Electronic Journal of Differential Equations, Vol. 2006(2006), No. 82, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# EXPONENTIAL DECAY FOR THE SEMILINEAR WAVE EQUATION WITH SOURCE TERMS 

JISHAN FAN, HONGWEI WU


#### Abstract

In this paper, we prove that for a semilinear wave equation with source terms, the energy decays exponentially as time approaches infinity. For this end we use the the multiplier method.


## 1. Introduction

Main results. Let $\Omega$ be a bounded subset of $\mathbb{R}^{n}$ with smooth boundary $\partial \Omega$. We are concerned with the mixed problems

$$
\begin{gather*}
u_{t t}-\Delta u+\delta u_{t}=|u|^{p-1} u, \quad x \in \Omega, \quad t \geq 0,  \tag{1.1}\\
u(0, x)=u_{0}(x) \in H_{0}^{1}(\Omega), \quad u_{t}(0, x)=u_{1}(x) \in L^{2}(\Omega), \quad x \in \Omega  \tag{1.2}\\
\left.u(t, x)\right|_{\partial \Omega}=0, \quad \text { for } t \geq 0 \tag{1.3}
\end{gather*}
$$

Here $\delta>0$ and $1<p \leq \frac{n}{n-2}(n \geq 3), 1<p(n=1,2)$. Set

$$
\begin{gather*}
I(u):=\int_{\Omega}\left(|\nabla u|^{2}-|u|^{p+1}\right) d x  \tag{1.4}\\
J(u)  \tag{1.5}\\
:=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-\frac{1}{p+1}|u|^{p+1}\right) d x  \tag{1.6}\\
E(t)
\end{gather*}:=\frac{1}{2} \int_{\Omega}\left|u_{t}\right|^{2} d x+J(u) .
$$

Also let the Nehari manifold

$$
\begin{equation*}
N:=\left\{u \in H_{0}^{1}(\Omega): I(u)=0, u \neq 0\right\} \tag{1.7}
\end{equation*}
$$

and the potential depth

$$
\begin{equation*}
d:=\inf _{u \in N} J(u) \tag{1.8}
\end{equation*}
$$

For problem (1.1)-(1.3), Ikehata and Suzuki 1 have shown the following results:

$$
\begin{gather*}
d>0  \tag{1.9}\\
E(t)+\int_{0}^{t} \int_{\Omega} \delta\left|u_{t}\right|^{2} d x d t=E(0) \tag{1.10}
\end{gather*}
$$

[^0]If $E(0)<d$ and $I(u(0, x))>0$ then we have

$$
\begin{gather*}
E(t)<d \quad \text { and } \quad I(u(t, x))>0, \quad \forall t \in[0, \infty)  \tag{1.11}\\
\theta \int_{\Omega}|\nabla u|^{2} d x \geq \int_{\Omega}|u|^{p+1} d x, \quad \theta \in(0,1), \quad \forall t \in[0, \infty)  \tag{1.12}\\
\lim _{t \rightarrow+\infty} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x=0  \tag{1.13}\\
\int_{0}^{t} \int_{\Omega}|\nabla u|^{2} d x d t \leq C \tag{1.14}
\end{gather*}
$$

In this paper we will use the multiplier technique to prove the following result.
Theorem 1.1. If $E(0)<d$ and $I(u(0, x))>0$, then there exists positive constant $\gamma$ and $C>1$ such that

$$
\begin{equation*}
E(t) \leq C e^{-\gamma t}, \quad \forall t \in[0, \infty) \tag{1.15}
\end{equation*}
$$

Our results and their relationship to the literature. The Problem

$$
\begin{gather*}
u_{t t}-\Delta u+a(x)\left|u_{t}\right|^{m-1} u_{t}+|u|^{p-1} u=0, \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0,\left.\quad\left(u, u_{t}\right)\right|_{t=0}=\left(u_{0}, u_{1}\right) \tag{1.16}
\end{gather*}
$$

has been studied, among others, by Nakao [2, 3] and Zuazua [4. In [2, 3, 4], the authors assumed that $a(x) \geq 0$ in $\Omega$, $\inf a(x)>0$ in $\Omega_{0} \subset \subset \Omega$ and $m=1$. The case $m>1$ is still open [4].

