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OSCILLATION FOR HIGHER ORDER NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS WITH IMPULSES

CHAOLONG ZHANG, WEIZHEN FENG

Abstract. In this paper, we study the oscillation of solutions to higher order

nonlinear ordinary differential equations with impulses. Several criteria for
the oscillations of solutions are given. We find some suitable impulse functions

such that all solutions are oscillatory under the impulse control.

1. Introduction

There are many publication on the oscillation of solutions to classical second
order nonlinear ordinary differential equations; see for example [1, 2, 3, 8, 9, 10,
13, 14, 15, 16]. There are also some publications on the oscillation of second order
ODEs with impulses [4, 7, 12], and some on higher order [5, 6]. In this paper, we
study higher order nonlinear ODEs with impulses. Under conditions (A) (B) (C)
stated below, we can always find some suitable impulse functions such that all the
solutions of the equation become oscillatory under the impulse control. We believe
that this oscillation result, under the impulse control, is significant both for the
theory and the applications.

2. Main results

We consider the system

x(2n)(t) + f(t, x(t)) = 0, t ≥ t0, t 6= tk,

x(i)(t+k ) = gk(i)(x(i)(tk)), i = 0, 1, . . . , 2n− 1, k = 1, 2 . . . ,

x(i)(t+0 ) = x
(i)
0 ,

(2.1)

where

x(i)(tk) = lim
h→0−

x(i−1)(tk + h)− x(i−1)(tk)
h

,

x(i)(t+k ) = lim
h→0+

x(i−1)(tk + h)− x(i−1)(t+k )
h

,
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0 < t0 < t1 < t2 < · · · < tk < . . . , k = 1, 2, . . . , limk→∞ tk = +∞, x(0)(t) = x(t),
and n is a natural number. In this article, we assume that the following conditions:

(A) f(t, x) is continuous on [t0,+∞) × (−∞,+∞); xf(t, x) > 0 for x 6= 0;
f(t,x)
ϕ(x) ≥ p(t) for x 6= 0, where p(t) is positive and continuous on [t0,+∞);

xϕ(x) > 0 for x 6= 0; ϕ′(x) ≥ 0.
(B) gk(i)(x) is continuous on (−∞,+∞), and there exist positive numbers

a
(i)
k , b

(i)
k such that

a
(i)
k ≤

gk(i)(x)
x

≤ b
(i)
k , i = 0, 1, . . . , 2n− 1.

(C)

(t1 − t0) +
a
(i)
1

b
(i−1)
1

(t2 − t1) +
a
(i)
1 a

(i)
2

b
(i−1)
1 b

(i−1)
2

(t3 − t2)

+ · · ·+ a
(i)
1 a

(i)
2 . . . a

(i)
m

b
(i−1)
1 b

(i−1)
2 . . . b

(i−1)
m

(tm+1 − tm) + · · · = +∞,

(2.2)

Definition 2.1. A function x : [t0, t0 + α) → R, t0 > 0, α > 0 is said to be a
solution of (2.1), if

(i) x(i)(t+0 ) = x
(i)
0 , i = 0, 1, . . . 2n− 1

(ii) for t ∈ [t0, t0 + α) and t 6= tk, x(t) satisfies x(2n)(t) + f(t, x(t)) = 0
(iii) x(i)(t) is left continuous on tk ∈ [t0, t0 + α), and x(i)(t+k ) = gk(i)x

(i)(tk),
i = 0, 1, . . . 2n− 1.

Definition 2.2. A solution of (2.1) is said to be non-oscillatory if it is eventually
positive or eventually negative. Otherwise,this solution is said to be oscillatory.

Since (2.1) can be transformed into a first-order impulsive differential system,
theorems on the existence of solutions, the uniqueness of solutions and the existence
of global solutions can be seen in [11]. In the following, we always assume the
solutions of (2.1) exists on [t0,+∞).

Lemma 2.3. Let x(t) be a solution of (2.1), and conditions (A), (B), (C) be
satisfied. Suppose that there exists an i ∈ {1, 2, . . . , 2n− 1} and some T ≥ t0, such
that x(i)(t) > 0 (< 0), x(i+1)(t) ≥ 0 (≤ 0) for t ≥ T . Then there exists some
T1 ≥ T , such that x(i−1)(t) > 0 (< 0), for t ≥ T1.

