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A GLOBAL DESCRIPTION OF SOLUTIONS TO NONLINEAR
PERTURBATIONS OF THE WIENER-HOPF INTEGRAL

EQUATIONS

PETRONIJE S. MILOJEVIĆ

Abstract. We establish the solvability, the number of solutions and the cov-
ering dimension of the solution set of nonlinear Wiener-Hopf equations. The

induced linear mapping is assumed to be of nonnegative index, while the non-

linearities are such that projection like methods are applicable. Solvability of
nonlinear integral equations on the real line has been also discussed.

1. Introduction

Consider a nonlinear perturbation of the Wiener-Hopf equation

λx(s)−
∫ ∞

0

k(s− t)x(t)dt + (Nx)(s) = y(s) (1.1)

where k : R → C is in L1(R, C) and y(s) ∈ L1(R+, C) and N is a suitable nonlinear
mapping. The corresponding linear Wiener-Hopf equations is

λx(s)−
∫ ∞

0

k(s− t)x(t)dt = y(s). (1.2)

Let i(λ) be the index of the homogeneous equation corresponding to (1.2) with
y(s) = 0. Then, if i(λ) > 0, the homogeneous equation has an i(λ)-dimensional
space of solutions, and the nonhomogeneous linear equation (1.2) has infinitely
many solutions for each y in a suitable space. If i(λ) = 0, then (1.2) has a unique
solution for each y. These results have been proven in the seminal paper by Krein
[9]. Detailed study of (1.2) can be found in Corduneanu [4]. Many problems in
mathematical physics lead to (1.2). In particular, it appears in studying questions
of transfer of radiant energy. We also note that the study of (1.2) with the integral
over R is much simpler and is based on using integral Fourier transform (see Section
5).

In this paper, we shall extend these results to the nonlinear perturbed Wiener-
Hopf equation (1.1). As mentioned above, if x(s) is a solution of (1.2), then one
also has the i(λ)-dimensional plane of solutions of (1.2) consisting of {x(s)+x0(s) :
x0(s) in the null space of A}, where A is the linear mapping defined by (1.2). The
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results for (1.1) we will prove consist in describing the manner in which this i(λ)-
dimensional aspect of the solutions of (1.2) persists in the global description of the
set of solutions of the nonlinear (1.1).

Since N is nonlinear, one cannot expect the solutions of (1.1) to have any linear
structure. We prove various dimension results for the solution set of (1.1) with
i(λ) > 0, where by dimension we will mean the natural extension of the linear
concept of dimension, namely, the Lebesgue covering dimension. Moreover, if i(λ) =
0, we prove that (1.1) has a constant number of solutions on certain connected
components for almost all f .

Our method consists in reformulating (1.1) as an operator equation of the form

Ax + N(u, x) = f, (u, x) ∈ D ⊂ Ri ×X, (1.3)

where X is a Banach space, D is an open subset in Ri ×X, and A + N : D → X
is an A-proper mapping. Then, under suitable assumptions on A and N, we prove
some abstract results for (1.3) using some dimension results of [5, 6, 11, 12, 13],
which are needed in the study of (1.1).

In Section 2, we give some definitions and state our multiplicity and dimension
results for (1.1). Section 3 is devoted to proving some abstract results for (1.3)
needed in Section 2. We prove the results stated in Section 2 in Section 4. Moreover,
we look at special classes of nonlinearities that are of integral Hammerstein or
Nemitskii type. Possible extensions of these results to integral equations on the
real line are indicated briefly in Section 5.

2. Multiplicity and dimension results for semi-abstract equation (1.1)

Let us first recall some facts about the Wiener-Hopf equation (1.2), where k :
R → C is in L1(R, C) and y(s) ∈ L1(R+, C) ( see [4, 9]). Let Y = L1(R, C) and
x(s) = y(s) = 0 for s < 0. Then (1.2) becomes

λx(s)−
∫ ∞

−∞
k(s− t)x(t)dt = z(s) (2.1)

where z(s) = y(s) for s ≥ 0 and z(s) = −
∫∞
0

k(s− t)x(t)dt for s < 0. Let k̂(ξ) be
the Fourier transform of k, i.e.,

k̂(ξ) =
∫ +∞

−∞
k(t)eiξtdt.

Applying the Fourier transform to (2.1), we get λx̂(ξ)− k̂(ξ)x̂(ξ) = ẑ(ξ) on R. Let
X = Lp(R+, C) and K : X → X be given by

Kx(s) =
∫ ∞

0

k(s− t)x(t)dt, s ∈ R+. (2.2)

It turns out that λI−K : X → X is a Fredholm mapping if and only if λ− k̂(ξ) 6= 0
in R ∪ {−∞,+∞} and the index i(λ) =index(λI − K) = −w(Γλ, 0) for Γλ =
{λ − k̂(ξ) : −∞ ≤ ξ ≤ +∞}. Γλ is a closed curve and w(Γλ, 0) is the winding
number. If i(λ) ≥ 0, then dim N(λI −K) = i(λ) and the range R(λI −K) = X. If
i(λ) < 0, then dim N(λI −K) = {∅} and codim R(λI −K) = −i(λ). Suppose that
λ− k̂(ξ) 6= 0. Then λI −K is of index zero if, for example, k(t− s) (0 ≤ t, s < ∞)
is a symmetric kernel, that is, if k(t) (-∞ < t < ∞) is an even function. In this
case k̂(ξ) is also an even function. Another interesting case is when k(t − s) is a



EJDE-2006/51 A GLOBAL DESCRIPTION OF SOLUTIONS 3

hermitian kernel, i.e., k(−t) = k(t). Then k̂(ξ) is real, and λ − k̂(ξ) 6= 0 if and
only if it is positive. Hence λI − K is of index zero in this case if λ − k̂(ξ) > 0.
Throughout the paper A will stand for the operator λI −K for some λ ∈ C.