The following problem, with $m>1$ and $a(x) \geq a_{0}>0$ in $\bar{\Omega}$,

$$
\begin{gather*}
u_{t t}-\Delta u+a(x)\left|u_{t}\right|^{m-1} u_{t}=|u|^{p-1} u, \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0,\left.\quad\left(u, u_{t}\right)\right|_{t=0}=\left(u_{0}, u_{1}\right) \tag{1.17}
\end{gather*}
$$

has been studied by many authors, Ball [5], Ikehata [6], Ikehata and Tanizawa 7], Levine [8, 9, Georgiev and Todorova [10], Georgiev and Milani [11], Todorova [12], Barbu, et al [13], Todorova and Vitillaro [14], Messaoudi [15], Serrin [16], Kawashima, et al [17]. Ball [5] proved the existence of a global attactor when $m=1$. In [6, 7, 14, 17], the authors obtained a time-decay result when $\Omega=\mathbb{R}^{N}$. In [8, 9, 10, 11, 12, 13, 15, 16, the authors mainly concerned the existence or nonexistence of global weak (or strong) solutions.

By the multiplier method in [18, Benaissa and Mimouni 19 studied very recently the decay properties of the solutions to the wave equation of $p$-Laplacian type with a weak nonlinear dissipative.

Here it should be noted that our main result Theorem 1.1 is also true for the locally damping case i.e., $\delta=\delta(x) \geq 0$ in $\Omega$ and $\delta(x) \geq \delta_{0}>0$ in $\Omega_{0} \subset \subset \Omega$. We did not find references for the case with boundary damping term.

## 2. Proof of the Main Result

Take $x_{0} \in R^{n}$ and set $m(x):=x-x_{0}$. Let $\nu$ denote the outward normal vector to $\partial \Omega$. Set

$$
\begin{gathered}
\Gamma\left(x_{0}\right):=\left\{x \in \partial \Omega:\left(x-x_{0}\right) \cdot \nu>0\right\} \\
\chi:=\left.\int_{\Omega}\left(u_{t}(m \cdot \nabla u)+\frac{n}{p+1} u\left(u_{t}+\frac{\delta}{2} u\right)\right) d x\right|_{0} ^{T} .
\end{gathered}
$$

Lemma 2.1. There exists positive constant $C$ depending only on $n, p, \delta, \Omega$ such that

$$
\begin{equation*}
\int_{0}^{T} E(t) d t \leq C\left\{\int_{0}^{T} \int_{\Gamma\left(x_{0}\right)}(m \cdot \nu)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t+\int_{0}^{T} \int_{\Omega}\left|u_{t}\right|^{2} d x d t+|\chi|\right\} \tag{2.1}
\end{equation*}
$$

Proof. Multiplying (1.1) by $q(x) \cdot \nabla u$ and integrating by parts gives, 4, 20,

$$
\begin{align*}
& \left.\left(\int_{\Omega} u_{t}(q \cdot \nabla u) d x\right)\right|_{0} ^{T}+\frac{1}{2} \int_{0}^{T} \int_{\Omega}(\operatorname{div} q)\left(\left|u_{t}\right|^{2}-|\nabla u|^{2}\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left(\sum_{k, j=1}^{n} \frac{\partial q_{k}}{\partial x_{j}} \frac{\partial u}{\partial x_{k}} \frac{\partial u}{\partial x_{j}}\right) d x d t+\int_{0}^{T} \int_{\Omega}(\operatorname{div} q) \frac{|u|^{p+1}}{p+1} d x d t  \tag{2.2}\\
& +\int_{0}^{T} \int_{\Omega} \delta u_{t}(q \cdot \nabla u) d x d t \\
& =\frac{1}{2} \int_{0}^{T} \int_{\partial \Omega}(q \cdot \nu)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t
\end{align*}
$$

Here $q(x) \in W^{1, \infty}(\Omega)$. Applying identity 2.2 with $q(x)=m(x)$, we deduce

$$
\begin{align*}
& \left.\left(\int_{\Omega} u_{t}(m \cdot \nabla u) d x\right)\right|_{0} ^{T}+\frac{n}{2} \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}-|\nabla u|^{2}\right) d x d t+\int_{0}^{T} \int_{\Omega}|\nabla u|^{2} d x d t \\
& +\frac{n}{p+1} \int_{0}^{T} \int_{\Omega}|u|^{p+1} d x d t+\int_{0}^{T} \int_{\Omega} \delta u_{t}(m \cdot \nabla u) d x d t  \tag{2.3}\\
& =\frac{1}{2} \int_{0}^{T} \int_{\partial \Omega}(m \cdot \nu)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t \\
& \leq \frac{1}{2} \int_{0}^{T} \int_{\Gamma\left(x_{0}\right)}(m \cdot \nu)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t .
\end{align*}
$$

We now multiply (1.1) by $u$ and integrate by parts, then we have

$$
\begin{equation*}
\left.\left(\int_{\Omega} u\left(u_{t}+\frac{\delta}{2} u\right) d x\right)\right|_{0} ^{T}=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}-|\nabla u|^{2}\right) d x d t+\int_{0}^{T} \int_{\Omega}|u|^{p+1} d x d t \tag{2.4}
\end{equation*}
$$

