1$ are constants, $0 \leq \varphi_{1}, \varphi_{2} \in B\left(\mathbb{R}^{d}\right)$ (where $B\left(\mathbb{R}^{d}\right)$ is the space of bounded measurable functions on \mathbb{R}^{d}) do not vanish identically, $k:[0, \infty) \rightarrow[0, \infty)$ is continuous and satisfies

$$
\begin{equation*}
\varepsilon_{1} t^{\rho} \leq \int_{0}^{t} k(r) d r \leq \varepsilon_{2} t^{\rho}, \quad \varepsilon_{1}, \varepsilon_{2}, \rho>0 \tag{1.2}
\end{equation*}
$$

for all t large enough.
The associated integral system to 1.1 is given by

$$
\begin{align*}
& u(t, x)=U(t, 0) \varphi_{1}(x)+\int_{0}^{t} U(t, r) v^{\beta_{1}}(r, x) d r, \quad t>0, x \in \mathbb{R}^{d} \tag{1.3}\\
& v(t, x)=U(t, 0) \varphi_{2}(x)+\int_{0}^{t} U(t, r) u^{\beta_{2}}(r, x) d r, \quad t>0, x \in \mathbb{R}^{d} \tag{1.4}
\end{align*}
$$

[^0]where $\{U(t, s)\}_{t \geq s \geq 0}$ is the evolution family on $B\left(\mathbb{R}^{d}\right)$ that solves the homogeneous Cauchy problem for the family of generators $\left\{k(t) \Delta_{\alpha}\right\}_{t \geq 0}$. Clearly
$$
U(t, s)=S(K(t, s)), \quad t \geq s \geq 0
$$
where $\{S(t)\}_{t \geq 0}$ is the semigroup with infinitesimal generator Δ_{α}, and $K(t, s)=$ $\int_{s}^{t} k(r) d r, t \geq s \geq 0$.

A solution of (1.3)-(1.4) is called a mild solution of (1.1). If there exist a solution (u, v) of 1.1 in $[0, \infty) \times \mathbb{R}^{d}$ such that $\|u(t, \cdot)\|_{\infty}+\|v(t, \cdot)\|_{\infty}<\infty$ for any $t \geq 0$, we say that (u, v) is a global solution, and when there exist a number $T_{\varphi_{1}, \varphi_{2}}<\infty$ such that (1.1) has a bounded solution (u, v) in $[0, T] \times \mathbb{R}^{d}$ for all $T<T_{\varphi_{1}, \varphi_{2}}$ with $\lim _{t \uparrow T_{\varphi_{1}, \varphi_{2}}}\|u(t, \cdot)\|_{\infty}=\infty$ or $\lim _{t \uparrow T_{\varphi_{1}, \varphi_{2}}}\|v(t, \cdot)\|_{\infty}=\infty$ we say that (u, v) blows up in finite time.

The finite time blow up of (1.1) for $\alpha=2$ and $k \equiv 1$ was initially considered by Escobedo and Herrero [4]. They proved that when $\beta_{1} \beta_{2}>1$ and $(\gamma+1) /\left(\beta_{1} \beta_{2}-1\right) \geq$ $d / 2$ with $\gamma=\max \left\{\beta_{1}, \beta_{2}\right\}$, any nontrivial positive solution to (1.1) blows up in finite time. Related results and more general cases for the Laplacian can be found for instance in [1, 3, 5, 6, 10, 12, 13, 15, 16. The case for fractional powers of the Laplacian when $k \equiv 1$ for equations with different diffusion operators was considered in [8, 9] see also [2, 11] for a probabilistic approach. Sugitani [14] has considered a scalar version of 1.1 with $k \equiv 1$ when the nonlinear term is given by an increasing nonnegative continuous and convex function $F(u)$, defined on $[0, \infty)$, and Guedda and Kirane [7 have considered a scalar version of (1.1) with $k \equiv 1$ when the nonlinear term is $h(t) u^{\beta}, \beta>1$ with h being a nonnegative continuous function on $[0, \infty)$ satisfying $c_{0} t^{\sigma} \leq h(t) \leq c_{1} t^{\sigma}$ for sufficiently large t, where $c_{0}, c_{1}>0$ and $\sigma>-1$ are constants. They proved that in this scalar case, solutions blow up in finite time if $0<d(\beta-1) / \alpha \leq 1+\sigma$ for any nontrivial nonnegative and continuous initial function on \mathbb{R}^{d}. Here we prove that if k satisfies 1.2 and $0<d \rho\left(\beta_{i}-1\right) / \alpha<1, i=1,2$, then any nontrivial positive solution of (1.1) blows up in finite time. Here solutions will be understood in the mild sense, that is, that solve (1.3)-1.4.