Proof. Without loss of generality, let T = t0, x(i)(t) > 0, x(i+1)(t) ≥ 0 for t ≥ T .
Assume that for any tk > T , x(i−1)(tk) < 0. By x(i+1)(t) ≥ 0, x(i)(t) > 0,
t ∈ (tk, tk+1], we have that x(i)(t) is monotonically nondecreasing on (tk, tk+1].
For t ∈ (t1, t2], we have

x(i)(t) ≥ x(i)(t+1 )
Integrating the above inequality, we have

x(i−1)(t2) ≥ x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1) (2.3)

Similarly,
x(i−1)(t3) ≥ x(i−1)(t+2 ) + x(i)(t+2 )(t3 − t2) (2.4)

From x(i)(t2) ≥ x(i)(t+1 ) and (2.3), (2.4), we have

x(i−1)(t3) ≥ x(i−1)(t+2 ) + x(i)(t+2 )(t3 − t2)
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≥ b
(i−1)
2 x(i−1)(t2) + a

(i)
2 x(i)(t2)(t3 − t2)

≥ b
(i−1)
2 [x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1)] + a

(i)
2 x(i)(t2)(t3 − t2)

≥ b
(i−1)
2 [x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1) +

a
(i)
2

b
(i−1)
2

x(i)(t+1 )(t3 − t2)]

Applying induction, we have that for any natural number m,

x(i−1)(tm) ≥ b
(i−1)
m−1 . . . b

(i−1)
3 b

(i−1)
2

{
x(i−1)(t+1 ) + x(i)(t+1 )[(t2 − t1)

+
a
(i)
2

b
(i−1)
2

(t3 − t2) + · · ·+
a
(i)
2 a

(i)
3 . . . a

(i)
m−1

b
(i−1)
2 b

(i−1)
3 . . . b

(i−1)
m−1

(tm − tm−1)]
} (2.5)

By condition (C) and a
(i)
k > 0, b

(i−1)
k > 0, for all sufficiently large m, we have

x(i−1)(tm) > 0. Which is contrary to the assumption. Hence, there exists some j
such that tj > T and x(i−1)(tj) ≥ 0. Then

x(i−1)(t+j ) ≥ a
(i−1)
j x(i−1)(tj) ≥ 0.

Note that x(i)(t) > 0 yields x(i−1)(t) being monotonically increasing on (tj , tj+1].
For t ∈ (tj , tj+1], we have

x(i−1)(t) > x(i−1)(t+j ) ≥ 0.

Especially,
x(i−1)(tj+1) > x(i−1)(t+j ) > 0.

Similarly, for t ∈ (tj+1, tj+2], we have

x(i−1)(t) > x(i−1)(t+j+1) ≥ a
(i−1)
j+1 x(i−1)(tj+1) > 0.

By induction,for t ∈ (tj+m−1, tj+m], we have x(i−1)(t) > 0. So for t ≥ tj+1, we have

x(i−1)(t) > 0.

Summing up the above discussion, there exists some T1 ≥ T such that x(i−1)(t) > 0,
t ≥ T1. The proof of the other case in this theorem is similar; so we omit it. The
proof of Lemma 2.3 is complete. �

Lemma 2.4. Let x(t) be a solution of (2.1) and conditions (A), (B), (C) be sat-
isfied. Suppose that there exist an i ∈ {1, 2, . . . , 2n} and some T ≥ t0 such that
x(t) > 0, x(i)(t) ≤ 0, for t ≥ T , and x(i)(t) is not always equal to 0 in [t, +∞).
Then x(i−1)(t) > 0 for all sufficiently large t.