Combining 2.3 and 2.4 we obtain

$$
\begin{align*}
& \chi+\left(\frac{n}{2}-\frac{n}{p+1}\right) \int_{0}^{T} \int_{\Omega}\left|u_{t}\right|^{2} d x d t+\left(1+\frac{n}{p+1}-\frac{n}{2}\right) \int_{0}^{T} \int_{\Omega}|\nabla u|^{2} d x d t \\
& +\int_{0}^{T} \int_{\Omega} \delta u_{t}(m \cdot \nabla u) d x d t  \tag{2.5}\\
& \leq \frac{1}{2} \int_{0}^{T} \int_{\Gamma\left(x_{0}\right)}(m \cdot \nu)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t
\end{align*}
$$

On the other hand, for any given $\varepsilon>0$,

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\Omega} \delta u_{t}(m \cdot \nabla u) d x d t\right| \\
& \leq \varepsilon\|m\|_{L^{\infty}(\Omega)}^{2} \int_{0}^{T} \int_{\Omega}|\nabla u|^{2} d x d t+\frac{\delta^{2}}{2 \varepsilon} \int_{0}^{T} \int_{\Omega}\left|u_{t}\right|^{2} d x d t \tag{2.6}
\end{align*}
$$

Taking $\varepsilon$ sufficiently small in (2.6), then substituting (2.6 into 2.5 we obtain (2.1).

Lemma 2.2. With the above notation,

$$
\begin{equation*}
E(t) \leq C \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|u|^{p+1}\right) d x d t \tag{2.7}
\end{equation*}
$$

Proof. First, we construct a function $h(x) \in W^{1, \infty}(\Omega)$ such that $h(x)=\nu$ on $\Gamma\left(x_{0}\right)$; $h(x) \cdot \nu>0$ a.e in $\partial \Omega$; see 4]. Applying 2.2 with $q(x)=h(x)$, we have

$$
\begin{align*}
\int_{0}^{T} \int_{\Gamma\left(x_{0}\right)}\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t & \leq \int_{0}^{T} \int_{\partial \Omega}(h \cdot \nu)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t \\
& \leq C \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x d t+\left.2\left(\int_{\Omega} u_{t}(h \cdot \nabla u) d x\right)\right|_{0} ^{T} \tag{2.8}
\end{align*}
$$

From (2.4), we see that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Gamma\left(x_{0}\right)}\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma d t \leq C \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|u|^{p+1}\right) d x d t+Y \tag{2.9}
\end{equation*}
$$

where

$$
Y=\left.\left(\int_{\Omega} u\left(u_{t}+\frac{\delta}{2} u\right) d x\right)\right|_{0} ^{T}+\left.2\left(\int_{\Omega} u_{t}(h \cdot \nabla u) d x\right)\right|_{0} ^{T}
$$

Combining 2.1, 2.9 and 1.10 we obtain

$$
\begin{align*}
T E(T) & \leq \int_{0}^{T} E(t) d t \\
& \leq C \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|u|^{p+1}\right) d x d t+|\chi|+|Y| \\
& \leq C \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|u|^{p+1}\right) d x d t+C(E(0)+E(T)) \\
& \leq C \int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|u|^{p+1}\right) d x d t+C\left(2 E(T)+\delta \int_{0}^{T} \int_{\Omega}\left|u_{t}\right|^{2} d x d t\right) \tag{2.10}
\end{align*}
$$

Taking $T$ sufficiently large we get 2.7 .
Lemma 2.3.

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}|u|^{p+1} d x d t \leq C \int_{0}^{T} \int_{\Omega}\left|u_{t}\right|^{2} d x d t \tag{2.11}
\end{equation*}
$$

Proof. We argue by contradiction. If 2.11 is not satisfied for some $C>0$, then there exists a sequence of solutions $\left\{u_{n}\right\}$ of (1.1)-1.3 with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\int_{0}^{T} \int_{\Omega}\left|u_{n}\right|^{p+1} d x d t}{\int_{0}^{T} \int_{\Omega}\left|u_{n t}\right|^{2} d x d t}=\infty \tag{2.12}
\end{equation*}
$$

From 1.12 and 1.14 we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left|u_{n}\right|^{p+1} d x d t \leq \theta \int_{0}^{T} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x d t \leq C \tag{2.13}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{T} \int_{\Omega}\left|u_{n t}\right|^{2} d x d t=0 \tag{2.14}
\end{equation*}
$$