2. Blow up condition

Let $(u(\cdot, \cdot), v(\cdot, \cdot))$ be a nonnegative solution of 1.1) and define

$$
u(t)=\int_{\mathbb{R}^{d}} p(K(t, 0), x) u(t, x) d x, \quad v(t)=\int_{\mathbb{R}^{d}} p(K(t, 0), x) v(t, x) d x, \quad t>0
$$

where $p(t, x), t>0, x \in \mathbb{R}^{d}$ denotes the density of the semigroup $S(t), t \geq 0$.
Lemma 2.1. For any $s, t>0$, and $x, y \in \mathbb{R}^{d}, p(t, x)$ satisfies
i) $p(t s, x)=t^{-\frac{d}{\alpha}} p\left(s, t^{-\frac{1}{\alpha}} x\right)$,
ii) $p(t, x) \leq p(t, y)$ when $|x| \geq|y|$,
iii) $p(t, x) \geq\left(\frac{s}{t}\right)^{\frac{d}{\alpha}} p(s, x)$ for $t \geq s$,
iv) $p\left(t, \frac{1}{\tau}(x-y)\right) \geq p(t, x) p(t, y)$ if $p(t, 0) \leq 1$ and $\tau \geq 2$.

Proof. See Guedda and Kirane [7] or Sugitani [14].
Lemma 2.2. If there exist $T_{0}>0$ such that $u(t)=\infty$ or $v(t)=\infty$ for $t \geq T_{0}$, then the nonnegative solution of (1.1) blows up in finite time.

Proof. Due to 1.2 and Lemma 2.1 i), we can assume that

$$
p(K(t, 0), 0) \leq 1 \quad \text { for all } t \geq T_{0}
$$

If $T_{0} \leq \varepsilon_{1}^{1 / \rho} t$ and $\varepsilon_{1}^{1 / \rho} t \leq r \leq\left(2 \varepsilon_{1}\right)^{1 / \rho} t$, we have from the conditions of $k(t)$,

$$
\begin{aligned}
\tau & \equiv\left[\frac{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right)}{K(r, 0)}\right]^{1 / \alpha}=\left[\frac{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, 0\right)-K(r, 0)}{K(r, 0)}\right]^{1 / \alpha} \\
& \geq\left[\frac{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, 0\right)}{\left.K\left(\left(2 \varepsilon_{1}\right)^{1 / \rho} t\right), 0\right)}-1\right]^{1 / \alpha} \geq\left[\frac{\varepsilon_{1}\left(10 \varepsilon_{2}\right) t^{\rho}}{\varepsilon_{2}\left(2 \varepsilon_{1}\right) t^{\rho}}-1\right]^{1 / \alpha} \geq 2
\end{aligned}
$$

Hence, using Lemma 2.1 i), iv) with $\tau=\left[\frac{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right)}{K(r, 0)}\right]^{1 / \alpha}$,

$$
\begin{aligned}
& p\left(K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right), x-y\right) \\
& =p\left(K(r, 0)\left[\frac{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right)}{K(r, 0)}\right], x-y\right) \\
& =\left[\frac{K(r, 0)}{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right)}\right]^{d / \alpha} p\left(K(r, 0),\left[\frac{K(r, 0)}{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right)}\right]^{1 / \alpha}(x-y)\right) \\
& \geq\left[\frac{K(r, 0)}{\left.K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t\right), r\right)}\right]^{d / \alpha} p(K(r, 0), x) p(K(r, 0), y), \quad x, y \in \mathbb{R}^{d}
\end{aligned}
$$

Hence, assuming that $u(t)=\infty$ for all $t \geq T_{0}$,

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} p\left(K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right), x-y\right) u(r, y) d y \\
& \geq\left[\frac{K(r, 0)}{K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right)}\right]^{d / \alpha} p(K(r, 0), x) u(r)=\infty, \quad x \in \mathbb{R}^{d} \tag{2.1}
\end{align*}
$$