Next, let us recall the idea of covering dimension. If D is a topological space,
and k is a positive integer, then D is said to have covering dimension equal to
k provided that k is the smallest integer with the property that whenever U is a
family of open subsets of D whose union covers D, there exists a refinement, U ′, of
U , whose union also covers D, and no subfamily of U ′ consisting of more than k+1
members has nonempty intersection. If D fails to have this refinement property for
each positive integer, then D is said to have infinite dimension. When a ∈ D, we
say that D has a dimension k at a if each neighborhood, in D, of a has dimension
at least k. In the absence of a manifold structure on D, the concept of dimension
is the natural way in which to describe its size.

For a mapping T : X → Y , let Σ be the set of all points x ∈ X where T is not
locally invertible, and let cardT−1({f}) be the cardinal number of the set T−1({f}).
Let X = Lp(R+, C), 1 ≤ p < ∞ and P : X → N(A) be the projection onto N(A).
Throughout the paper we assume that a nonlinear mapping N is quasibounded
with the quasinorm

|N | = lim sup
‖x‖→∞

‖Nx‖/‖x‖ < ∞

Theorem 2.1 (Nonlinear Fredholm Alternative). Let A = λI −K : X → X be a
Fredholm mapping of index i(A) ≥ 0 induced by (1.2) and N : X → X be a k-ball
contractive mapping with k and |N | sufficiently small. Then, either

(i) the equation Ax = 0 has a unique zero solution, i.e, i(A) = 0, in which
case (1.1) is approximation solvable for each y ∈ X and (A + N)−1({y})
is compact for each y ∈ X and the cardinal number card(A + N)−1({y}) is
constant, finite and positive on each connected component of X\(A+N)(Σ),
or

(ii) N(A) 6= {0}, i.e., i(A) =dim N(A) > 0, in which case, for each y ∈ X,
there is a connected closed subset C of (A+N)−1({y}) whose dimension at
each point is at least m = i(A) and the projection P maps C onto N(A).

The uniqueness result in Theorem 2.1 with i(A) = 0 and N a k-contraction has
been proven by Corduneanu [4] using the contraction mapping principle. Next, we
shall look at monotone like perturbations.

Theorem 2.2. Let A : H = L2(R+, R) → H be a Fredholm mapping of index
i(A) = 0 induced by (1.2) and N : H → H be such that either

(a) A is monotone and N is bounded continuous and of type (S+) with |N |
sufficiently small, or

(b) A is c-strongly monotone for some c > 0 and N = N1 + N2 with N1

monotone and N2 is k-contractive for some k < c with |N2| sufficiently
small.

Then, the equation Ax = 0 has a unique zero solution and (1.1) is approximation
solvable for each y ∈ H and (A + N)−1({y}) is compact for each y ∈ H and
the cardinal number card(A + N)−1({y}) is constant, finite and positive on each
connected component of H \ (A + N)(Σ).

Under just the monotonicity assumption on N , we can only prove the solvability
of (1.1).
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Theorem 2.3. Let A be a monotone Fredholm mapping of index i(A) = 0 induced
by (1.2) and N : H → H be continuous, bounded and monotone such that |N | is
sufficiently small. Then (1.1) has a solution for each y ∈ H.

For odd nonlinearities, we have the following result.

Theorem 2.4. Let A be a Fredholm mapping of index i(A) > 0 induced by (1.2)
and N : X → X be a continuous odd k-ball contractive mapping with k sufficiently
small. Let S0 be the solution set of (1.1) with y = 0. Then, for any positive real
number r and B(0, r) = {x ∈ X : ‖x‖ < r}, the dimension of S0 ∩ ∂B(0, r) is at
least i(A)− 1, when i(A) > 1, and S0 ∩ ∂B(0, r)} contains at least two points when
i(A) = 1.

Remark 2.5. If i(A) = 0, then (1.1) is equivalent to the Hammerstein operator
equation x + A−1Nx = A−1y. Then the recent results of the author [15] apply to
(1.1) with F of pseudo monotone type and A selfadjoint or P-(quasi) positive.

3. Nonlinear Fredholm alternative and the number of solutions

We begin by proving some generalizations of the first Fredholm theorem and
the Fredholm alternative to general (pseudo) A-proper mappings. In the case of
A-proper mappings, we also establish the number of solutions of these equations
and the dimension of the solution set. These results are needed for the proofs of
the theorems in Section 2. There is a large literature on nonlinear Fredholm theory
which has dealt only with the existence results [2]. The index and the covering
dimension results for various operator equations involving A-proper and epi-maps
can be found in [5, 6, 11, 13] and the literature in there.

Let us recall some definitions first. Let {Xn} and {Yn} be finite dimensional
subspaces of Banach spaces X and Y respectively such that dim Xn−dim Yn = i ≥ 0
for each n and dist(x,Xn) → 0 as n → ∞ for each x ∈ X. Let Pn : X → Yn and
Qn : Y → Yn be linear projections onto Xn and Yn respectively such that Pnx → x
for each x ∈ X and δ =max ‖Qn‖ < ∞. Then Γi = {Xn, Pn;Yn, Qn} is a projection
scheme for (X, Y ). Such schemes are needed for studying multiparameter problems
and nonlinear perturbations of Fredholm mappings of index i ≥ 0.

