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MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF
NONRESONANT SINGULAR BOUNDARY-VALUE PROBLEMS

YANSHENG LIU, BAOQIANG YAN

Abstract. Using a specially constructed cone and the fixed point index the-
ory, this paper shows the existence of multiple positive solutions for a class

of nonresonant singular boundary-value problem of second-order differential

equations. The nonexistence of positive solution is also studied.

1. Introduction

The theory of singular boundary-value problems (BVP, for short) has become
an important area of investigation in previous years; see [1, 3, 5, 6, 7, 8, 9, 10, 11,
12] and references therein. We consider the nonresonant singular boundary-value
problem of second-order differential equations

−u′′(t) + ρp(t)u(t) = λf(t, u(t)), t ∈ (0, 1);

u(0) = u(1) = 0,
(1.1)

where ρ > 0 and

−u′′(t) + ρp(t)u(t) = 0, t ∈ (0, 1);

u(0) = u(1) = 0

has only the trivial solution. Here the parameter λ belongs to R+ = [0,+∞), p be-
longs to C[(0, 1),R+] with

∫ 1

0
p(t)dt < +∞, and f belongs to C[(0, 1)×(0,+∞),R+];

that is, f(t, u) may be singular at t = 0, 1, and u = 0.
In the special cases i) p(t) = 0, f(t, u) = p1(t)u−λ1 , λ1 > 0, and ii) p(t) = 0,

f(t, u) = p1(t)uλ1 , 0 < λ1 < 1, where p1(t) > 0 for t ∈ (0, 1), the existence and
uniqueness of positive solutions of (1.1) as λ = 1 have been studied completely by
Taliaferro in [8] with the shooting method and by Zhang [12] with the method of
lower and upper solutions, respectively. Also a sufficient condition for the existence
of C[0, 1] solutions of the singular problem (1.1) with λ = 1 was given by O’Regan
in [7] by using a continuous theorem. In the special case iii): f(t, u) is quasi-
homogeneous and sublinear in u, the existence of positive solutions (1.1) as λ = 1
have been studied by Wei and Pang in [9, 10] with the method of lower and upper
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solutions. In the special case iv): p(t) = 0, f(t, u) = p1(t)g(u), p1(t) is singular only
at t = 0 and g(u) ≥ eu, the existence of multiple positive solutions of (1.1) have
been studied by Ha and Lee in [3] with the method of lower and upper solutions.

In the present paper, we shall construct a special cone and use fixed point index
theory to investigate the existence of multiple positive solutions for (1.1), which
is different from [3, 7, 8, 9, 10, 12]. Meanwhile, some results on nonexistence of
positive solutions are given.

The organization of this paper is as follows. We shall introduce some lemmas
and notations in the rest of this section. The main result will be stated and proved
in Section 2. Finally in Section 3 some examples are worked out to demonstrate
our main results.

Now we present some lemmas and notation which will be used in Section 2. First
from [2, Lemmas 2.3.1 and 2.3.3] we obtain the following lemma.

Lemma 1.1. Let P be a cone of real Banach space E, Ω be a bounded open set of
E, θ ∈ Ω, A : P ∩ Ω → P be completely continuous.

(i) If x 6= µAx for x ∈ P ∩ ∂Ω and µ ∈ [0, 1], then i(A,P ∩ Ω, P ) = 1.
(ii) If infx∈P∩∂Ω ‖Ax‖ > 0 and Ax 6= µx for x ∈ P ∩ ∂Ω and µ ∈ (0, 1], then

i(A,P ∩ Ω, P ) = 0.

Next noticing that
∫ 1

0
p(t)dt < +∞, it is not difficult from [9, 10] to obtain the

following lemma.

Lemma 1.2. (i) The boundary-value problem

−u′′ + ρp(t)u = 0, for t ∈ (0, 1)

u(0) = 0, u′(0) = 1

has an increasing positive solution e1(t) = tw1(t) ∈ C[0, 1] ∩ C1[0, 1), where w1 ∈
C[0, 1] is the unique solution of the integral equation

w1(t) = 1 +
ρ

t

∫ t

0

∫ s

0

τp(τ)w1(τ)dτds. (1.2)

(ii) The boundary-value problem

−u′′ + ρp(t)u = 0, for t ∈ (0, 1)

u(1) = 0, u′(1) = −1

has a decreasing positive solution e2(t) = (1 − t)w2(t) ∈ C[0, 1] ∩ C1(0, 1], where
w2 ∈ C[0, 1] is the unique solution of the integral equation

w2(t) = 1 +
ρ

1− t

∫ 1

t

∫ 1

s

(1− τ)p(τ)w2(τ)dτds. (1.3)

(iii) The Wronskian ω = det
(
e1(t) e′1(t)
e2(t) e′2(t)

)
is a positive constant.

