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EXISTENCE OF SOLUTIONS FOR DISCONTINUOUS
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS IN

BANACH ALGEBRAS

BAPURAO C. DHAGE, SOTIRIS K. NTOUYAS

Abstract. In this paper, we prove an existence theorem for hyperbolic differ-

ential equations in Banach algebras under Lipschitz and Carathéodory condi-
tions. The existence of extremal solutions is also proved under certain mono-

tonicity conditions.

1. Introduction

Let R denote the real line. Given two closed and bounded intervals Ja = [0, a]
and Jb = [0, b] in R, we consider the second order hyperbolic differential equation
(HDE)

∂2

∂x∂y

[
u(x, y)

f(x, y, u(x, y))

]
= g(x, y, u(x, y)), (x, y) ∈ Ja × Jb,

u(x, 0) = φ(x), u(0, y) = ψ(y),
(1.1)

where f : Ja × Jb ×R → R \ {0}, g : Ja × Jb ×R → R, and φ : Ja → R, ψ : Jb → R
are continuous functions with φ(0) = ψ(0).

By a solution of the HDE (1.1) we mean a function u ∈ AC(Ja×Jb,R) satisfying

(i) the function (x, y) 7→
( u(x,y)
f(x,y,u(x,y))

)
is absolutely continuous, and

(ii) u satisfies the equations in (1.1),
where AC(Ja × Jb,R) is the space of absolutely continuous real-valued functions
on Ja × Jb.

The existence of solutions and the topological properties of the solutions set
of hyperbolic differential equations have received much attention during the last
two decades, see for example, De Blasi and Myjak [3] and the references cited
therein. Lakshmikantham and Pandit [7, 8] coupled the method of upper and lower
solutions with the monotone method to obtain existence of extremal solutions for
hyperbolic differential equations. The method of upper and lower solutions has
been successfully applied to study the existence of multiple solutions for initial and
boundary value problems of the first and second order partial differential equations.
We refer to the books by Carl and Heikkila [2], Heikkila and Lakshmikantham

2000 Mathematics Subject Classification. 35L70, 35L15.

Key words and phrases. Hyperbolic differential equation; Banach algebras.
c©2006 Texas State University - San Marcos.
Submitted December 22, 2005. Published March 9, 2006.

1



2 B. C. DHAGE AND S. K. NTOUYAS EJDE-2006/28

[6], Lakshmikantham and Pandit [7], Pandit [8] and the references cited therein.
The hyperbolic differential equation (1.1) is new to the literature and the physical
situations in which HDE (1.1) occurs are yet to be investigated. Existence results
for the hyperbolic differential equations (1.1) are proved in Arara et. al, [1] under
Carathéodory conditions via nonlinear alternative of Leray-Schauder type. In this
paper, we prove existence of extremal solutions under discontinuous nonlinearity
involved in the equations. The rest of the paper is organized as follows. In the
following section we present notations, definitions and preliminary results needed
in the following sections. In Section 3 we prove the main existence result. Section
4 deals with existence theorems for extremal solutions of the HDE (1.1) under
certain Lipschitz and monotonicity conditions. Finally, an example illustrating the
abstract results is presented in Section 5.

2. Auxiliary Results

Let X be a Banach algebra with norm ‖ · ‖. A mapping A : X → X is called
D-Lipschitz if there exists a continuous nondecreasing function ψ : R+ → R+

satisfying
‖Ax−Ay‖ ≤ ψ(‖x− y‖) (2.1)

for all x, y ∈ X with ψ(0) = 0. In the special case when ψ(r) = αr (α > 0), A is
called a Lipschitz with a Lipschitz constant α. In particular, if α < 1, A is called
a contraction with a contraction constant α. Further, if ψ(r) < r for all r > 0,
then A is called a nonlinear contraction on X. Sometimes we call the function ψ a
D-function for convenience.

An operator T : X → X is called compact if T (S) is a compact subset of X for
any S ⊂ X. Similarly T : X → X is called totally bounded if T maps a bounded
subset of X into the relatively compact subset of X. Finally T : X → X is called
completely continuous operator if it is continuous and totally bounded operator on
X. It is clear that every compact operator is totally bounded, but the converse
may not be true.

The nonlinear alternative of Schaefer type recently proved by Dhage [4] is em-
bodied in the following theorem.