A mapping T : D ⊂ X → Y is said to be approximation-proper (A-proper for
short) with respect to Γi if (i) QnT : D ∩ Xn → Yn is continuous for each n and
(ii) whenever {xnk

∈ D ∩Xnk
} is bounded and ‖Qnk

Txnk
−Qnk

f‖ → 0 for some
f ∈ Y , then a subsequence xnk(i) → x and Tx = f . T is said to be pseudo A-proper
with respect to Γi if in (ii) above we do not require that a subsequence of {xnk

}
converges to x for which Tx = f . If f is given in advance, we say that T is (pseudo)
A-proper at f .

We state now a number of examples of A-proper and pseudo A-proper mappings.
To look at φ-condensing mappings, we recall that the set measure of noncompact-
ness of a bounded set D ⊂ X is defined as γ(D) = inf{d > 0 : D has a finite
covering by sets of diameter less than d}. The ball-measure of noncompactness
of D is defined as χ(D) = inf{r > 0|D ⊂ ∪n

i=1B(xi, r), x ∈ X, n ∈ N}. Let
φ denote either the set or the ball-measure of noncompactness. Then a mapping
N : D ⊂ X → X is said to be k−φ contractive (φ-condensing) if φ(N(Q)) ≤ kφ(Q)
(respectively φ(N(Q)) < φ(Q)) whenever Q ⊂ D (with φ(Q) 6= 0). A k- ball
contractive vector field with k < 1 is A-proper [16].
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Recall that a function N : X → X∗ is said to be of type (S+) if xn ⇀ x and
lim sup(Nxn, xn − x) ≤ 0 imply that xn → x. A ball-condensing perturbation of a
c-strongly monotone mapping, i.e., (Tx − Ty, x − y) ≥ c‖x − y‖2 for all x, y ∈ X,
is an A-proper mapping.

We need the following classes of A-proper mappings.

Example 3.1. ([11]) Let A : X → Y be a linear Fredholm mapping of index
i(A) ≥ 0, X = N(A) ⊕ X̃, Y = Y0 ⊕ R(A), ‖Ax‖ ≥ c‖x‖ for some c > 0 and all
x ∈ X̃, and N : X → Y be a bounded and continuous k-ball contraction with k < c.
Then A,A+N : X → Y are A-proper with respect to Γi = {X0⊕Xn, Y0⊕Yn, Q̃n}
where ∪n≥1Xn is dense in X̃, Yn = A(Xn), Q̃n(y0 + y1) = y0 + Qny1 and Qn :
Ỹ → Yn are projections onto Yn for each n. Moreover, if Axn + Nxn = f with
{xn = x0n + x1n} ∈ X = N(A) ⊕ X̃ and {x0n} both bounded, then {xn} has a
convergent subsequence.

Example 3.2. Let A : X → X∗ be monotone and N : X → X∗ be of type (S+).
Then A + N : X → X∗ is A-proper with respect to Γ0 = {Xn, R(P ∗

n), P ∗
n}, where

Pn : X → Xn are projections onto Xn.

Example 3.3 ([10, 17]). Let A : X → X∗ be continuous and c-strongly monotone
and N : X → X∗ be continuous and k-ball contractive. Then A+N : X → X∗ is A-
proper with respect to Γ0 = {Xn, R(P ∗

n), P ∗
n}, where Pn : X → Xn are projections

onto Xn.

We say that a mapping T : X → Y satisfies condition (+) if whenever Txn → f
in Y then {xn} is bounded in X. T is locally injective at x0 ∈ X if there is a
neighborhood U(x0) of x0 such that T is injective on U(x0). T is locally injective on
X if it is locally injective at each point x0 ∈ X. A continuous mapping T : X → Y
is said to be locally invertible at x0 ∈ X if there are a neighborhood U(x0) and a
neighborhood U(T (x0)) of T (x0) such that T is a homeomorphism of U(x0) onto
U(T (x0)). It is locally invertible on X if it is locally invertible at each point x0 ∈ X.

We need the following basic theorem on the number of solutions of nonlinear
equations for A-proper mappings [14].

Theorem 3.4. Let T : X → Y be a continuous A-proper mapping w.r.t. Γ0 that
satisfies condition (+). Then

(a) The set T−1({f}) is compact (possibly empty) for each f ∈ Y .
(b) The range R(T ) of T is closed and connected.
(c) Σ and T (Σ) are closed subsets of X and Y , respectively, and T (X \ Σ) is

open in Y .
(d) card T−1({f}) is constant and finite (it may be 0) on each connected com-

ponent of the open set Y \ T (Σ).

Next, we shall prove a nonlinear Fredholm alternative for nonlinear perturbations
of linear Fredholm mappings

Ax + Nx = f (3.1)
where A : X → Y is a linear Fredholm mapping of index i(A) ≥ 0 with R(A) = Y ,
and N is a nonlinear quasibounded mapping with |N | sufficiently small. If X0 is the
null space of A, then X = X0 ⊕ X̃ and i(A) =dim X0. Let P : X → X0 be a linear
projection onto X0. Let Γ0 = {Xn, Yn, Qn} be an approximation scheme for (X̃, Y )
with sup‖Qn‖ finite and define a new approximation scheme Γi = {X0⊕Xn, Yn, Qn}
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for (X, Y ). Then dim X0⊕Xn− dim Yn = dim X0 = i(A) for each n. Let Σ = {x ∈
X : A + N is not invertible at x}

Theorem 3.5 (Nonlinear Fredholm Alternative). Let A : X → Y be a linear
Fredholm mapping of index i(A) ≥ 0 with R(A) = Y , and N : X → Y be a
continuous nonlinear mapping.
(a) If A,A + N : X → Y are A-proper with respect to Γi = {X0 ⊕Xn, Yn, Qn} and
|N | < c with c sufficiently small, then either

(i) N(A) = {0}, in which case (3.1) is approximation solvable for each f ∈ Y
and (A + N)−1({f}) is compact for each f ∈ Y and the cardinal num-
ber card(A + N)−1({f}) is constant, finite and positive on each connected
component of the set Y \ (A + N)(Σ), or

(ii) N(A) 6= {0} and then for each f ∈ Y (= N(A∗)⊥) there is a connected
closed subset C of (A + N)−1({f}) whose dimension at each point is at
least i(A) and the projection P maps C onto X0.