Let J = [0, 1]. The basic space used in this paper is E = C[J,R]. It is well known
that C[J,R] is a Banach space with norm ‖u‖ = maxt∈J |u(t)| (∀u ∈ C[J,R]). From
Lemma 1.2, it is easy to see

Q := {u ∈ C[J,R+] : u(t) ≥ q(t)u(s), ∀t, s ∈ J} (1.4)
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is a cone of C[J,R], where

q(t) :=
e1(t)e2(t)
e1(1)e2(0)

, t ∈ J. (1.5)

Moreover, by (1.4)-(1.5), we have for all u ∈ Q,

u(t) ≥ q(t)‖u‖, ∀t ∈ J. (1.6)

A function u is said to be a solution of (1.1) if λ ≥ 0 and u satisfies (1.1). In
addition, if λ > 0, u(t) > 0 for t ∈ (0, 1), then u is said to be a positive solution of
(1.1). Obviously, if u ∈ Q \ {θ} is a solution of (1.1), then u is a positive solution
of (1.1), where θ denotes the zero element of Banach space C[J,R].

2. Main Results

For convenience, we list the following assumptions.
(H1) f ∈ C[(0, 1)× (0,+∞),R+] and for every pair of positive numbers R and r

with R > r > 0, ∫ 1

0

s(1− s)fr,R(s)ds < +∞,

where fr,R(s) := max{f(s, u) : u ∈ [rs(1− s), R]}, for all s ∈ (0, 1).
(H2) For every R > 0, there exists ψR ∈ C[J,R+] (ψ 6= θ) such that f(t, u) ≥

ψR(t) for t ∈ (0, 1) and u ∈ (0, R].
(H3) There exists an interval [a, b] ⊂ (0, 1) such that limx→+∞ f(s, u)/u = +∞

uniformly with respect to s ∈ [a, b].
We remark that (H2) allows f(t, u) being singular at t = 0, 1, and u = 0.

Assumption (H3) shows that f is superlinear in u. The following theorems are our
main results of this paper.

Theorem 2.1. Assume (H1)-(H3) are satisfied. Then there exist positive numbers
λ∗ and λ∗∗ with λ∗ < λ∗∗ such that (1.1) has at least two positive solutions for
λ ∈ (0, λ∗) and no solution for λ > λ∗∗.

To overcome difficulties arising from singularity we first consider the approximate
problem

−u′′(t) + ρp(t)u(t) = λfn(t, u(t)), t ∈ (0, 1);

u(0) = u(1) = 0,
(2.1)

where fn(t, u) =: f(t,max{ 1
n , u}), n ∈ N. Define an operator Aλ

n on Q by

(Aλ
nu)(t) := λ

∫ 1

0

G(t, s)fn(s, u(s))ds, (2.2)

where

G(t, s) =

{
1
ω e1(t)e2(s), 0 ≤ t ≤ s ≤ 1;
1
ω e1(s)e2(t), 0 ≤ s ≤ t ≤ 1,

(2.3)

where e1(t), e2(t) and ω are defined as in Lemma 1.2.
Obviously, u = Aλ

nu is the corresponding integral equation of (2.1). Therefore,
u ∈ C[J,R+]

⋂
C2[(0, 1),R+] is a solution of (2.1) if u ∈ C[J,R+] is a fixe point of

Aλ
n. Furthermore, u is a positive solution of (2.1) if u ∈ Q \ {θ} is a fixed point of

Aλ
n.
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By (2.1)-(2.3), it is easy to see that Aλ
n is well defined on Q for each n ∈ N if

condition (H1) holds. For the sake of proving our main results we first prove some
lemmas.

Lemma 2.2. Under condition (H1), Aλ
n : Q→ Q is completely continuous.