Proof. Without loss of generality, let T = t0. We claim that x(i−1)(tk) > 0 for any
tk ≥ T . If it is not true, then there exists some tj ≥ T , such that x(i−1)(tj) ≤ 0.
Since x(i)(t) ≤ 0, x(i−1)(t) is monotonically non-increasing in (tk, tk+1] for k ≥ j.
Also because x(i)(t) is not always equal to 0 in [t,+∞), there exists some tl ≥ tj
such that x(i)(t) is not always equal to 0 in (tl, tl+1]. Without loss of generality, we
can assume l = j, that is, x(i)(t) is not always equal to 0 in (tj , tj+1]. So we have

x(i−1)(tj+1) < x(i−1)(t+j ) ≤ a
(i−1)
j x(i−1)(tj) ≤ 0.

For t ∈ (tj+1, tj+2], we have

x(i−1)(tj+2) < x(i−1)(t+j+1) ≤ a
(i−1)
j+1 x(i−1)(tj+1) < 0.
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By induction, for t ∈ (tj+m, tj+m+1], we have x(i−1)(t) < 0. So we have x(i−1)(t) <

0, x(i)(t) ≤ 0, t ∈ (tj+1,+∞). By Lemma 2.3,for all sufficiently large t,we have
x(i−2)(t) < 0. Similarly, we can conclude, using Lemma 2.3 repeatedly, that for all
sufficiently large t, we have x(t) < 0. This is a contradiction to x(t) > 0 (t ≥ T ).
Hence, we have x(i−1)(tk) > 0 for any tk ≥ T . So we have x(i−1)(t) > 0 for all
sufficiently large t. The proof of Lemma 2.4 is complete. �

Lemma 2.5. Let x(t) be a solution of (2.1) and conditions (A), (B), (C) be sat-
isfied. Suppose T ≥ t0, x(t) > 0 for t ≥ T . Then there exist some T ′ ≥ T and
l ∈ {1, 3, . . . , 2n− 1} such that for t ≥ T ′,

x(i)(t) > 0, i = 0, 1, . . . , l;

(−1)i−1x(i)(t) > 0, i = l + 1, . . . , 2n− 1;

x(2n)(t) ≤ 0.

(2.6)

Proof. Let T = t0. Since x(t) > 0(t ≥ t0), by (2.1) and that p(t) is nonnegative
and is not always equal to 0 in any (t,+∞), we have

x(2n)(t) = −f(t, x(t)) ≤ −p(t)ϕ(x(t)) ≤ 0

and x(2n)(t) is not always equal to 0 in (t,+∞). By Lemma 2.4, we have x(2n−1)(t) >
0. Without loss of generality, let x(2n−1)(t) > 0 for t ≥ t0. So x(2n−2)(t) > 0 is
monotonically nondecreasing on (tk, tk+1]. If for any tk, x(2n−2)(tk) < 0, then
x(2n−2)(t) < 0(t ≥ t0). If there exists some tj such that x(2n−2)(tj) ≥ 0, by that
x(2n−2)(t) is monotonically increasing and a

(2n−2)
k > 0,we get x(2n−2)(t) > 0 for

t > tj . So there exists some T1 ≥ T , such that one of the following statements hold

x(2n−1)(t) > 0, x(2n−2)(t) > 0, for t ≥ T1 (2.7)

x(2n−1)(t) > 0, x(2n−2)(t) < 0, for t ≥ T1 (2.8)

When (2.7) holds, Lemma 2.3 yields that x(2n−3)(t) > 0 for all sufficiently large t.
Using Lemma 2.3 repeatedly, for all sufficiently large t,we can conclude that

x(2n−1)(t) > 0, x(2n−2)(t) > 0, . . . , x′(t) > 0, x(t) > 0.

When (2.8) holds, by Lemma 2.4, we have x(2n−3)(t) > 0, for all sufficiently large
t. Hence,there exists some T2 ≥ T1 such that

x(2n−3)(t) > 0, x(2n−4)(t) > 0, for t ≥ T2 (2.9)

x(2n−3)(t) > 0, x(2n−4)(t) < 0, for t ≥ T2 (2.10)

Repeating the discussion above, we can get, eventually, that there exist some T ′ ≥ T
and l ∈ {1, 3, . . . , 2n− 1}, such that for t ≥ T ′,

x(i)(t) > 0, i = 0, 1, . . . , l;

(−1)i−1x(i)(t) > 0, i = l + 1, l + 2, . . . , 2n− 1;

x(2n)(t) ≤ 0.