(b) If N(A) = {0} and A + N is pseudo A-proper with respect to Γ0 and δ|N | < c,
where δ = max‖Qn‖, then (A + N)(X) = Y .

Proof. (a) First, assume that N(A) = {0}. We claim that the homotopy H(t, x) =
Ax+ tNx satisfies condition (+), i.e., if H(tn, xn) → f then {xn} is bounded in X.
Since A is a continuous bijection, it follows that for some c > 0

‖Ax‖ ≥ c‖x‖, x ∈ X.

Let ε > 0 be such that |N |+ ε < c and R = R(ε) > 0 such that

‖Nx‖ ≤ (|N |+ ε)‖x‖ for all ‖x‖ ≥ R.

Then, for x ∈ X \B(0, R), we get that

‖Ax + tNx‖ ≥ (c− |N | − ε)‖x‖
and therefore, ‖H(t, x)‖ = ‖Ax + tNx‖ → ∞ as ‖x‖ → ∞ independently of t.
Hence, condition (+) holds. Arguing by contradiction, we see that for each f ∈ Y
there is an r > R and γ > 0 such that

‖H(t, x)− tf‖ ≥ γ for all t ∈ [0, 1], x ∈ ∂B(0, r).

Since Ht is an A-proper homotopy, this implies that there is an n0 ≥ 1 such that

QnH(t, x) 6= tQnf for all t ∈ [0, 1], x ∈ ∂B(0, r) ∩Xn, n ≥ n0.

By the Brouwer degree properties and the A-properness of H1, there is an xn ∈
B(0, r) ∩Xn such that QnAxn + QnNxn = Qnf and a subsequence xnk

→ x with
Ax−Nx = f . Hence, part (i) follows from Theorem 3.4.

Next, let N(A) 6= {0}. For a given f ∈ Y , let Bx = Nx − f . We need to show
that A + N : X0 ⊕ X̃ → Y is complemented by the projection P of X onto X0. To
that end, it suffices to show (see [5]) that deg(Qn(A+B)|Xn, Xn, 0) 6= 0 for all large
n. Define the homotopy Hn : [0, 1] ×Xn → Yn by Hn(t, x1) = QnAx1 + tQnBx1.
Consider the restriction of A + B to X̃. Since A restricted to X̃ is a bijection from
X̃ onto Y , as in the first case we get that there are n0 ≥ 1 and r ≥ R such that
Hn(t, x1) 6= 0 for x1 ∈ Xn with n ≥ n0 and t ∈ [0, 1]. Thus, for each n ≥ n0,
deg(Qn(A + B)|Xn, Xn, 0) = deg(QnA|Xn, Xn, 0) 6= 0.

Next, we need to show that the projection P : X = X0 ⊕ X̃ → X0 is proper on
(A + B)−1(f). To see this, it suffices to show that if {xn} ⊂ X0 × X̃ is such that
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Axn + Bxn = f and {Pxn} is bounded, then {xn} is bounded since the A-proper
mapping A + B with respect to Γi is proper when restricted to bounded sets. We
have that xn = x0n + x1n with x0n ∈ X0 and x1n ∈ X̃ and c‖x1n‖ ≤ ‖Ax1n‖ ≤
(|N |+ ε)(‖x0n‖+ ‖x1n‖) + ‖f‖ for some ε > 0 with |N |+ ε < c if ‖xn‖ ≥ R. This
implies that {x1n} is bounded by the boundedness of {x0n}. Since {x0n} = {Pxn}
is bounded, it follows that {xn} is also bounded. Hence, the conclusions of (a)-(ii)
follow from [5, Theorem 1.2].

(b) Since A is an A-proper injection, it is easy to see that there is an n0 ≥ 1 and
c > 0 such that for each n ≥ n0

‖QnAx‖ ≥ c‖xn‖ for all x ∈ Xn.

Let ε > 0 be such that |N |+ ε < c/δ and R = R(ε) > 0 such that

‖Nx‖ ≤ (|N |+ ε)‖x‖ for all ‖x‖ ≥ R.

Define the homotopy QnH(t, x) = QnAx+(1− t)QnNx+(1− t)Qnf on [0, 1]×Xn

for n ≥ n0. It follows easily from the above remarks that QnH(t, x) 6= 0 on
∂B(0, R)∩Xn for each n ≥ n0. Thus, the there is an xn ∈ B(0, R)∩Xn such that
QnAxn + QnNxn = Qnf for each n ≥ n0. Hence, Ax + Nx = f for some x ∈ X
by the pseudo A-properness of A + N . �

Remark 3.6. Theorem 3.5 is valid also for Fredholm mappings of index zero under
the additional assumption that the range R(N) ⊂ R(A) [12]. Just the solvability of
x−Kx+Nx = y with K and N compact under this condition was first established
by Kachurovskii [8].

Next, we shall look at odd mappings. Recall that a nonempty and symmetric
subset A of X \ {0} has genus p, γ(A) = p, if there is an odd continuous mapping
φ : A → Rp \ {0} and p is the smallest integer having this property; γ(∅) = 0. We
also have that dim A ≥ γ(A)− 1. The following dimension result from [11] for odd
mappings will be needed in the sequal.