We know by 1.4 that

$$
\begin{aligned}
v(t, x)= & \int_{\mathbb{R}^{d}} p(K(t, 0), x-y) \varphi_{2}(y) d y \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p(K(t, r), x-y) u^{\beta_{2}}(r, y) d y\right) d r \\
\geq & \int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p(K(t, r), x-y) u^{\beta_{2}}(r, y) d y\right) d r
\end{aligned}
$$

Thus,

$$
v\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, x\right) \geq \int_{0}^{\left(10 \varepsilon_{2}\right)^{1 / \rho} t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right), x-y\right) u^{\beta_{2}}(r, y) d y\right) d r
$$

and by Jensen's inequality and 2.1 , we get

$$
v\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, x\right) \geq \int_{\varepsilon_{1}^{1 / \rho} t}^{\left(2 \varepsilon_{1}\right)^{1 / \rho} t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(\left(10 \varepsilon_{2}\right)^{1 / \rho} t, r\right), x-y\right) u(r, y) d y\right)^{\beta_{2}} d r=\infty
$$

so that $v(t, x)=\infty$ for any $t \geq\left(10 \frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{1 / \rho} T_{0}$ and $x \in \mathbb{R}^{d}$. Similarly, when $v(t)=\infty$ for all $t \geq T_{0}$, it can be shown that $u(t, x)=\infty$ for all $t \geq\left(10 \frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{1 / \rho} T_{0}$ and $x \in \mathbb{R}^{d}$.

Theorem 2.3. If $0<d \rho\left(\beta_{i}-1\right) / \alpha<1, i=1$, 2 , then the nonnegative solution of system (1.1) blows up in finite time.

Proof. Let $t_{0} \geq 1$ be such that 1.2 holds for all $t \geq t_{0}$ and such that $p\left(K\left(t_{0}, 0\right), 0\right) \leq$ 1. Using Lemma 2.1 i), iv), we have

$$
\begin{aligned}
p\left(K\left(t_{0}, 0\right), x-y\right) & =p\left(K\left(t_{0}, 0\right), \frac{1}{2}(2 x-2 y)\right) \geq p\left(K\left(t_{0}, 0\right), 2 x\right) p\left(K\left(t_{0}, 0\right), 2 y\right) \\
& =2^{-d} p\left(2^{-\alpha} K\left(t_{0}, 0\right), x\right) p\left(K\left(t_{0}, 0\right), 2 y\right), \quad x, y \in \mathbb{R}^{d}
\end{aligned}
$$

Therefore (see 1.3)

$$
\begin{align*}
u\left(t_{0}, x\right) & \geq \int_{\mathbb{R}^{d}} p\left(K\left(t_{0}, 0\right), x-y\right) \varphi_{1}(y) d y \\
& \geq 2^{-d} p\left(2^{-\alpha} K\left(t_{0}, 0\right), x\right) \int_{\mathbb{R}^{d}} p\left(K\left(t_{0}, 0\right), 2 y\right) \varphi_{1}(y) d y \tag{2.2}\\
& =N_{1} p\left(2^{-\alpha} K\left(t_{0}, 0\right), x\right), \quad x \in \mathbb{R}^{d},
\end{align*}
$$

where $N_{1}=2^{-d} \int_{\mathbb{R}^{d}} p\left(K\left(t_{0}, 0\right), 2 y\right) \varphi_{1}(y) d y$. Notice that

$$
\begin{aligned}
u\left(t+t_{0}, x\right)= & \int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, 0\right), x-y\right) \varphi_{1}(y) d y \\
& +\int_{0}^{t+t_{0}}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r\right), x-y\right) v^{\beta_{1}}(r, y) d y\right) d r \\
= & \int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right)+K\left(t_{0}, 0\right), x-y\right) \varphi_{1}(y) d y \\
& +\int_{0}^{t_{0}}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right)+K\left(t_{0}, r\right), x-y\right) v^{\beta_{1}}(r, y) d y\right) d r \\
& +\int_{t_{0}}^{t+t_{0}}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r\right), x-y\right) v^{\beta_{1}}(r, y) d y\right) d r \\
= & \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right), x-z\right) p\left(K\left(t_{0}, 0\right), z-y\right) d z\right) \varphi_{1}(y) d y \\
& +\int_{0}^{t_{0}}\left[\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right), x-z\right) p\left(K\left(t_{0}, r\right), z-y\right) d z\right)\right. \\
& \left.\times v^{\beta_{1}}(r, y) d y\right] d r \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r+t_{0}\right), x-y\right) v^{\beta_{1}}\left(r+t_{0}, y\right) d y\right) d r
\end{aligned}
$$