The proof of Lemma 2.5 is complete. �

We remark that if x(t) is an eventually negative solution of (2.1), then there are
conclusions similar to Lemma 2.4 and Lemma 2.5.
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Theorem 2.6. If conditions (A),(B),(C) hold, a
(0)
k ≥ 1 and∫ t1

t0

p(t)dt +
1

b
(2n−1)
1

∫ t2

t1

p(t)dt +
1

b
(2n−1)
1 b

(2n−1)
2

∫ t3

t2

p(t)dt + . . .

+
1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m

∫ tm+1

tm

p(t)dt + · · · = +∞
(2.11)

then every solution of (2.1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.1). Without loss of generality,
let x(t) > 0(t ≥ t0), By Lemma 2.5 and (2.1), there exists T ′ ≥ t0 such that, for
t ≥ T ′, we have

x(2n)(t) ≤ 0, x(2n−1)(t) > 0, x′(t) > 0, x(t) > 0.

So x(2n−1)(t) is monotonically non-increasing on (tk, tk+1] and x(t) is monotonically
increasing on (tk, tk+1]. Let

u(t) =
x(2n−1)(t)
ϕ(x(t))

.

Then u(t+k ) ≥ 0 (k = 1, 2, . . . ), u(t) ≥ 0 (t ≥ t0). Since ϕ′(x) ≥ 0, for t 6= tk,

u′(t) = −f(t, x(t))
ϕ(x(t))

−
[x(2n−1)(t)x′(t)

ϕ2(x(t))

]
ϕ′(x(t)) ≤ −p(t) (2.12)

u(t+k ) =
x(2n−1)(t+k )
ϕ(x(t+k ))

≤
b
(2n−1)
k x(2n−1)(tk)

ϕ(a(0)
k x(tk))

≤
b
(2n−1)
k x(2n−1)(tk)

ϕ(x(tk))
≤ b

(2n−1)
k u(tk)

(2.13)

Integrating (2.12) from t0 to t1 we have

u(t1) ≤ u(t+0 )−
∫ t1

t0

p(t)dt , (2.14)

u(t+1 ) ≤ b
(2n−1)
1 u(t1) ≤ b

(2n−1)
1 [u(t+0 )−

∫ t1

t0

p(t)dt] . (2.15)

Similar to the above inequality, we have

u(t+2 ) ≤ b
(2n−1)
2 u(t2)

≤ b
(2n−1)
2 [u(t+1 )−

∫ t2

t1

p(t)dt]

≤ b
(2n−1)
2 [b(2n−1)

1 u(t+0 )− b
(2n−1)
1

∫ t1

t0

p(t)dt−
∫ t2

t1

p(t)dt]

≤ b
(2n−1)
1 b

(2n−1)
2 [u(t+0 )−

∫ t1

t0

p(t)dt− 1

b
(2n−1)
1

∫ t2

t1

p(t)dt]

(2.16)
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By induction, for any natural number m, we have

u(t+m) ≤ b
(2n−1)
1 b

(2n−1)
2 . . . b(2n−1)

m [u(t+0 )−
∫ t1

t0

p(t)dt− 1

b
(2n−1)
1

∫ t2

t1

p(t)dt

− · · · − 1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m−2

∫ tm−1

tm−2

p(t)dt

− 1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m−2 b

(2n−1)
m−1

∫ tm

tm−1

p(t)dt]

(2.17)

By (2.11) and (2.17), for all sufficiently large m, u(t+m) < 0. This contradicts
u(t+m) ≥ 0. So every solution of (2.1) is oscillatory. The proof of Theorem 2.6 is
complete. �

Theorem 2.7. If conditions (A), (B), (C) hold, b
(i)
k ≤ 1, a

(0)
k ≥ 1, b

(0)
k ≥ 1

(i = 1, 2, . . . , 2n−1, k = 1, 2, . . . ) and
∫ +∞

t2n−1p(t)dt = +∞, then every bounded
solution of (2.1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.1). Without loss of generality,
let x(t) > 0 for t ≥ t0. By Lemma 2.5, we can divided (2.6) into two cases:
Case (i): If l = 1, then x(t) > 0, x′(t) > 0, x′′(t) < 0, x′′′(t) > 0, x(4)(t) < 0, . . . ,
x(2n−1)(t) > 0, x(2n)(t) ≤ 0.
Case (ii): If l ≥ 3, then x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) > 0, . . . , x(l)(t) > 0,
x(l+1)(t) < 0, . . . , x(2n−1)(t) > 0, x(2n)(t) ≤ 0.
Both cases tells us that x′(t) > 0, t ∈ (tk, tk+1], k = 1, 2, . . . . So x(t) is monoton-
ically increasing on (tk, tk+1]. Since a

(0)
k ≥ 1, x(t) is monotonically increasing on

[t0,+∞), that is, x(t) ≥ x(t0) for t ≥ t0. By (2.1), we have

x(2n)(s) = −f(s, x(s)) ≤ −p(s)ϕ(x(t0)) = −cp(s), s ∈ (tk, tk+1] (2.18)

where c = ϕ(x(t0)) > 0. Multiplying (2.18) by s2n−1 and then integrating it from
tk to t, we have∫ t

tk

s2n−1x(2n)(s)ds < −c

∫ t

tk

s2n−1p(s)ds, t ∈ (tk, tk+1] . (2.19)

We will consider the following two cases:
(a) if the case (i) holds, then for t ∈ (tk, tk+1] we have,∫ t

tk

s2n−1x(2n)(s)ds

=
∫ t

tk

s2n−1dx(2n−1)(s)

= t2n−1x(2n−1)(t)− t2n−1
k x(2n−1)(t+k )− (2n− 1)

∫ t

tk

s2n−2x(2n−1)(s)ds

= . . .

=
2n−1∑
i=0

(−1)i+1 (2n− 1)!
i!

tix(i)(t) +
2n−1∑
i=0

(−1)i (2n− 1)!
i!

tikx(i)(t+k ).
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Especially, for any natural number k,∫ tk+1

tk

s2n−1x(2n)(s)ds

=
2n−1∑
i=0

(−1)i+1 (2n− 1)!
i!

tik+1x
(i)(tk+1) +

2n−1∑
i=0

(−1)i (2n− 1)!
i!

tikx(i)(t+k ).

No matter if i is odd or even, for i = 1, 2, . . . 2n− 1,

(−1)i(x(i)(t+k )− x(i)(tk)) ≥ (−1)i(b(i)
k − 1)x(i)(tk) ≥ 0.

For any natural number m and t ∈ (tm, tm+1], we have∫ t

t1

s2n−1x(2n)(s)ds

=
∫ t2

t1

s2n−1x(2n)(s)ds +
∫ t3

t2

s2n−1x(2n)(s)ds

+ · · ·+
∫ tm

tm−1

s2n−1x(2n)(s)ds +
∫ t

tm

s2n−1x(2n)(s)ds

=
2n−1∑
i=0

(−1)i+1 (2n− 1)!
i!

tix(i)(t) +
2n−1∑
i=0

(−1)i (2n− 1)!
i!

ti1x
(i)(t+1 )

+
m∑

k=2

2n−1∑
i=0

(−1)i (2n− 1)!
i!

tik(x(i)(t+k )− x(i)(tk))

≥ −(2n− 1)!x(t) +
2n−1∑
i=0

(−1)i (2n− 1)!
i!

ti1x
(i)(t+1 )

+
m∑

k=2

2n−1∑
i=0

(−1)i (2n− 1)!
i!

tik(b(i)
k − 1)x(i)(tk)

≥ −(2n− 1)!x(t) +
2n−1∑
i=0

(−1)i (2n− 1)!
i!

ti1x
(i)(t+1 ).

Combining the inequality above and (2.19), we have

−(2n− 1)!x(t) +
2n−1∑
i=0

(−1)i (2n− 1)!
i!

ti1x
(i)(t+1 ) ≤ −c

∫ t

t1

s2n−1p(s)ds.