Theorem 3.7. Let T : X → Y be an odd A-proper mapping at zero with respect to
Γi with i ≥ 1. For each r > 0, let Sr = {x ∈ ∂B(0, r) : Tx = 0}. Then the genus
γ(Sr) ≥ i and the dimension dim(Sr) ≥ γ(Sr)− 1 if i > 1, and Sr contains at least
two points when i = 1.

4. Proofs of Theorems 2.1-2.4 and special cases

In this section, we provide proofs to the results in Section 2 and look at some
special classes of N . To that end we need to have suitable approximation schemes.
It is known (R. Beals) that for 1 ≤ p < ∞ and a finite dimensional Banach space
M , Lp(R,M) is a π1-space and thus has a monotone Schauder basis, i.e. there
is an increasing sequence of finite dimensional subspaces {Xn} of Lp(R,M) and
linear projections of Lp onto Xn with ‖Pn‖ = 1 and ∪n≥1Xn dense in Lp. If S
is any closed interval or (0,∞), then Lp(S, M) is also a π1-space as a subspace of
Lp(R,M), since each f ∈ Lp(S, M) is in Lp(R,M) if we set f = 0 outside of S.

Equation (1.1) is equivalent to the operator equation Ax + Nx = y in X.

Proof of Theorem 2.1. By our assumptions A and A + N are A-proper mappings
with respect to Γi = {X0⊕Xn, A(Xn), Pn} by Example 3.1, where Pn : X → A(Xn)
are the projections onto A(Xn) with sup‖Pn‖ finite. Thus, the conclusions of the
theorem follow from Theorem 3.5. since R(A) = X. �



8 P. S. MILOJEVIĆ EJDE-2006/51

Proof of Theorem 2.2. By our assumptions A + N : H → H is A-proper with
respect to Γ0 = {A(Hn), Pn} by Example 3.2, where ∪h≥1Hn is dense in H. More-
over, A is also A-proper with respect to Γ0 by Example 3.1. If (b) holds, then
A + N1 c-strongly monotone and N2 is k-ball contractive. Hence, A and A + N are
A-proper with respect to Γ0 by Example 3.3. Since R(A) = H in either case, the
conclusions of the theorem follow from Theorem 3.5(a). �

Proof of Theorem 2.3. Note that the mapping A is A-proper with respect to Γ0 =
{A(Hn), Pn} by Example 3.1, and A + N is pseudo A-proper with respect to Γ0,
where ∪n≥1Hn is dense in H. Moreover, |N | is sufficiently small. Hence, the
conclusion of the theorem follows from Theorem 3.5(b). �

Proof of Theorem 2.4. The mapping A + N : X → X is odd and A-proper with
respect to Γi by Example 3.1. Hence, the conclusions follow from Theorem 3.7. �

Next, we shall look at various classes of k-ball contractive mappings N . Let
X = Lp(R+, C) with 1 < p < ∞. First, we assume that the operator N is formally
given by the formula

(Nx)(s) =
∫ ∞

0

k0(s, t)F (t, x(t))dt, s ∈ R+, (4.1)

with k0(s, t) and F satisfying appropriate conditions. Let

K0x(s) =
∫ ∞

0

k0(s, t)x(t)dt, s ∈ R+.

Then N = K0F and (1.1) becomes

λx(s)−
∫ ∞

0

k(s− t)x(t)dt +
∫ ∞

0

k0(s, t)F (t, x(t))dt = y(s), s ∈ R+. (4.2)

In the operator form, (4.2) is Ax + K0Fx = y. For a given k0(s), define

K̃0x(s) =
∫ ∞

0

k0(s− t)x(t)dt, s ∈ R+.

Corollary 4.1 (Nonlinear Fredholm Alternative). Let A = λI −K : X → X be a
Fredholm mapping of index i(A) ≥ 0 induced by (1.2) and k0(s, t) be a measurable
complex-valued function of (s, t) for 0 ≤ s, t < ∞ and

|
∫ ∞

0

k0(s, t)x(t)dt| ≤ |
∫ ∞

0

k0(s− t)x(t)dt|, s ∈ R+

for x ∈ X∗ = Lq and some k0(s) ∈ L1(R, C) ∩ L∞(R, C) with (K̃0x, x) ≥ 0 for all
x ∈ X∗. Assume that for p ≥ 2, F : R+ × R → C is a Caratheodory function such
that F (s, 0) ∈ X∗ and

|F (s, u)− F (s, v)| ≤ k|u− v|p−1 for all s ∈ R+, u, v ∈ R
and some k such that k‖K0‖ is sufficiently small. Then, either

(i) the equation Ax = 0 has a unique zero solution, i.e., i(A) = 0, in which
case (4.2) is uniquely approximation solvable for each y ∈ X with respect
to Γ0 for X, or

(ii) N(A) 6= {0}, i.e., i(A) =dim N(A) > 0, in which case, for each y ∈ X,
there is a connected closed subset C of (A + N)−1(y) whose dimension at
each point is at least m = i(A) and the projection P maps C onto of N(A),
where N is given by (4.1), or
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(iii) N(A) 6= {0} and if F (s,−u) = −F (s, u) for (s, u) ∈ R+ × R, k‖K0‖ < 1,
and if S0 is the solution set of (4.2) with y = 0, then, for any positive real
number r and B(0, r) = {x ∈ H : ‖x‖ < r}, the dimension of S0 ∩ ∂B(0, r)
is at least i(A)− 1, when i(A) > 1 and S0 ∩ ∂B(0, r) contains at least two
points when i(A) = 1.