We extract a subsequence (still denote by $\left\{u_{n}\right\}$ ) such that

$$
\begin{gather*}
u_{n} \rightharpoonup u \quad \text { weakly in } H^{1}(\Omega \times(0, T)),  \tag{2.15}\\
u_{n} \rightarrow u \quad \text { strongly in } L^{2}(\Omega \times(0, T)),  \tag{2.16}\\
u_{n} \rightarrow u \quad \text { a.e. in } \Omega \times(0, T),  \tag{2.17}\\
\left|u_{n}\right|^{p-1} u_{n} \rightarrow|u|^{p-1} u \quad \text { strongly in } L^{\infty}\left(0, T ; L^{r}(\Omega)\right) \tag{2.18}
\end{gather*}
$$

where $r \in\left[1, \frac{2 n}{p(n-2)}\right)$ if $n \geq 3$ and $r \in[1, \infty)$ if $n=1,2$. From 2.14 we know that

$$
\begin{equation*}
u_{t}=0, \quad \text { a.e. in } \Omega \times(0, T) \tag{2.19}
\end{equation*}
$$

and so we have

$$
\begin{align*}
-\Delta u & =|u|^{p-1} u, \quad \text { in } \Omega \times(0, T)  \tag{2.20}\\
u & =0, \quad \text { on } \partial \Omega \times(0, T) . \tag{2.21}
\end{align*}
$$

From 2.13 we get

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}|u|^{p+1} d x d t \leq \theta \int_{0}^{T} \int_{\Omega}|\nabla u|^{2} d x d t<\int_{0}^{T} \int_{\Omega}|\nabla u|^{2} d x d t \tag{2.22}
\end{equation*}
$$

which contradicts 2.20 and 2.21 . This proves 2.11.
By Lemmas 2.2 and 2.3 , we obtain

$$
\begin{equation*}
E(T) \leq C \int_{0}^{T} \int_{\Omega}\left|u_{t}\right|^{2} d x d t \tag{2.23}
\end{equation*}
$$

This inequality, 1.10), and semigroup properties complete the proof of Theorem 1.1. For properties of semigroups, we refer the reader to [21].

Acknowledgments. The authors are indebted to the referee who has given many valuable suggestions for improving the presentation of this article.

## References

[1] R. Ikehata and T.Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26(1996) 475-491.
[2] M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Annalen, 305(1996) 403-407.
[3] M. Nakao, Decay of solutions of the wave equation with some localized dissipations, Nonlinear Anal. TMA, 30(1997) 3775-3784.
[4] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. PDE., 15(1990) 205-235.
[5] J. M. Ball, Global attactors for damped smeilinear wave equations, Discrete and Continuous Dynamical Systems, 10(2004) 31-52.
[6] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal. TMA, 27(1996) 1165-1175.
[7] R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbb{R}^{N}$ with noncompactly supported initial data, Nonlinear Anal., 61(2005) 1189-1208.
[8] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=-A u+\mathcal{L} u$, Trans. Amer. Math. Soc., 192(1974) 1-21.
[9] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIMS J. Math. Anal., 5(1974) 138-146.
[10] V. Georgiev and G. Todorova, Existence of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109(1994) 295-308.
[11] V. Georgiev and A. Milani, On the asymptotic behavior of semilinear wave equations with degenerate dissipation and source terms, NoDEA, 5(1998) 53-68.
[12] G. Tovorova, Stable and unstable sets for the cauchy problems for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239(1999) 213-226.
[13] V. Barbu, I.Lasiecka and M. A. Rammsha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357(2005) 2571-2611.
[14] G. Todorova and E. Vitillaro, Enregy decay for the cauchy problem for a nonlinear wave equation, in preparation.
[15] S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr., 231(2001) 105-111.
[16] J. Serrin, G. Todorora and E. Vitillaro, Existence of a nonlinear wave equation with damping and source terms, Differential and Integral Equations, 16(2003) 13-50.
[17] S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47(1995) 617-653.
[18] V. Komornik, Exact controllability and stabilization. The Multiplier Method, Massion-John Wiley, Paris, 1994.
[19] A. Benaissa and S. Mimouni, Engery decay of solutions of a wave equation of p-Laplacian type with a weakly nonlinear dissipation, J. Inequalities in Pure and Applied Mathematics, 7(2006), Article 15.
[20] J. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité exacte, RMA 8, Masson, 1988.
[21] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24(1974) 79-86.

Jishan Fan
Department of Mathematics, Suzhou University, Suzhou 215006, China
Current address: College of Information Science and technology, Nanjing Forestry University, Nanjing 210037, China

E-mail address: fanjishan@njfu.edu.cn
Hongwei Wu
Department of Mathematics, Southeast University, Nanjing, 210096, China
E-mail address: hwwu@seu.edu.cn


[^0]:    2000 Mathematics Subject Classification. 35L05, 35L15, 35L20.
    Key words and phrases. Wave equation; source terms; exponential decay; multiplier method. (C) 2006 Texas State University - San Marcos.

    Submitted May 1, 2006. Published July 21, 2006.
    Supported by grant 10101034 from NSFC.