So x(t) → +∞, as t → +∞. This contradicts that x(t) is bounded.
(b) If the case (ii) holds, then x(t) is non-negative and strictly increasing on t ∈
[t1,+∞). Hence, for any natural number m, we have

x(t) = x(t+m) +
∫ t

tm

x′(s)ds, t ∈ (tm, tm+1],

x(tm) = x(t+m−1) +
∫ tm

tm−1

x′(s)ds,

. . .

x(t2) = x(t+1 ) +
∫ t2

t1

x′(s)ds



8 C. ZHANG, W. FENG EJDE-2006/18

and

x(t) =
m∑

k=2

(x(t+k )− x(tk)) + x(t+1 ) +
m−1∑
k=1

∫ tk+1

tk

x′(s)ds +
∫ t

tm

x′(s)ds (2.20)

Since x′′(t) > 0, t ∈ (tk, tk+1], k ≥ 1, we can get

x′(t) > x′(t+1 ) ≥ a
(1)
1 x′(t1), t ∈ (t1, t2]

x′(t) > x′(t+2 ) ≥ a
(1)
2 x′(t2) > a

(1)
2 a

(1)
1 x′(t1), t ∈ (t2, t3] .

Applying induction, for any natural number k,

x′(t) > x′(t+k ) ≥ a
(1)
k a

(1)
k−1 . . . a

(1)
1 x′(t1), t ∈ (tk, tk+1] .

Combining (2.20) and a
(0)
k ≥ 1, we have

x(t) > x′(t1)
m−1∑
k=1

a
(1)
k a

(1)
k−1 . . . a

(1)
1 (tk+1 − tk), t ∈ (tm, tm+1]

From the condition (C) and b
(0)
k ≥ 1, we have

+∞∑
k=1

a
(1)
k a

(1)
k−1 . . . a

(1)
1 (tk+1 − tk) = +∞

Then x(t) → +∞ (t → +∞), which contradicts that x(t) is bounded. Therefore,
every solution of (2.1) is oscillatory. The proof of Theorem 2.7 is complete. �

Theorem 2.8. If conditions (A), (B), (C) hold,
∏m

k=1 a
(0)
k > b > 0 (m = 1, 2, . . . ),

b
(2n−1)
k ≤ 1, and for any δ > 0,∣∣ ∫ +∞

inf
δ≤|x|<+∞

f(t, x) dt
∣∣ = +∞ (2.21)

then every solution of (2.1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.1). Without loss of generality,
let x(t) > 0, t ≥ t0. By Lemma 2.5, x′(t) ≥ 0, t ≥ t0. So x(t) is monotonically
nondecreasing on (t0,+∞).

x(t1) ≥ x(t+0 ), x(t2) ≥ x(t+1 ) ≥ a
(0)
1 x(t1) ≥ a

(0)
1 x(t+0 ),

x(t3) ≥ x(t+2 ) ≥ a
(0)
2 x(t2) ≥ a

(0)
2 a

(0)
1 x(t+0 )

By induction, we have

x(tm+1) ≥ x(t+m) ≥ a(0)
m x(tm) ≥ · · · ≥ a

(0)
1 a

(0)
2 . . . a(0)

m x(t+0 ) > bx(t+0 ).

We can assume that x(t) ≥ bx(t+0 ), t ∈ (t0,+∞). By (2.21), as t → +∞, we have∫ t

t0

f(s, x(s))ds ≥
∫ t

t0

inf
bx(t+0 )≤|x|<+∞

f(s, x)ds → +∞ ;

that is,
∫ t

t0
f(s, x(s))ds → +∞. Integrating (2.1) from t0 to t1, we have

x(2n−1)(t1) +
∫ t1

t0

f(s, x(s))ds = x(2n−1)(t+0 )
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Similar to the above formula, for any natural number integrating (2.1) from tk−1

to tk, we have

x(2n−1)(tk) +
∫ tk

tk−1

f(s, x(s))ds = x(2n−1)(t+k−1)

So, we have

x(2n−1)(t1) +
∫ t1

t0

f(s, x(s))ds = x(2n−1)(t+0 ),

x(2n−1)(t2) +
∫ t2

t1

f(s, x(s))ds = x(2n−1)(t+1 ),

. . .

x(2n−1)(tm) +
∫ tm

tm−1

f(s, x(s))ds = x(2n−1)(t+m−1),

x(2n−1)(t) +
∫ t

tm

f(s, x(s))ds = x(2n−1)(t+m) .