Proof. First we show Aλ
nQ ⊂ Q for each n ∈ N and λ > 0. From (2.3) and the

monotonicity of e1(t) and e2(t) obtained from Lemma 1.2, it follows that

G(t, s)
G(τ, s)

=



e1(t)e2(s)
e1(τ)e2(s)

≥ e1(t)
e1(1)

≥ e1(t)e2(t)
e1(1)e2(0)

, 0 < t, τ ≤ s < 1;
e1(s)e2(t)
e1(s)e2(t)

≥ e2(t)
e2(0)

≥ e1(t)e2(t)
e1(1)e2(0)

, 0 < s ≤ t, τ < 1;
e1(t)e2(s)
e1(s)e2(τ) ≥

e1(t)
e1(s)

≥ e1(t)e2(t)
e1(1)e2(0)

, 0 < t ≤ s ≤ τ < 1;
e1(s)e2(t)
e1(τ)e2(s)

≥ e2(t)
e2(s)

≥ e1(t)e2(t)
e1(1)e2(0)

, 0 < τ ≤ s ≤ t < 1;

This equality and (2.2) guarantee that

(Aλ
nu)(t) = λ

∫ 1

0

G(t, s)fn(s, u(s))ds

≥ e1(t)e2(t)
e1(1)e2(0)

· λ
∫ 1

0

G(τ, s)fn(s, u(s))ds

=
e1(t)e2(t)
e1(1)e2(0)

· (Aλ
nu)(τ), ∀t, τ ∈ J, u ∈ Q.

Therefore, Aλ
nQ ⊂ Q for each n ∈ N and λ > 0.

Next by standard methods and Ascoli-Arzela theorem one can prove Aλ
n : Q→ Q

is completely continuous. So it is omitted. �

Lemma 2.3. Suppose conditions (H1) and (H2) hold. Then for each r > 0, there
exists a positive number λ(r) such that

i(Aλ
n, Qr, Q) = 1

for λ ∈ (0, λ(r)) and n sufficiently large, where Qr = {u ∈ Q : ‖u‖ < r}.

Proof. First we show for each u ∈ Q \ {θ}, there exists l > 0 such that

u(t) ≥ lt(1− t)‖u‖, ∀t ∈ J. (2.4)

In fact, by (1.2)-(1.3), one can obtain w1(0) = 1 and w2(1) = 1. This together
with the monotonicity of e1(t) and e2(t) guarantees that mint∈J w1(t) > 0 and
mint∈J w2(t) > 0. Therefore, choose

l :=
1

w1(1)w2(0)
(
min
t∈J

w1(t)
)
·
(
min
t∈J

w2(t)
)
> 0.

Immediately from (1.4)-(1.6), (2.4) follows. Next for each r > 0 and n > 1
r , let

λ(r) := r[
∫ 1

0

G(s, s)frl,r(s)ds]−1.
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We assert ‖Aλ
nu‖ < ‖u‖ for each λ ∈ (0, λ(r)) and u ∈ ∂Qr. In fact, using (2.4)

and G(t, s) ≤ G(s, s) for t, s ∈ J one can obtain

‖Aλ
nu‖ ≤ λ

∫ 1

0

G(s, s)fn(s, u(s))ds

≤ λ

∫ 1

0

G(s, s)frl,r(s)ds

< r = ‖u‖, for λ ∈ (0, λ(r)) and u ∈ ∂Qr.

Therefore, by Lemma 1.1 we have i(Aλ
n, Qr, Q) = 1 for λ ∈ (0, λ(r)). �

Lemma 2.4. Suppose conditions (H1) and (H2) hold. Then for any given λ ∈
(0, λ(r)), there exists r′ ∈ (0, r) such that

i(Aλ
n, Qr′ , Q) = 0

for n sufficiently large, where r and λ(r) are the same as in Lemma 2.3.

Proof. Choose a positive number r′ with r′ < min
{
r, λmaxt∈J

∫ 1

0
G(t, s)ψr(s)ds

}
,

where ψr(s) is defined as in (H2). Now, we claim that

Aλ
nu 6= µu for u ∈ ∂Qr′ and µ ∈ (0, 1]. (2.5)

for n > 1/r′. Suppose, on the contrary, there exists u0 ∈ ∂Qr′ and µ0 ∈ (0, 1] such
that Aλ

nu0 = µ0u0, namely,

u0(t) ≥ (Aλ
nu0)(t) = λ

∫ 1

0

G(t, s)fn(s, u0(s))ds, ∀t ∈ J.