$t \geq 0, x \in \mathbb{R}^{d}$. From here, by Fubini's theorem and 1.3 we have

$$
\begin{aligned}
u\left(t+t_{0}, x\right)= & \int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right), x-z\right)\left(\int_{\mathbb{R}^{d}} p\left(K\left(t_{0}, 0\right), z-y\right) \varphi_{1}(y) d y\right) d z \\
& +\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right), x-z\right)\left[\int _ { 0 } ^ { t _ { 0 } } \left(\int_{\mathbb{R}^{d}} p\left(K\left(t_{0}, r\right), z-y\right)\right.\right. \\
& \left.\left.\times v^{\beta_{1}}(r, y) d y\right) d r\right] d z \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r+t_{0}\right), x-y\right) v^{\beta_{1}}\left(r+t_{0}, y\right) d y\right) d r \\
= & \int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right), x-y\right) u\left(t_{0}, y\right) d y \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r+t_{0}\right), x-y\right) v^{\beta_{1}}\left(r+t_{0}, y\right) d y\right) d r
\end{aligned}
$$

$t \geq 0, x \in \mathbb{R}^{d}$. Thus, using 2.2 gives

$$
\begin{align*}
u\left(t+t_{0}, x\right) \geq & N_{1} \int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, t_{0}\right), x-y\right) p\left(2^{-\alpha} K\left(t_{0}, 0\right), y\right) d y \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r+t_{0}\right), x-y\right) v^{\beta_{1}}\left(r+t_{0}, y\right) d y\right) d r \tag{2.3}\\
= & N_{1} p\left(K\left(t+t_{0}, t_{0}\right)+2^{-\alpha} K\left(t_{0}, 0\right), x\right) \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p\left(K\left(t+t_{0}, r+t_{0}\right), x-y\right) v^{\beta_{1}}\left(r+t_{0}, y\right) d y\right) d r
\end{align*}
$$

$t \geq 0, x \in \mathbb{R}^{d}$. Multiplying both sides of 2.3 by $p\left(K\left(t+t_{0}, 0\right), x\right)$ and integrating, we have

$$
\begin{aligned}
u\left(t+t_{0}\right)= & N_{1} p\left(2 K\left(t+t_{0}, t_{0}\right)+\left(2^{-\alpha}+1\right) K\left(t_{0}, 0\right), 0\right) \\
& +\int_{0}^{t}\left(\int_{\mathbb{R}^{d}} p\left(2 K\left(t+t_{0}, 0\right)-K\left(r+t_{0}, 0\right), y\right) v^{\beta_{1}}\left(r+t_{0}, y\right) d y\right) d r
\end{aligned}
$$

$t \geq 0$. Applying Lemma 2.1 i), iii), we get

$$
\begin{aligned}
u\left(t+t_{0}\right) \geq & N_{1}\left[2 K\left(t+t_{0}, t_{0}\right)+\left(2^{-\alpha}+1\right) K\left(t_{0}, 0\right)\right]^{-d / \alpha} p(1,0) \\
& +\int_{0}^{t}\left(\frac{K\left(r+t_{0}, 0\right)}{2 K\left(t+t_{0}, 0\right)}\right)^{d / \alpha} v^{\beta_{1}}\left(r+t_{0}\right) d r
\end{aligned}
$$

For a suitable choice of $\theta>0$ given below, we define $f_{1}(t)=K^{d / \alpha}\left(t+t_{0}, 0\right) u(t+$ $\left.t_{0}\right), g_{1}(t)=K^{d / \alpha}\left(t+t_{0}, 0\right) v\left(t+t_{0}\right), t \geq \theta$. Then

$$
f_{1}(t) \geq \bar{N}_{1}+2^{-d / \alpha} \int_{\theta}^{t} K^{-d\left(\beta_{1}-1\right) / \alpha}\left(r+t_{0}, 0\right) g_{1}^{\beta_{1}}(r) d r, \quad t \geq \theta
$$