For t ∈ (tm, tm+1], we have

x(2n−1)(t) +
m∑

i=1

x(2n−1)(ti) +
∫ t

t0

f(s, x(s))ds =
m∑

i=0

x(2n−1)(t+i ).

Then

x(2n−1)(t) +
m∑

i=1

(
x(2n−1)(ti)− x(2n−1)(t+i )

)
+

∫ t

t0

f(s, x(s))ds = x(2n−1)(t+0 ) .

Lemma 2.5 shows that x(2n−1)(t) > 0 for sufficiently large t. Hence,

x(2n−1)(t) ≤ −
m∑

i=1

(
(1−b

(2n−1)
k )x(2n−1)(ti)

)
−

∫ t

t0

f(s, x(s))ds+x(2n−1)(t+0 ) (2.22)

By condition b
(2n−1)
k ≤ 1 and (2.22), we have x(2n−1)(t) ≤ −

∫ t

t0
f(s, x(s))ds +

x(2n−1)(t+0 ) → −∞ as t → +∞. So, for all sufficiently large t, x(2n−1)(t) < 0. This
contradicts that x(2n−1)(t) > 0. So every solution of (2.1) is oscillatory. The proof
of Theorem 2.8 is complete. �

Corollary 2.9. Assume the conditions (A), (B), (C) hold, and a
(0)
k ≥ 1, b

(2n−1)
k ≤

1. If
∫ +∞

p(t)dt = +∞, then every solution of (2.1) is oscillatory.

Proof. By b
(2n−1)
k ≤ 1, we have∫ t1

t0

p(t)dt +
1

b
(2n−1)
1

∫ t2

t1

p(t)dt +
1

b
(2n−1)
1 b

(2n−1)
2

∫ t3

t2

p(t)dt + . . .

+
1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m

∫ tm+1

tm

p(t)dt

≥
∫ t1

t0

p(t)dt +
∫ t2

t1

p(t)dt +
∫ t3

t2

p(t)dt + · · ·+
∫ tm+1

tm

p(t)dt

=
∫ tm+1

t0

p(t)dt
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and
∫ tm+1

t0
p(t)dt → +∞ as m → +∞. Then (2.11) holds. By Theorem 2.6, every

solution of (2.1) is oscillatory. �

Corollary 2.10. Assume conditions (A), (B), (C) hold, and that there exists a
positive number α > 0, such that a

(0)
k ≥ 1, 1

b
(2n−1)
k

≥ ( tk+1
tk

)α. If
∫ +∞

tαp(t)dt =

+∞, then every solution of (2.1) is oscillatory.

Proof. By 1

b
(2n−1)
k

≥ ( tk+1
tk

)α, we have∫ t1

t0

p(t)dt +
1

b
(2n−1)
1

∫ t2

t1

p(t)dt +
1

b
(2n−1)
1 b

(2n−1)
2

∫ t3

t2

p(t)dt + . . .

+
1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m

∫ tm+1

tm

p(t)dt

≥ 1

b
(2n−1)
1

∫ t2

t1

p(t)dt +
1

b
(2n−1)
1 b

(2n−1)
2

∫ t3

t2

p(t)dt + . . .

+
1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m

∫ tm+1

tm

p(t)dt

≥ 1
tα1

[
∫ t2

t1

tα2 p(t)dt +
∫ t3

t2

tα3 p(t)dt + · · ·+
∫ tm+1

tm

tαm+1p(t)dt]

≥ 1
tα1

[
∫ t2

t1

tαp(t)dt +
∫ t3

t2

tαp(t)dt + · · ·+
∫ tm+1

tm

tαp(t)dt]

=
1
tα1

∫ tm+1

t1

tαp(t)dt

and
∫ tm+1

t1
p(t)dt → +∞ as m → +∞. Then (2.11) holds. By Theorem 2.6, we

every solution of (2.1) is oscillatory. �

3. Examples

subsection*Example 3.1 Consider the equation

x(2n)(t) +
1
4t

x3 = 0, t ≥ 1
2
, t 6= k, k = 1, 2, . . .