Notice that |u0(s)| ≤ r′ < r and n > 1
r′ implies fn(s, u0(s)) ≥ ψr(s) for s ∈ (0, 1).

Therefore,

u0(t) ≥ (Aλ
nu0)(t) = λ

∫ 1

0

G(t, s)ψr(s)ds,

that is,

r′ ≥ λmax
t∈J

∫ 1

0

G(t, s)ψr(s)ds,

which is in contradiction with the selection of r′. This means (2.5) holds. Thus, by
Lemma 1.1 we have i(Aλ

n, Qr′ , Q) = 0 for n > 1
r′ . �

Lemma 2.5. Suppose condition (H3) holds. Then for every λ ∈ (0, λ(r)), there
exists R > r such that

i(Aλ
n, QR, Q) = 0

for all n ∈ N, where λ(r) is the same as in Lemma 2.3.

Proof. By (H3) we know there exists R′ > max{r, 1} such that

f(t, u)
u

> L := [la(1− b)
(
λ min

t∈[a,b]

∫ b

a

G(t, s)ds
)
]−1 for u > R′. (2.6)

Let R := 1+ R′

la(1−b) . Then for u ∈ ∂QR, by (2.4) we have u(t) ≥ la(1− b)‖u‖ > R′

as t ∈ [a, b]. Now we show that

Aλ
nu 6= µu for u ∈ ∂QR, and µ ∈ (0, 1]. (2.7)
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Suppose, on the contrary, there exists u0 ∈ ∂QR and µ0 ∈ (0, 1] such that Aλ
nu0 =

µ0u0, that is,

u0(t) ≥ (Aλ
nu0)(t) = λ

∫ 1

0

G(t, s)fn(s, u0(s))ds, ∀t ∈ J.

Furthermore,

u0(t) ≥ (Aλ
nu0)(t) > λ

( ∫ b

a

G(t, s) · Lu0(s)ds
)

>
(
λ min

t∈[a,b]

∫ b

a

G(t, s)ds
)
Lla(1− b)R = R

for t ∈ [a, b]. This is in contradiction with ‖u0‖ = R. This means that (2.7) holds.
Therefore, by Lemma 1.1 we have i(Aλ

n, QR, Q) = 0 for n ∈ N. �

Now we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. For each r > 0, by Lemma 2.3-2.5, there exist three positive
numbers λ(r), r′, and R with r′ < r < R such that

i(Aλ
n, Qr′ , Q) = 0, i(Aλ

n, Qr, Q) = 1, i(Aλ
n, QR, Q) = 0 (2.8)

for n sufficiently large. Without loss of generality, suppose (2.8) holds for n ≥ n0.
By virtue of the excision property of the fixed point index, we get

i(Aλ
n, Qr \Qr′ , Q) = 1, i(Aλ

n, QR \Qr, Q) = −1

for n ≥ n0. Therefore, using the solution property of the fixed point index, there
exist un ∈ Qr \ Qr′ and vn ∈ QR \ Qr satisfying Aλ

nun = un and Aλ
nvn = vn as

n ≥ n0. By the proof of Lemma 2.3 we know that there is no positive fixed point
on ∂Qr. Thus, un 6= vn. Moreover, from (2.4) it follows that

lr′t(1− t) ≤ un(t) < r and lrt(1− t) < vn(t) ≤ R, for t ∈ J. (2.9)

In the following we show {un(t)}n≥n0 are equicontinuous on J . To see this we
need to prove only that limt→0+ un(t) = 0 and limt→1− un(t) = 0 both uniformly
with respect to n ∈ {n0, n0 + 1, n0 + 2, . . . } and {un(t)}n≥n0 are equicontinuous
on any subinterval of (0, 1). We first claim that limt→0+ un(t) = 0 uniformly with
respect to n ∈ {n0, n0 + 1, n0 + 2, . . . }. According to (2.3) and Lemma 1.2, it is
easy to see