Proof. We claim that K0 : X∗ → X, where K0 is given above. Indeed, by Holder’s
inequality, for each x ∈ X∗,∣∣ ∫ ∞

0

k0(s− t)x(t)dt
∣∣ ≤ ∫ ∞

0

|k0(s− t)|1/p(|k0(s− t)|1/q|x(t)|)dt

≤
( ∫ ∞

0

|k0(s− t)|dt
)1/p( ∫ ∞

0

|k0(s− t)||x(t)|qdt
)1/q

,

and therefore

|
∫ ∞

0

k0(s− t)x(t)dt|p ≤ ‖k0‖L1(
∫ ∞

0

|k0(s− t)||x(t)|qdt)p/q.

The integral on the right hand side is in L∞ ∩L1 and therefore it is in Lp/q(R+, C)
since p/q = p − 1 ≥ 1. Hence, K̃0 : X∗ → X and is continuous since the linear
mapping K̃0 is monotone. Moreover, ‖K0x‖Lp

≤ ‖K̃0x‖Lp
≤ ‖K̃0‖ ‖x‖Lq

. Hence,
K0 : X∗ → X is continuous.

Next, (a) implies that (Fx)(s) = F (s, x(s)) maps X into X∗ and therefore, the
nonlinear mapping given by N = K0F , i.e., by (4.1), maps X into itself. Moreover,
for each x, y ∈ Lp

‖Fx− Fy‖q =
∫ ∞

0

|F (t, x(t))− F (t, y(t))|qdt ≤ kq‖x− y‖p.

Hence, F is a k-contraction and ‖Nx−Ny‖ ≤ k‖K0‖ ‖x−y‖ with k1 = k‖K0‖ < 1.
Thus, N is a k1-ball contraction. If i(A) = 0, then the equation Ax + Nx = y is
equivalent to x + A−1Nx = A−1y, where A−1N is a k2 = k1/c-contraction with
k2 < 1, since ‖x −Kx‖ ≥ c‖x‖ and c > k1. Hence, it is uniquely solvable by the
contraction principle. This proves (i), while (ii) follows from Theorem 2.1 and (iii)
follows from Theorem 2.4. �

Corollary 4.2 (Nonlinear Fredholm Alternative). Let A = λI −K : X → X be a
Fredholm mapping of index i(A) ≥ 0 induced by (1.2) and k0(s, t) be a measurable
complex valued function of (s, t) for 0 ≤ s, t < ∞ and either

sup
s∈R+

∫ ∞

0

|k0(s, t)|dt < ∞ (4.3)

or
|k0(s, t)| ≤ |k0(s− t)|, s, t ∈ R+. (4.4)

for some k0 ∈ L1(R+, C). Assume that F : R+×R → C is a Caratheodory function
such that F (s, 0) ∈ Lp(R+, R) and

|F (s, u)− F (s, v)| ≤ k|u− v| for all s ∈ R+, u, v ∈ R

and some k sufficiently small. Then, either
(i) the equation Ax = 0 has a unique zero solution, i.e., i(A) = 0, in which

case (4.2) is uniquely approximation solvable for each y ∈ X with respect
to Γ0 for X, or
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(ii) N(A) 6= {0}, i.e., i(A) =dim N(A) > 0, in which case, for each y ∈ X,
there is a connected closed subset C of (A + N)−1(y) whose dimension at
each point is at least m = i(A) and the projection P maps C onto of N(A),
where N is given by (4.1), or

(iii) N(A) 6= {0} and if F (s,−u) = −F (s, u) for (s, u) ∈ R+ × R, and if S0 is
the solution set of (4.2) with y = 0, then, for any positive real number r
and B(0, r) = {x ∈ H : ‖x‖ < r}, the dimension of S0 ∩ ∂B(0, r) is at least
i(A)−1, when i(A) > 1 and S0∩∂B(0, r) contains at least two points when
i(A) = 1.

Proof. Let N = K0F be given by (4.1). If (4.3) holds, then K0 maps Lp(R+, C) into
itself, 1 ≤ p ≤ ∞, and is a ‖K0‖-contraction by the Riesz convexity theorem (see
[7, Chapter 11]). If (4.4) holds, then K0 : Lp(R+, C) → Lp(R+, C) is continuous
by Young’s inequality and ‖K0‖ ≤ ‖k0‖1 for each 1 ≤ p ≤ ∞. If (Fx)(s) =
F (s, x(s)), then F : Lp → Lp is a k-contraction. Thus, N = K0F is a k1 = k‖K0‖-
contraction in Lp, and is therefore k1-ball contractive. The conclusions now follow
from Theorems 2.1 and 3.7 since (i) follows as in Corollary 4.1. �

Corollary 4.3 (Nonlinear Fredholm Alternative). Let A = λI −K : X → X be a
Fredholm mapping of index i(A) ≥ 0 induced by (1.2) and k0(s, t) be a measurable
complex valued function of (s, t) for 0 ≤ s, t < ∞ and∫ ∞

0

[
∫ ∞

0

|k0(s, t)|pds]q/pdt ≤ cq,

for 1 < p < ∞, q = p/(p − 1), c > 0. Let F : R+ × R → C be a Caratheodory
function such that

|F (s, u)| ≤ c(s) + c0(s)|u|, s ∈ R+, u ∈ R

where c(s) ∈ Lp(R+, R) and c0(s) ∈ L∞(R+, C). Then, either

(i) the equation Ax = 0 has a unique zero solution, i.e., i(A) = 0, in which case
(4.2) is approximation solvable for each f ∈ X, (A+N)−1({f}) is compact
for each f ∈ X and the cardinal number card(A + N)−1({f}) is constant,
finite and positive on each connected component of X \ (A + N)(Σ), or

(ii) N(A) 6= {0}, i.e., i(A) = dim N(A) > 0, in which case, for each f ∈ X,
there is a connected closed subset C of (A + N)−1(f) whose dimension at
each point is at least m = i(A) and the projection P maps C onto of N(A),
where N is given by (4.1), or

(iii) N(A) 6= {0} and if F (s,−u) = −F (s, u) for (s, u) ∈ R+ × R, and if S0 is
the solution set of (4.2) with y = 0, then, for any positive real number r
and B(0, r) = {x ∈ H : ‖x‖ < r}, the dimension of S0 ∩ ∂B(0, r) is at least
i(A)−1, when i(A) > 1 and S0∩∂B(0, r) contains at least two points when
i(A) = 1.