Theorem 2.1 (Dhage [4]). Let X be a Banach algebra and let A,B : X → X be
two operators satisfying

(a) A is Lipschitz with a Lipschitz constant α,
(b) B is compact and continuous, and
(c) α < 1, where M = ‖B(X)‖ := sup{‖Bx‖ : x ∈ X}.

Then either
(i) the equation λ[AxBx] = x has a solution for λ = 1, or
(ii) the set E = {u ∈ X | λ[AuBu] = u, 0 < λ < 1} is unbounded.

A non-empty closed set K in a Banach algebra X is called a cone if (i) K+K ⊆
K, (ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and (iii) {−K} ∩ K = 0, where 0 is the zero
element of X. A cone K is called to be positive if (iv) K ◦K ⊆ K, where ”◦” is a
multiplication composition in X. We introduce an order relation ≤ in X as follows.
Let x, y ∈ X. Then x ≤ y if and only if y−x ∈ K. A cone K is called to be normal
if the norm ‖ · ‖ is monotone increasing on K. It is known that if the cone K is
normal in X, then every order-bounded set in X is norm-bounded. The details of
cones and their properties appear in Heikkila and Lakshmikantham [6].
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Lemma 2.2 (Dhage [5]). Let K be a positive cone in a real Banach algebra X and
let u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and u2 ≤ v2. Then u1u2 ≤ v1v2.

For any a, b ∈ X, a ≤ b, the order interval [a, b] is a set in X given by

[a, b] = {x ∈ X : a ≤ x ≤ b}.
We use the following fixed point theorem of Dhage [5] for proving the existence of
extremal solutions for the HDE (1.1) under certain monotonicity conditions.

Theorem 2.3 (Dhage [5]). Let K be a cone in a Banach algebra X and let a, b ∈ X.
Suppose that A,B : [a, b] → K are two operators such that

(a) A is completely continuous,
(b) B is totally bounded,
(c) AxBy ∈ [a, b] for all x, y ∈ [a, b], and
(d) A and B are nondecreasing.

Further if the cone K is positive and normal, then the operator equation AxBx = x
has a least and a greatest positive solution in [a, b].

Theorem 2.4 (Dhage [5]). Let K be a cone in a Banach algebra X and let a, b ∈ X.
Suppose that A,B : [a, b] → K are two operators such that

(a) A is Lipschitz with a Lipschitz constant α,
(b) B is totally bounded,
(c) AxBy ∈ [a, b] for all x, y ∈ [a, b], and
(d) A and B are nondecreasing.

Further if the cone K is positive and normal, then the operator equation AxBx = x
has least and a greatest positive solution in [a, b], whenever αM < 1, where M =
‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.

Remark 2.5. Note that hypothesis (c) of Theorems 2.3 and 2.4 holds if the oper-
ators A and B are positive monotone increasing and there exist elements a and b
in X such that a ≤ AaBa and AbBb ≤ b.

3. Existence Results

Let B(Ja × Jb,R) denote the space of real-valued bounded functions 0n Ja × Jb
and let C(Ja× Jb,R) be the Banach space of all continuous functions from Ja× Jb
into R with the norm

‖u‖∞ = sup{|u(x, y)| : (x, y) ∈ Ja × Jb}. (3.1)

Define a multiplication “ · ” by

(u · v)(x, y) = u(x, y)v(x, y)

for each (x, y) ∈ Ja× Jb. Then C(Ja× Jb,R) is a Banach algebra with above norm
and multiplication. Let L1(Ja × Jb,R) denotes the Banach space of measurable
functions u : Ja × Jb −→ R which are Lebesgue integrable normed by

‖u‖L1 =
∫ a

0

∫ b

0

|u(x, y)|dx dy.

The HDE (1.1) is equivalent to the functional integral equation (in short FIE).

u(x, y) =
[
f(x, y, u(x, y))

](
z0(x, y) +

∫ x

0

∫ y

0

g(t, s, u(t, s)) ds dt
)

(3.2)
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for (x, y) ∈ Ja × Jb, where z0(x, y) = ψ(y)
f(0,y,ψ(y)) + φ(x)

f(x,0,φ(x)) −
φ(0)

f(0,0,φ(0)) .
Note that if the function f is continuous on Ja×Jb×R, then from the continuity

of φ and ψ it follows that z0 ∈ C(Ja × Jb,R).
We need the following definition in the sequel.