G(t, s) ≤

{
l̄s(1− t), 0 ≤ s ≤ t ≤ 1;
l̄t(1− s), 0 ≤ t ≤ s ≤ 1,

(2.10)

where l̄ = maxt∈J w1(t) ·maxt∈J w2(t), w1(t) and w2(t) are stated in Lemma 1.2.
On the other hand, for arbitrary ε > 0, by (H1) there exists δ̄ > 0 such that

λl̄

∫ δ̄

0

s(1− s)fr′l,r(s)ds ≤
ε

3
. (2.11)

Choose δ ∈ (0, δ̄) sufficiently small such that

λl̄δδ̄−1

∫ 1

0

s(1− s)fr′l,r(s)ds <
ε

3
. (2.12)
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Therefore, by (2.10)-(2.12), we know for t ∈ (0, δ) and ∀n ≥ n0 that

un(t) = λ

∫ 1

0

G(t, s)fn(s, un(s))ds

≤ λl̄

∫ t

0

s(1− t)fr′l,r(s)ds+ λl̄

∫ 1

t

t(1− s)fr′l,r(s)ds

≤ λl̄

∫ t

0

s(1− s)fr′l,r(s)ds+ λl̄
( ∫ δ̄

t

+
∫ 1

δ̄

)
t(1− s)fr′l,r(s)ds

≤ 2λl̄
∫ δ̄

0

s(1− s)fr′l,r(s)ds+
λl̄t

δ̄

∫ 1

δ̄

s(1− s)fr′l,r(s)ds

≤ 2λl̄
∫ δ̄

0

s(1− s)fr′l,r(s)ds+
λl̄t

δ̄

∫ 1

0

s(1− s)fr′l,r(s)ds

≤ 2ε
3

+
ε

3
= ε.

This implies limt→0+ un(t) = 0 uniformly with respect to n ∈ {n0, n0+1, n0+2, . . . }.
Similarly, one can show that limt→1− un(t) = 0 uniformly with respect to n ∈
{n0, n0 + 1, n0 + 2, . . . } also.

Now we are in position to show {un(t)}n≥n0 are equicontinuous on any subin-
terval [a, b] of (0, 1). Notice that

un(t) =
λ

ω

( ∫ t

0

e1(s)e2(t)fn(s, un(s))ds+
∫ 1

t

e1(t)e2(s)fn(s, un(s))ds
)
,

for all t ∈ (0, 1). Thus, by Lemma 1.2, for t ∈ [a, b], we have

|u′n(t)|

=
λ

ω

∣∣∣ ∫ t

0

e1(s)e′2(t)fn(s, un(s))ds+
∫ 1

t

e′1(t)e2(s)fn(s, un(s))ds
∣∣∣

≤ λ

ω

( ∫ t

0

e1(s)|e′2(t)|fr′l,r(s)ds+
∫ 1

t

|e′1(t)|e2(s)fr′l,r(s)ds
)

≤ λ

ω
max
t∈[a,b]

{|e′1(t)|, |e′2(t)|}
( ∫ t

0

e1(s)e2(t)
e2(t)

fr′l,r(s)ds+
∫ 1

t

e1(t)e2(s)
e1(t)

fr′l,r(s)ds
)

≤ λl̄ max
t∈[a,b]

{|e′1(t)|, |e′2(t)|} ·max
{ 1
e1(a)

,
1

e2(b)

}∫ 1

0

s(1− s)fr′l,r(s)ds < +∞,

which implies {un(t)}n≥n0 are equicontinuous on [a, b]. Similarly as above, we can
get {vn(t)}n≥n0 are equicontinuous on [0, 1].

Then, the Ascoli-Arzela theorem guarantees the existence of u, v ∈ C[J,R+] and
two subsequences {uni

} of {un} and {vni
} of {vn} such that limi→+∞ uni

(t) = u(t)
and limi→+∞ vni(t) = v(t) both uniformly with respect to t ∈ J . Moreover, by
(H1), (2.9), and Lebesgue dominated convergence theorem, we obtain

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds, v(t) = λ

∫ 1

0

G(t, s)f(s, v(s))ds, ∀t ∈ J

with r′ ≤ ‖u‖ ≤ r ≤ ‖v‖ ≤ R. On the other hand, similar to the proof of Lemma
2.3, it is easy to see ‖u‖ < r < ‖v‖.
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Choose r = 1. From above we know there exists λ(1) > 0 such that for each
λ ∈ (0, λ(1)), (1.1) has at least two positive solutions uλ and vλ with 0 < ‖uλ‖ <
1 < ‖vλ‖. Let

λ∗ := sup{λ̄ > 0 : (1.1) has at least two positive solutions as λ ∈ (0, λ̄)}.