Proof. The mapping K0 defined above is a completely continuous linear operator
in Lp with ‖K0‖ ≤ c [4]. Moreover, (Fx)(s) = F (s, x(s)) is a continuous bounded
mapping from Lp(R+, C) into itself. Hence, N = K0F : Lp(R+, C) → Lp(R+, C) is
a compact mapping and the conclusions follow from Theorems 2.1, 3.4 and 3.7. �
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Theorem 2.1 also applies when N is the Nemitskii operator, i.e., (Nx)(s) =
F (s, x(s)) for some function F . Then (1.1) becomes

λx(s)−
∫ ∞

0

k(s− t)x(t)dt + F (t, x(t)) = y(s), s ∈ R+ (4.5)

We have the following result.

Corollary 4.4 (Nonlinear Fredholm Alternative). Let A = λI − K, A : X =
Lp(R+, R) → X, be a Fredholm mapping of index i(A) ≥ 0 induced by (1.2) and
F : R+ × R → R be a Caratheodory function such that F (s, 0) ∈ X and

|F (s, u)− F (u, v)| ≤ k|u− v| for all s ∈ R+, u, v ∈ R
for some k sufficiently small. Then, either

(i) the equation Ax = 0 has a unique zero solution, i.e., i(A) = 0, in which
case (4.5) is uniquely approximation solvable for each y ∈ X with respect
to Γ0 for X, or

(ii) N(A) 6= {0}, i.e., i(A) = dimN(A) > 0, in which case, for each f ∈ H,
there is a connected closed subset C of (A + N)−1(f) whose dimension at
each point is at least m = i(A) and the projection P maps C onto of N(A),
where Nx = F (s, x(s)), or

(iii) N(A) 6= {0} and if F (s,−u) = −F (s, u) for (s, u) ∈ R+ × R, and if S0 is
the solution set of (4.2) with y = 0, then, for any positive real number r
and B(0, r) = {x ∈ H : ‖x‖ < r}, the dimension of S0 ∩ ∂B(0, r) is at least
i(A)−1, when i(A) > 1 and S0∩∂B(0, r) contains at least two points when
i(A) = 1.

Proof. Condition (a) implies that (Nx)(s) = F (s, x(s)) is a k-contraction from X
into itself. Hence, N is a k-ball contraction. Part (i) follows as in Corollary 4.1,
while (ii)-(iii) follow from Theorem 3.5-3.7 since R(A) = H. �

Next, we shall look at some special cases of Theorems 2.2-2.4 with nonlinearities
of the form (Nx)(s) = F (s, x(s)).

Corollary 4.5. Let A : H = L2(R+, R) → H be a Fredholm mapping of index
i(A) = 0 induced by (1.2) and F : R+ × R → R be a Caratheodory function such
that

(a) |F (s, u)| ≤ c(s) + c0(s)|u|, s ∈ R+, u ∈ R, where c(s) ∈ L2(R+) and
c0(s) ∈ L∞(R+) with ‖c0‖2 sufficiently small, and either

(b) A is monotone, F (s, u) is strictly monotone increasing in u for each fixed
s and

F (s, u)u ≥ c2|u|2 − c1(s), for all s ∈ R+, u ∈ R
for some constant c2 > 0 and a function c1(s) ∈ L1(R+), or

(c) A is c-strongly monotone for some c > 0 and F = F1 + F2 with F1(s, u)
monotone increasing in u for each fixed s and

|F2(s, u)− F2(s, v)| ≤ k|u− v| for all s ∈ R+, u, v ∈ R
and some k < c.

Then, the equation Ax = 0 has a unique zero solution and (4.5) is approximation
solvable for each y ∈ H, (A + N)−1({y}) is compact for each y ∈ H and the cardi-
nal number card(A + N)−1({y}) is constant, finite and positive on each connected
component of H \ (A + N)(Σ), where (Nx)(s) = F (s, x(s)).
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Proof. Again, N : H → H is bounded and continuous. Condition (b) implies that
N : H → H is of type (S+) (cf., e.g., [2]). Since A is monotone, A + N is A-proper
with respect to Γ0 = {A(Hn), Pn} by Example 3.2, where ∪h≥1Hn is dense in H.
Moreover, A is also A-proper with respect to Γ0 by Example 3.1. If (c) holds, then
A + N1 is c-strongly monotone and N2 is k-ball contractive. Hence, A and A + N
are A-proper with respect to Γ0. by Example 3.3. Since R(A) = H in either case,
the conclusions of the theorem follow from Theorems 3.4-3.5. �

Corollary 4.6. Let A be a Fredholm mapping of index i(A) = 0 induced by (1.2)
and F : R+ × R → R be a Caratheodory function such that

(a) |F (s, u)| ≤ c(s) + c0|u|, s ∈ R+, u ∈ R, where c(s) ∈ L2(R+, R), c0 > 0 is
sufficiently small and

(b) A is monotone and F (s, u) is monotone increasing in u for each fixed s.
Then (4.5) has a solution for each y ∈ H.