where $\bar{N}_{1}=p(1,0) N_{1}\left[\frac{K(\theta, 0)}{2 K\left(\theta+t_{0}, 0\right)+\left(2^{-\alpha}+1\right) K\left(t_{0}, 0\right)}\right]^{d / \alpha}$. Similarly, it can be shown that

$$
g_{1}(t) \geq \bar{N}_{2}+2^{-d / \alpha} \int_{\theta}^{t} K^{-d\left(\beta_{2}-1\right) / \alpha}\left(r+t_{0}, 0\right) f_{1}^{\beta_{2}}(r) d r, \quad t \geq \theta
$$

where $\bar{N}_{2}=p(1,0) N_{2}\left[\frac{K(\theta, 0)}{2 K\left(\theta+t_{0}, 0\right)+\left(2^{-\alpha}+1\right) K\left(t_{0}, 0\right)}\right]^{d / \alpha}$ with $N_{2}=2^{-d} \int_{\mathbb{R}^{d}} p\left(K\left(t_{0}, 0\right)\right.$, 2y) $\varphi_{2}(y) d y$.

Letting $N=\min \left\{\bar{N}_{1}, \bar{N}_{2}\right\}$, we get

$$
\begin{aligned}
& f_{1}(t) \geq N+2^{-d / \alpha} \int_{\theta}^{t} \min _{i \in\{1,2\}} K^{-d\left(\beta_{i}-1\right) / \alpha}\left(r+t_{0}, 0\right) g_{1}^{\beta_{1}}(r) d r, \quad t \geq \theta, \\
& g_{1}(t) \geq N+2^{-d / \alpha} \int_{\theta}^{t} \min _{i \in\{1,2\}} K^{-d\left(\beta_{i}-1\right) / \alpha}\left(r+t_{0}, 0\right) f_{1}^{\beta_{2}}(r) d r, \quad t \geq \theta .
\end{aligned}
$$

Let $\left(f_{2}(t), g_{2}(t)\right)$ be the solution of the system integral equations

$$
\begin{aligned}
& f_{2}(t)=N+2^{-d / \alpha} \int_{\theta}^{t} \min _{i \in\{1,2\}} K^{-d\left(\beta_{i}-1\right) / \alpha}\left(r+t_{0}, 0\right) g_{2}^{\beta_{1}}(r) d r, \quad t \geq \theta, \\
& g_{2}(t)=N+2^{-d / \alpha} \int_{\theta}^{t} \min _{i \in\{1,2\}} K^{-d\left(\beta_{i}-1\right) / \alpha}\left(r+t_{0}, 0\right) f_{2}^{\beta_{2}}(r) d r, \quad t \geq \theta,
\end{aligned}
$$

whose differential expression is

$$
\begin{align*}
& f_{2}^{\prime}(t)=2^{-d / \alpha} \min _{i \in\{1,2\}} K^{-d\left(\beta_{i}-1\right) / \alpha}\left(t+t_{0}, 0\right) g_{2}^{\beta_{1}}(t), \quad t>\theta, \\
& g_{2}^{\prime}(t)=2^{-d / \alpha} \min _{i \in\{1,2\}} K^{-d\left(\beta_{i}-1\right) / \alpha}\left(t+t_{0}, 0\right) f_{2}^{\beta_{2}}(t), \quad t>\theta, \tag{2.4}\\
& f_{2}(\theta)=N, \quad g_{2}(\theta)=N .
\end{align*}
$$

From (2.4 it follows that

$$
\int_{\theta}^{t} f_{2}^{\beta_{2}}(r) f_{2}^{\prime}(r) d r=\int_{\theta}^{t} g_{2}^{\beta_{1}}(r) g_{2}^{\prime}(r) d r
$$

that is,

$$
\frac{1}{\beta_{2}+1}\left[f_{2}^{\beta_{2}+1}(t)-N^{\beta_{2}+1}\right]=\frac{1}{\beta_{1}+1}\left[g_{2}^{\beta_{1}+1}(t)-N^{\beta_{1}+1}\right] .
$$