So we get the existence of λ∗ satisfying that (1.1) has multiple positive solutions as
λ ∈ (0, λ∗).

Now we are in position to prove the existence of λ∗∗. As above, still choose r = 1
and corresponding λ(1), R, r′. Here we show (1.1) has no positive solution as λ
sufficiently large.

First suppose λ ≥ λ∗. If (1.1) has a positive solution u for some λ ≥ λ∗, then
by corresponding integral equation

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds (2.13)

and a process similar to one in the proof of Lemmas 2.4 and 2.5 (replacing λ
in (2.6) with λ(1)), we obtain r′ < ‖u‖ < R. This together with condition
(H2) and (2.13) guarantees that u(t) ≥ λ

∫ 1

0
G(t, s)ψR(s)ds, that is, R > ‖u‖ ≥

λ ·maxt∈J

∫ 1

0
G(t, s)ψR(s)ds, which implies λ <

(
maxt∈J

∫ 1

0
G(t, s)ψR(s)ds

)−1

R.
Therefore, we obtain the existence of λ∗∗. The proof of Theorem 2.1 is complete. �

If f(t, u) is not singular at u = 0, we have the following result, under the hy-
pothesis

(H4) f ∈ C[(0, 1)× [0,+∞),R+] and for every positive number R,∫ 1

0

s(1− s)f0,R(s)ds < +∞,

where f0,R(s) = max{f(s, u) : u ∈ [0, R]}, for all s ∈ (0, 1).

Theorem 2.6. Assume that conditions (H2)-(H4) hold. Then there exist two pos-
itive numbers λ∗ and λ∗∗∗ with λ∗ ≤ λ∗∗∗ such that

(i) (1.1) has at least two positive solutions for λ ∈ (0, λ∗);
(ii) (1.1) has at least one positive solution for λ ∈ (0, λ∗∗∗];
(iii) (1.1) has no solutions for λ > λ∗∗∗

Proof. Notice that condition (H4) implies (H1). Therefore, the existence of λ∗ can
be obtained as in Theorem 2.1. Now we claim that the condition

λ∗∗∗ := sup{λ ∈ R+ : (1.1) has at least one positive solution in C[0, 1]
⋂
C2(0, 1)}

(2.14)
is required. First from the proof of Theorem 2.1, we know λ∗∗∗ ≤ λ∗∗. In
the following we prove that (1.1) with λ = λ∗∗∗ has a positive solution u∗ ∈
C[0, 1]

⋂
C2(0, 1)

⋂
Q.

By (2.14), there exist two sequences {λn} and {un} ⊂ Q \ {θ} such that {un}
is a positive solution of (1.1) with λ = λn and λ1 < λ2 < · · · < λn → λ∗∗∗.
Without loss of generality, suppose λn ≥ λ∗/2 for each n ∈ N. Similar to the proof
of Lemmas 2.4, 2.5 and Theorem 2.1, we can obtain that there exists two positive
numbers r1 and R1 satisfying r1 ≤ ‖un‖ ≤ R1 for each n ∈ N and {un} has a
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subsequence {unk
} which convergence to a function u∗ ∈ QR1

\ Qr1 uniformly as
t ∈ J . Notice that

unk
(t) = λnk

∫ 1

0

G(t, s)f(s, unk
(s))ds, ∀t ∈ J.

Letting k → +∞, by condition (H4) and Lebesgue dominated convergence theorem,
we get

u∗(t) = λ∗∗∗
∫ 1

0

G(t, s)f(s, u∗(s))ds, ∀t ∈ J.

This implies that u∗(t) is a positive solution of (1.1) with λ = λ∗∗∗.
Now we are in position to prove that BVP (1.1) has at least one positive solution

uλ(t) for each λ ∈ (0, λ∗∗∗). Notice that for λ ∈ (0, λ∗∗∗),

−u∗′′(t) + ρp(t)u∗(t) = λ∗∗∗f(t, u∗(t)) ≥ λf(t, u∗(t)), t ∈ (0, 1);

u∗(0) = u∗(1) = 0.