Proof. The mapping A + N : H → H is bounded, continuous and monotone since
such are A and N . Hence, A is A-proper with respect to Γ0 = {A(Hn), Pn} by
Example 3.1, and A + N is pseudo A-proper with respect to Γ0, where ∪n≥1Hn

is dense in H. Moreover, |N | is sufficiently small. Hence, the conclusion of the
theorem follows from Theorem 3.5(b). �

Let us look at some examples of monotone A. The monotonicity of A implies
that λ‖x‖2 ≥ (Kx, x) in L2. Hence, let us look at some positive definite K, i.e.,
(Kx, x) ≥ 0 on L2. This means that∫ ∞

0

∫ ∞

0

k(s− t)x(t)x(s) ds dt ≥ 0 (4.6)

for all x ∈ L2(R+, C). The positive definitness of K implies that its kernel k(s− t)
is hermitian symmetric, i.e., k(−t) = k(t). If k is real, that means that it is an
even function. Hence, in either case K is selfadjoint and λI − K is of index zero
if λ − k̂(ξ) 6= 0. If k ∈ L2(R+) is continuous, then condition (4.6) is equivalent to
(see [3])

Σn
i,j=1k(xi − xj)ξ̄iξj ≥ 0 (4.7)

for all positive integers n, (x1, . . . , xn) ∈ Rn and (ξ1, . . . , ξn) ∈ Cn. A complex
valued function k(t) satisfying (4.7) is called a positive definite function. The
functions e−c|t| for c > 0, e−t2 , (1 + t2)−1 are positive definite by a theorem of
Mathias since their Fourier transforms are positive and integrable. Moreover, any
real, even, continuous function k(t) which is convex on (0,∞), i.e., k((t1 + t2)/2) ≤
(k(t1)+k(t2))/2, and such that limt→∞ k(t) = 0 is also positive definite (Pólya). If,
for example, k(t) = e−c|t| with c > 0, then k̂(ξ) = 2c/(ξ2+c2) and the corresponding
linear map λI−K given by (1.2) is Fredholm of index zero in L2 for each λ /∈ [0, 2/c]
since λ− k̂(ξ) 6= 0. Note that the spectrum of K is [0, 2/c] and so K is not compact.

5. Nonlinear perturbations of integral equations on the real line

The study of (1.2) with the integral over R, i.e., of

λx(s)−
∫ ∞

−∞
k(s− t)x(t)dt = y(s) (5.1)
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where k : R → C is in L1(R, C) and y(s) ∈ L1(R, C), is much simpler and is based on
using integral Fourier transform. Namely, if k(t) ∈ L1(−∞,∞) and λ− k̂(ξ) 6= 0 in
(−∞,+∞), then (4.1) has a unique solution in L1(−∞,∞) for each y ∈ L1(−∞,∞)
(Wiener). Hence, one can study nonlinear perturbations of such linear equations

λx(s)−
∫ ∞

−∞
k(s− t)x(t)dt + (Nx)(s) = y(s) (5.2)

with a suitable nonlinear mapping N , as above, or using the theory of Hammerstein
equations. Let K be a linear map defined by the integral in (5.1) and A = λI −K.
Then (5.2) is equivalent to Ax + Nx = y and the results of Sections 2 and 4 (with
i(A) = 0) are valid for (5.2) under the corresponding assumption on k and N . The
problem is much more difficult if we assume that the kernel is general, i.e., if we
look at

λx(s)−
∫ ∞

−∞
k(s, t)x(t)dt + (Nx)(s) = y(s). (5.3)

Its operator form is (λI − K)x + Nx = y in X = Lp(R, C). Under some general
conditions on K, it has been shown in [1] that A = λI−K is continuously invertible
in X if N(A) = {0}. Hence, again the results of Sections 2 and 4 (with i(A) = 0)
are valid for (5.3) with the corresponding assumptions imposed on k(s, t) and N .
For the sake of illustration, we just state explicitely the following result when N is
the Nemitskii mapping. Denote by BC(R) the space of complex valued continuous
and bounded functions on R.

Theorem 5.1. Let k ∈ L1(R, C), X = Lp(R, C) for 1 < p < ∞, Q ⊂ C be compact
and convex and λ 6= 0. Let, for every z ∈ LQ, the equation

λx(s)−
∫ ∞

−∞
k(s− t)z(t)x(t)dt = 0, s ∈ R (5.4)

have only the trivial solution in BC(R) and F : R+ × R → R be a Caratheodory
function such that F (s, 0) ∈ X and

|F (s, u)− F (u, v)| ≤ k|u− v| for all s ∈ R+, u, v ∈ R

for some k sufficiently small. Then, for each z ∈ LQ, the equation

λx(s)−
∫ ∞

−∞
k(s− t)z(t)x(t)dt + F (s, x(s)) = y(s), s ∈ R (5.5)

is uniquely approximation solvable for each y ∈ X with respect to Γ0 for X.

Proof. Let A : X → X be the linear map defined by (5.4). Then A is continuously
invertible on X [1]. If (Nx)(s) = F (s, x(s)), then N : X → X and (5.5) is equivalent
to x + A−1Nx = A−1y, where A−1N is a k1 = k/c-contraction with k1 < 1, since
‖x − Kx‖ ≥ c‖x‖ and c > k with c depending only on λ, k(s) and Q. Hence, it
is uniquely solvable by the contraction principle. Since A + N is A-proper with
respect to Γ0, the assertion follows from Theorem 2.1(a). �
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