Definition 3.1. A function β : Ja × Jb × R → R is called Carathéodory’s if
(i) the function (x, y) → β(x, y, z) is measurable for each z ∈ R,
(ii) the function z → β(x, y, z) is continuous for almost each (x, y) ∈ Ja × Jb.

Further a Carathéodory function β(x, y, z) is called L1-Carathéodory if
(iii) for each number r > 0, there exists a function hr ∈ L1(Ja × Jb,R) such

that
|β(x, y, z)| ≤ hr(x, y) a.e. (x, y) ∈ Ja × Jb

for all z ∈ R with |z| ≤ r.
Finally, a Carathéodory function β(x, y, z) is called L1

X-Carathéodory if
(iv) there exists a function h ∈ L1(Ja × Jb,R) such that

|β(x, y, z)| ≤ h(x, y) a.e. (x, y) ∈ Ja × Jb

for all z ∈ R.

The following hypotheses will be used in the sequel.
(A1) The function f is continuous on Ja × Jb × R.
(A2) There exists a function α ∈ B(Ja × Jb,R+) such that

|f(x, y, z)− f(x, y, z)| ≤ α(x, y)|z − z|, a.e. (x, y) ∈ Ja × Jb,

for all z, z ∈ R.
(A3) The function g is L1

X -Carathéodory.

Theorem 3.2. Assume that hypotheses (A1)-(A4) hold. If

‖α‖∞
[
‖z0‖∞ + ‖h‖L1

]
< 1,

then the hyperbolic equation (1.1) has a solution on Ja × Jb.

Proof. Let X = C(Ja × Jb,R). Define two operators A and B on X by

Au(x, y) = f(x, y, u(x, y)), (x, y) ∈ Ja × Jb, (3.3)

Bu(x, y) = z0(x, y) +
∫ x

0

∫ y

0

g(t, s, u(t, s)) ds dt, (x, y) ∈ Ja × Jb. (3.4)

Clearly A and B define the operators A,B : X → X. Now solving (1.1) is equivalent
to solving FIE (3.1), which is further equivalent to solving the operator equation

Au(x, y)Bu(x, y) = u(x, y), (x, y) ∈ Ja × Jb. (3.5)

We show that operators A and B satisfy all the assumptions of Theorem 2.1. First
we shall show that A is a Lipschitz. Let u1, u2 ∈ X. Then by (A2),

|Au1(x, y)−Au2(x, y)| = |f(x, y, u1(x, y))− f(x, y, u2(x, y))|
≤ α(x, y)|u1(x, y)− u2(x, y)|
≤ ‖α‖∞‖u1 − u2‖∞.

Taking the maximum over (x, y), in the above inequality yields

‖Au1 −Au2‖∞ ≤ ‖α‖∞‖u1 − u2‖∞,
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and so A is a Lipschitz with a Lipschitz constant ‖α‖∞.
Next, we show that B is compact operator on X. Let {un} be a sequence in X.

From (A3) it follows that

‖Bun‖∞ ≤ ‖z0‖∞ + ‖h‖L1 ,

where h is given in Definition 3.1 (iv). As a result {Bun : n ∈ N} is a uniformly
bounded set in X. Let (x1, y1), (x2, y2) ∈ Ja × Jb. Then

|Bun(x1, y1) −Bun(x2, y2)|

≤ |z0(x1, y1)− z0(x2, y2)|+
∫ x2

x1

∫ y2

y1

|g(t, s, un(t, s))|ds dt

≤ |z0(x1, y1)− z0(x2, y2)|+
∫ x2

x1

∫ y2

y1

h(t, s)ds dt

→ 0, as (x1, y1) → (x2, y2).

From this we conclude that {Bun : n ∈ N} is an equicontinuous set in X. Hence
B : X → X is compact by Arzelà-Ascoli theorem. Moreover,

M = ‖B(X)‖

≤ |z0(x, y)|+ sup
(x,y)∈Ja×Jb

∫ x

0

∫ y

0

|g(t, s, u(t, s))| ds dt

≤ ‖z0‖∞ + ‖h‖L1 ,

and so,
αM ≤ ‖α‖∞(‖z0‖∞ + ‖h‖L1) < 1,

by assumption. To finish, it remain to show that either the conclusion (i) or the
conclusion (ii) of Theorem 2.1 holds. We now will show that the conclusion (ii) is
not possible. Let u ∈ X be any solution to (1.1). Then, for any λ ∈ (0, 1) we have

u(x, y) = λ[f(x, y, u(x, y))]
(
z0(x, y) +

∫ x

0

∫ y

0

g(t, s, u(t, s)) ds dt
)
,

for (x, y) ∈ Ja × Jb. Therefore,

|u(x, y)| ≤
[
f(x, y, u(x, y))