Fix $\theta>0$ such that $0<N \leq 1$. This is possible due to $\bar{N}_{1}, \bar{N}_{2} \rightarrow 0$ when $\theta \rightarrow 0$. We assume without loss of generality that $\beta_{2} \geq \beta_{1}$. Then

$$
\frac{f_{2}^{\beta_{2}+1}(t)}{\beta_{2}+1} \leq \frac{g_{2}^{\beta_{1}+1}(t)}{\beta_{1}+1}
$$

or, equivalently

$$
g_{2}(t) \geq\left(\frac{\beta_{1}+1}{\beta_{2}+1}\right)^{\frac{1}{\beta_{1}+1}} f_{2}^{\frac{\beta_{2}+1}{\beta_{1}+1}}(t), \quad t \geq \theta
$$

Substituting this in the first equation of (2.4), we have

$$
f_{2}^{\prime}(t) \geq 2^{-d / \alpha} \min _{i \in\{1,2\}} K^{-\frac{d\left(\beta_{i}-1\right)}{\alpha}}\left(t+t_{0}, 0\right)\left(\frac{\beta_{1}+1}{\beta_{2}+1}\right)^{\frac{\beta_{1}}{\beta_{1}+1}} f_{2}^{\frac{\beta_{1}\left(\beta_{2}+1\right)}{\beta_{1}+1}}(t), \quad t \geq \theta
$$

that is,

$$
f_{2}^{\frac{-\beta_{1}\left(\beta_{2}+1\right)}{\beta_{1}+1}}(t) f_{2}^{\prime}(t) \geq 2^{-d / \alpha}\left(\frac{\beta_{1}+1}{\beta_{2}+1}\right)^{\frac{\beta_{1}}{\beta_{1}+1}} \min _{i \in\{1,2\}} K^{-\frac{d\left(\beta_{i}-1\right)}{\alpha}}\left(t+t_{0}, 0\right), \quad t \geq \theta
$$

Integrating from θ to t yields

$$
\begin{aligned}
& \frac{\beta_{1}+1}{1-\beta_{1} \beta_{2}}\left[f_{2}^{\frac{1-\beta_{1} \beta_{2}}{\beta_{1}+1}}(t)-N^{\frac{1-\beta_{1} \beta_{2}}{\beta_{1}+1}}\right] \\
& \geq 2^{-d / \alpha}\left(\frac{\beta_{1}+1}{\beta_{2}+1}\right)^{\frac{\beta_{1}}{\beta_{1}+1}} \int_{\theta}^{t} \min _{i \in\{1,2\}} K^{-\frac{d\left(\beta_{i}-1\right)}{\alpha}}\left(r+t_{0}, 0\right) d r .
\end{aligned}
$$

Thus (remember that $\beta_{1}, \beta_{2}>1$)

$$
f_{2}(t) \geq\left[N^{\frac{1-\beta_{1} \beta_{2}}{\beta_{1}+1}}-2^{-d / \alpha}\left(\frac{1-\beta_{1} \beta_{2}}{\beta_{1}+1}\right)\left(\frac{\beta_{1}+1}{\beta_{2}+1}\right)^{\frac{\beta_{1}}{\beta_{1}+1}} H(t)\right]^{\frac{\beta_{1}+1}{1-\beta_{1} \beta_{2}}}
$$

where

$$
H(t) \equiv \int_{\theta}^{t} \min _{i \in\{1,2\}} K^{-\frac{d\left(\beta_{i}-1\right)}{\alpha}}\left(r+t_{0}, 0\right) d r, \quad t \geq \theta
$$

From (1.2 we have

$$
H(t) \geq \int_{\theta}^{t} \min _{i \in\{1,2\}}\left(\varepsilon_{2}\left(r+t_{0}\right)^{\rho}\right)^{-\frac{d\left(\beta_{i}-1\right)}{\alpha}} d r
$$

Using the fact that $0<d \rho\left(\beta_{2}-1\right) / \alpha<1$ we get

$$
\begin{aligned}
H(t) & \geq \min _{i \in\{1,2\}} \varepsilon_{2}^{--\frac{d\left(\beta_{i}-1\right)}{\alpha}} \int_{\theta}^{t}\left(r+t_{0}\right)^{-\frac{d \rho\left(\beta_{2}-1\right)}{\alpha}} d r \\
& =\frac{\alpha}{\alpha-d \rho\left(\beta_{2}-1\right)} \min _{i \in\{1,2\}} \varepsilon_{2}^{-\frac{d\left(\beta_{i}-1\right)}{\alpha}}\left[\left(t+t_{0}\right)^{\frac{\alpha-d \rho\left(\beta_{2}-1\right)}{\alpha}}-\left(\theta+t_{0}\right)^{\frac{\alpha-d \rho\left(\beta_{2}-1\right)}{\alpha}}\right]
\end{aligned}
$$