This implies u∗(t) is an upper solution of (1.1). On the other hand, u(t) ≡ 0
is a lower solution for BVP (1.1). Applying [4, Theorem 3.2] and the method
used in [12, 9], one can obtain that BVP (1.1) has at least one positive solution
uλ(t) ∈ [0, u∗(t)] (t ∈ J) for each λ ∈ (0, λ∗∗∗). �

Remark. It is interesting to investigate what conditions should guarantee λ∗ =
λ∗∗∗. Ha and Lee [3] obtained λ∗ = λ∗∗∗ when p(t) = 0, f(t, u) = p1(t)g(u),
p1(t) > 0 is singular only at t = 0 and g(u) is nondecreasing with g(u) ≥ eu.
Xu [11], also obtained λ∗ = λ∗∗∗ when p(t) = 0, f(t, u) = p1(t)g(u), p1(t) > 0 is
singular at t = 0, 1 and g(u) is nondecreasing with g(u) ≥ δxm (m ≥ 2). To the
best of our knowledge, it seems an open problem when f(t, u) is singular at u = 0.

3. Examples

Example 3.1. Consider the nonresonant singular boundary-value problem

−u′′(t) +
3√
t
u(t) = λ

[ 1√
t(1− t)

(
u−4/3 + xα sin2 t

)]
, t ∈ (0, 1);

u(0) = u(1) = 0,
(3.1)

where α > 1. Then there exist positive numbers λ∗ and λ∗∗ with λ∗ < λ∗∗ such
that BVP (3.1) has at least two positive solutions for λ ∈ (0, λ∗) and no solution
for λ > λ∗∗.

Proof. BVP (3.1) can be regarded as an BVP of the form (1.1), where ρ = 3,
p(t) = 1√

t
, and

f(t, u) =
1√

t(1− t)

(
u−4/3 + xα sin2 t

)
.

First we notice that
∫ 1

0
1√
t
dt < +∞, and

∫ 1

0
t(1 − t) 1√

t
dt = 4

15 . By Banach fixed
point theorem, it is easy to see that

−u′′(t) +
3√
t
u(t) = 0, t ∈ (0, 1);

u(0) = u(1) = 0,
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has only the trivial solution. Next we prove that f(t, u) satisfies conditions (H1)-
(H3). For each pair of positive numbers R and r with R > r > 0, we know

fr,R(t) ≤ 1√
t(1− t)

((
rt(1− t)

)−4/3 +Rα
)
.

Then ∫ 1

0

t(1− t)fr,R(t)dt ≤
∫ 1

0

√
t(1− t)

((
rt(1− t)

)−4/3 +Rα
)
dt < +∞.

This means condition (H1) is satisfied. To see that (H2) holds, we notice that
for each R > 0, one can choose ψR(t) = R−4/3/

√
t(1− t), which satisfies ψR 6=

θ and f(t, u) ≥ ψR(t) for t ∈ (0, 1) and u ∈ (0, R]. Finally it is easy to see
(H3) is satisfied since we can choose any subinterval of [a, b] ⊂ (0, 1) satisfying
limx→+∞ f(s, u)/u = +∞ uniformly with respect to s ∈ [a, b]. By Theorem 2.1,
the conclusion follows. �

Analogously, using Theorem 2.6, we can prove that the following statement holds.

Example 3.2. Consider the nonresonant singular boundary-value problem

−u′′(t) +
1
2
t−3/2u(t) = λ

(
t(1− t)

)−3/2(2 + sinu+ xα cos t
)
, t ∈ (0, 1);

u(0) = u(1) = 0,
(3.2)

where α > 1. Then there exist two positive numbers λ∗ and λ∗∗∗ with λ∗ ≤ λ∗∗∗

such that:
(i) BVP (3.2) has at least two positive solutions for λ ∈ (0, λ∗);
(ii) BVP (3.2) has at least one positive solution for λ ∈ (0, λ∗∗∗];
(iii) BVP (3.2) has no solution for λ > λ∗∗∗
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