](
|z0(x, y)|+

∫ x

0

∫ y

0

|g(t, s, u(t, s))| dt ds
)

≤
[
|f(x, y, u(x, y))− f(x, y, 0)|+ |f(x, y, 0)|

]
×

×
(
|z0(x, y)|+

∫ x

0

∫ y

0

h(s, t) dt ds
)

≤
[
‖α‖∞|u(x, y)|+ F

]
(|z0(x, y)|+ ‖h‖L1)

≤
[
‖α‖∞‖u‖∞ + F

]
[‖z0‖∞ + ‖h‖L1 ],

where F = |f(x, y, 0)|, and consequently

‖u‖∞ ≤ F (‖z0‖∞ + ‖h‖L1)
1− ‖α‖∞(‖z0‖∞ + ‖h‖L1)

:= M.

Thus the conclusion (ii) of Theorem 2.1 does not hold. Therefore the hyperbolic
differential equation (1.1) has a solution on Ja × Jb. This completes the proof. �
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4. Existence Results for Extremal Solutions

We equip the space C(Ja× Jb,R) with the order relation ≤ with the help of the
cone defined by

K = {u ∈ C(Ja × Jb,R) : u(x, y) ≥ 0, ∀(x, y) ∈ Ja × Jb}.

Thus u ≤ ū if and only if u(x, y) ≤ ū(x, y) for each (x, y) ∈ Ja × Jb.
It is well-known that the cone K is positive and normal in C(Ja × Jb,R). If

u, ū ∈ C(Ja × Jb,R) and u ≤ ū, we put

[u, u] = {u ∈ C(Ja × Jb,R) : u ≤ u ≤ ū}.

Definition 4.1. A function β : Ja × Jb × R → R is called Chandrabhan if

(i) the function (x, y) → β(x, y, z) is measurable for each z ∈ R,
(ii) the function z → β(x, y, z) is nondecreasing for almost each (x, y) ∈ Ja×Jb.

Further a Chandrabhan function β(x, y, z) is called L1-Chandrabhan if

(iii) for each number r > 0, there exists a function hr ∈ L1(Ja × Jb,R) such
that

|β(x, y, z)| ≤ hr(x, y) a.e. (x, y) ∈ Ja × Jb,

for all z ∈ R with |z| ≤ r.

Definition 4.2. A function u(·, ·) ∈ C(Ja× Jb,R) is said to be a lower solution of
(1.1) if we have

∂2

∂x∂y

[ u(x, y)
f(x, y, u(x, y))

]
≤ g(x, y, u(x, y)), (x, y) ∈ Ja × Jb,

u(x, 0) ≤ ϕ(x), u(0, y) ≤ ψ(y),

for each (x, y) ∈ Ja × Jb. Similarly a function ū(·, ·) ∈ C(Ja × Jb,R) is said to be
an upper solution of (1.1) if we have

∂2

∂x∂y

[ ū(x, y)
f(x, y, ū(x, y))

]
≥ g(x, y, ū(x, y)), (x, y) ∈ Ja × Jb,

ū(x, 0) ≥ ϕ(x), ū(0, y) ≥ ψ(y),

for each (x, y) ∈ Ja × Jb.

Definition 4.3. A solution uM of the problem (1.1) is said to be maximal if for any
other solution u to the problem (1.1) one has u(x, y) ≤ uM (x, y), for all (x, y) ∈
Ja×Jb. Again a solution um of the problem (1.1) is said to be minimal if um(x, y) ≤
u(x, y), for all (x, y) ∈ Ja×Jb where u is any solution of the problem (1.1) on Ja×Jb.

The following hypotheses will be used in the sequel.

(H1) f : Ja × Jb × R+ → R+ \ {0}, g : Ja × Jb × R+ → R+, ψ(y) ≥ 0 on Jb and
φ(x)

f(x,0,φ(x)) ≥
φ(0)

f(0,0,φ(0)) for all x ∈ Ja.
(H2) The functions f(x, y, u) and g(x, y, u) are nondecreasing in u almost every-

where for (x, y) ∈ Ja × Jb.
(H3) The function g is L1-Chandrabhan.
(H4) The hyperbolic differential equation (1.1) has a lower solution u and an

upper solution u with u ≤ u.
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Remark 4.4. Assume that (H2)-(H4) hold. Define a function h : Ja × Jb → R+

by
h(x, y) = |g(x, y, u(x, y))| = g(x, y, u(x, y)) ∀ (x, y) ∈ Ja × Jb.