Thus $H(t) \rightarrow \infty$ when $t \rightarrow \infty$. So, we have that there exists $T_{0} \geq \theta$ such that $f_{2}(t)=\infty$ for $t=T_{0}$. By comparison we have

$$
K^{d / \alpha}\left(t+t_{0}, 0\right) u\left(t+t_{0}\right)=f_{1}(t) \geq f_{2}(t)=\infty \quad \text { for } t=T_{0}
$$

which implies by Lemma 2.2 that $v(t, x)=\infty$ for all $t \geq\left(10 \frac{\varepsilon_{2}}{\varepsilon_{1}}\right)^{1 / \rho}\left(T_{0}+t_{0}\right)$ and $x \in \mathbb{R}^{d}$.

References

[1] D. Andreucci, M. A. Herrero, and J. J. L. Velázquez. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997), No. 1, 1-53.
[2] M. Birkner, J. A. López-Mimbela, and A. Wakolbinger. Blow-up of semilinear PDE's at the critical demension. A probabilistic approach. Proc. Amer. Math. Soc. 130 (2002), 2431-2442.
[3] W. Deng. Global existence and finite time blow up for a degenerate reaction-diffusion system. Nonlinear Anal. Theory Methods Appl. 60 (2005), No. 5(A), 977-991.
[4] M. Escobedo and M. A. Herrero. Boundedness and blow up for a semilinear reaction-diffusion system. J. Diff. Equations 89 (1991), 176-202.
[5] M. Escobedo and H. A. Levine. Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations. Arch. Ration. Mech. Anal. 129 (1995), No. 1, 47-100.
[6] M. Fila, H. A. Levine, and Y. Uda. A Fujita-type global existence-global non-existence theorem for a system of reaction diffusion equations with differing diffusivities. Math. Methods Appl. Sci. 17 (1994), No. 10, 807-835.
[7] M. Guedda and M. Kirane. A note on nonexistence of global solutions to a nonlinear integral equation. Bull. Belg. Math. Soc. 6 (1999), 491-497.
[8] M. Guedda and M. Kirane. Critically for some evolution equations. Differ. Equ. 37 (2001), No. 4, 540-550.
[9] M. Kirane and M. Qafsaoui. Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems. J. Math. Anal. Appl. 268 (2002), 217-243.
[10] Y. Kobayashi. The life span of blow-up solutions for a weakly coupled system of reactiondiffusion equations. Tokyo J. Math. 24 (2001), No. 2, 487-498.
[11] J. A. López-Mimbela and A. Wakolbinger. Lenght of Galton-Watson trees and blow-up of semilinear systems. J. Appl. Prob. 35 (1998), 802-811.
[12] K. Mochizuki and Q. Huang. Existence and behaviour of solutions for a weakly coupled system of reaction-diffusion equations. Methods Appl. Anal. 5 (1998), No. 2, 109-124.
[13] P. Souplet and S. Tayachi. Optimal condition for non-simultaneous blow-up in a reactiondiffusion system, J. Math. Soc. Japan 56, (2004), No. 2, 571-584.
[14] S. Sugitani. On nonexistence of global solutions for some nonlinear integral equations. Osaka J. Math. 12 (1975), 45-51.
[15] M. Wang. Blow-up rate estimates for semilinear parabolic systems. J. Diff. Equations $\mathbf{1 7 0}$ (2001), 317-324.
[16] S. Zheng. Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system. J. Math. Anal. Appl. 232 (1999), 293-311.

Aroldo Pérez-Pérez
División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Km. 1 Carretera Cunduacán-Jalpa de Méndez, C.P. 86690 A.P. 24, Cunduacán, Tabasco, MÉxico

E-mail address: aroldo.perez@dacb.ujat.mx

[^0]: 2000 Mathematics Subject Classification. 35B40, 35K45, 35K55, 35K57.
 Key words and phrases. Finite time blow up; mild solution; weakly coupled system;
 nonautonomous initial value problem; fractal diffusion.
 © 2006 Texas State University - San Marcos.
 Submitted July 14, 2006. Published August 18, 2006.