Then h is Lebesgue integrable and

|g(x, y, z)| ≤ h(x, y), a.e. (x, y) ∈ Ja × Jb, ∀z ∈ [u, u].

Theorem 4.5. Assume that hypotheses (A2), (H1)− (H4) hold. If

‖α‖∞
[
‖z0‖∞ + ‖h‖L1

]
< 1,

then the hyperbolic equation (1.1) has a minimal and a maximal positive solution
on Ja × Jb.

Proof. Let X = C(Ja×Jb,R) and consider a closed interval [u, u] in X which is well
defined in view of hypothesis (H4). Define two operators A,B : [u, u] → X by (3.3)
and (3.4) respectively. Clearly A and B define the operators A,B : [u, u] → K.

Now solving (1.1) is equivalent to solving (3.2), which is further equivalent to
solving the operator equation

Au(x, y)Bu(x, y) = u(x, y), (x, y) ∈ Ja × Jb. (4.1)

We show that operators A and B satisfy all the assumptions of Theorem 2.4. As
in Theorem 3.2 we can prove that A is Lipschitz with a Lipschitz constant ‖α‖∞
and B is completely continuous operator on [u, u].

Now the hypothesis (H2) implies that A and B are nondecreasing on [u, u]. To
see this, let u1, u2 ∈ [u, u] be such that u1 ≤ u2. Then by (H2),

Au1(x, y) = f(x, y, u1(x, y)) ≤ f(x, y, u2(x, y)) = Au2(x, y), ∀(x, y) ∈ Ja × Jb,

and

Bu1(x, y) = z0(x, y) +
∫ x

0

∫ y

0

g(t, s, u1(t, s)) ds dt

≤ z0(x, y) +
∫ x

0

∫ y

0

g(t, s, u2(t, s)) ds dt

= Bu2(x, y), ∀(x, y) ∈ Ja × Jb.

So A and B are nondecreasing operators on [u, u]. Again hypothesis (H4) imply

u(x, y) = [f(x, y, u(x, y))]
(
z0(x, y) +

∫ x

0

∫ y

0

g(t, s, u(t, s)) , ds dt
)

≤ [f(x, y, z(x, y))]
(
z0(x, y) +

∫ x

0

∫ y

0

g(t, s, z(t, s))dsdt
)

≤ [f(x, y, u(x, y))]
(
z0(x, y) +

∫ x

0

∫ y

0

g(t, s, u(t, s)) ds dt
)

≤ u(x, y),

for all (x, y) ∈ Ja × Jb and z ∈ [u, u]. As a result

u(x, y) ≤ Az(x, y)Bz(x, y) ≤ u(x, y), ∀(x, y) ∈ Ja × Jb and z ∈ [u, u].

Hence Az Bz ∈ [u, u], for all z ∈ [u, u].
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Notice for any u ∈ [u, u],

M = ‖B([u, u])‖

≤ |z0(x, y)|+ sup
(x,y)∈Ja×Jb

∫ x

0

∫ y

0

|g(t, s, u(t, s))| ds dt

≤ ‖z0‖∞ + ‖hr‖L1 ,

and so,
αM ≤ ‖α‖∞(‖z0‖∞ + ‖hr‖L1) < 1.

Thus the operators A and B satisfy all the conditions of Theorem 2.4 and so the
operator equation (3.4) has a least and a greatest solution in [u, u]. This further
implies that the hyperbolic differential equation (1.1) has a minimal and a maximal
positive solution on Ja × Jb. This completes the proof. �

Theorem 4.6. Assume that hypotheses (A1), (A2), (H1)-(H4) hold. Then the
hyperbolic equation (1.1) has a minimal and a maximal positive solution on Ja×Jb.

Proof. Let X = C(Ja × Jb,R). Consider the order interval [u, u] in X and define
two operators A and B on [u, u] by (3.3) and (3.4) respectively. Then HDE (1.1) is
transformed into an operator equation Au(x, y)Bu(x, y) = u(x, y), (x, y) ∈ Ja× Jb
in a Banach algebra X. Notice that (H1) implies A,B : [u, u] → K. Since the cone
K in X is normal, [u, u] is a norm bounded set in X.

Next we show that A is completely continuous on [u, u]. Now the cone K in X is
normal, so the order interval [u, u] is norm-bounded. Hence there exists a constant
r > 0 such that ‖u‖ ≤ r for all u ∈ [u, u]. As f is continuous on compact set
Ja × Jb × [−r, r], it attains its maximum, say M . Therefore, for any subset S of
[u, u] we have

‖A(S)‖ = sup{‖Au‖ : u ∈ S}

= sup
{

sup
(x,y)∈Ja×Jb

|f(x, y, u(x, y))| : u ∈ S
}

≤ sup
{

sup
(x,y)∈Ja×Jb

|f(x, y, u)| : u ∈ [−r, r]
}

≤M.

This shows that A(S) is a uniformly bounded subset of X.
We note that the function f(x, y, u) is uniformly continuous on Ja×Jb× [−r, r].

Therefore, for any (x1, y1), (x2, y2) ∈ Ja × Jb we have

|f(x1, y1, u)− f(x2, y2, u)| → 0 as (x1, y1) → (x2, y2),

for all u ∈ [−r, r]. Similarly for any u1, u2 ∈ [−r, r]
|f(x, y, u1)− f(x, y, u2)| → 0 as u1 → u2,

for all (x, y) ∈ Ja×Jb. Hence any (x1, y1), (x2, y2) ∈ Ja×Jb and for any u ∈ S one
has

|Au(x1, y1)−Au(x2, y2)| = |f(x1, y1, u(x1, y1))− f(x2, y2, u(x2, y2))|
≤ |f(x1, y1, u(x1, y1))− f(x2, y2, u(x1, y1)|

+ |f(x2, y2, x(x1, y1))− f(x2, y2, x(x2, y2))|
→ 0 as (x1, y1) → (x2, y2).



EJDE-2006/28 HYPERBOLIC DIFFERENTIAL EQUATIONS IN BANACH ALGEBRAS 9

This shows that A(S) is an equi-continuous set in K. Now an application of Arzelà-
Ascoli theorem yields that A is a completely continuous operator on [u, u].

Next it can be shown as in the proof of Theorem 4.5 that B is a compact operator
on [u, u]. Now an application of Theorem 2.3 yields that the hyperbolic differential
equation (1.1) has a minimal and maximal positive solution on J . This completes
the proof. �

5. An Example

Let Ja = [0, 1] = Jb and let φ, ψ : [0, 1] → R be two functions defined by

φ(x) = x2 and ψ(x) = x. (5.1)

Define two functions f, g : [0, 1]× [0, 1]× R → R by

f(x, y, u) =

{
1, if u < 0
1 + u

9 , if u ≥ 0,
(5.2)

and

g(x, y, u) =

{
0, if u < 0

[u]
15+[u] , if u ≥ 0

(5.3)

for all x, y ∈ [0, 1], where [u] is the greatest integer less than or equal to u.
Now consider the hyperbolic differential equation (1.1) with the functions φ, ψ

f and g defined by (5.1), (5.2) and (5.3) respectively.
We show that the functions φ, ψ, f and g satisfy all the hypotheses of Theorem

4.2. Clearly φ(0) = 0 = ψ(0). Again, here we have f : [0, 1]× [0, 1]×R → R+ \ {0},
g : [0, 1] × [0, 1] × R → R+, ψ(x) ≥ 0 on [0, 1] and φ(x)

f(x,0,φ(x)) ≥
φ(0)

f(0,0,φ(0)) for all
x ∈ [0, 1].

Also the maps u 7→ f(x, y, u) and u 7→ g(x, y, u) are nondecreasing in R for all
x, y ∈ [0, 1]. Note that f is continuous and g is L1-Chandrabhan on [0, 1]×[0, 1]×R.
Further, it is easy to verify that identically zero function u ≡ 0 and the constant
function u ≡ 3 are the lower and upper solutions of the (1.1) respectively. Hence
by Theorem 4.2, the HDE (1.1) has a maximal and a minimal positive solution in
the order interval [0, 3] in the space C([0, 1]× [0, 1],R) defined on [0, 1]× [0, 1].

Remark 5.1. Note that the function g in the above example is not continuous,
but Lebesgue integrable on [0, 1]× [0, 1].
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