x(k+) =
k + 1

k
x(k), x(i)(k+) = x(i)(k), i = 1, . . . , 2n− 1,

x(
1
2
) = x0, x

(i)(
1
2
) = x

(i)
0 ,

(3.1)

where a
(0)
k = b

(0)
k = k+1

k > 1, a
(i)
k = b

(i)
k = 1, i = 1, 2, . . . , 2n − 1, p(t) = 1

4t ,
ϕ(x) = x3, f(t, x) = 1

4tx
3, tk = k, t0 = 1

2 . It is obvious that the conditions (A) and
(B) are satisfied. For condition (C),we have: For i > 1, a

(i)
k = b

(i−1)
k = 1,

(t1 − t0) + (t2 − t1) + (t3 − t2) + · · ·+ (tm+1 − tm) + . . .

=
1
2

+ 1 + · · ·+ 1 + · · · = +∞.
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For i = 1, a
(1)
k = 1, b

(0)
k = k+1

k ,

(t1 − t0) +
1
2
(t2 − t1) +

1
3
(t3 − t2) + · · ·+ 1

m + 1
(tm+1 − tm) + . . .

=
1
2

+
1
2

+
1
3

+ · · ·+ 1
m + 1

+ · · · = +∞.

Therefore, condition (C) holds. Since b
(2n−1)
k = 1, we have∫ t1

t0

p(t)dt +
1

b
(2n−1)
1

∫ t2

t1

p(t)dt +
1

b
(2n−1)
1 b

(2n−1)
2

∫ t3

t2

p(t)dt + . . .

+
1

b
(2n−1)
1 b

(2n−1)
2 . . . b

(2n−1)
m

∫ tm+1

tm

p(t)dt

=
∫ t1

t0

p(t)dt +
∫ t2

t1

p(t)dt +
∫ t3

t2

p(t)dt + · · ·+
∫ tm+1

tm

p(t)dt

=
∫ tm+1

t0

p(t)dt =
∫ tm+1

t0

1
4t

dt

=
1
4

ln t|tm+1
t0 =

1
4
(ln tm+1 − ln t0)

Since ln tm+1 → +∞ as m → +∞, we get that the condition of Theorem 2.6 hold.
So every solution of (3.1) is oscillatory.

Example 3.2. Consider the sub-linear system

x(2n)(t) +
1
t2

x
1
3 = 0, t ≥ 1

2
, t 6= k, k = 1, 2, . . . ,

x(k+) = x(k), x(i)(k+) =
k

k + 1
x(i)(k), i = 1, . . . , 2n− 1 ,

x(
1
2
) = x0, x(i)(

1
2
) = x

(i)
0 ,

(3.2)

where a
(0)
k = b

(0)
k = 1, a

(i)
k = b

(i)
k = k

k+1 , i = 1, 2, . . . , 2n − 1, p(t) = 1
t2 , tk = k,

ϕ(x) = x
1
3 , f(t, x(t)) = 1

t2 x
1
3 (t), t0 = 1

2 . It is obvious that the condition (A) and
(B) hold. For condition (C), we have: For i > 1 and a

(i)
k = b

(i−1)
k = k

k+1 ,

(t1− t0)+(t2− t1)+(t3− t2)+ · · ·+(tm+1− tm)+ · · · = 1
2

+1+ · · ·+1+ · · · = +∞.

For i = 1 and a
(1)
k = k

k+1 , b
(0)
k = 1,

(t1 − t0) +
1
2
(t2 − t1) +

1
3
(t3 − t2) + · · ·+ 1

m + 1
(tm+1 − tm) + . . .

=
1
2

+
1
2

+
1
3

+ · · ·+ 1
m + 1

+ · · · = +∞.

So, condition (C) holds. Let α = 1. Then

1

b
(2n−1)
k

=
k + 1

k
≥ tk+1

tk
=

k + 1
k

∫ +∞
tp(t)dt =

∫ +∞
t
1
t2

dt =
∫ +∞ 1

t
dt = +∞ .

Therefore, the conditions of Corollary 2.10 are satisfied. Then every solution of
(3.2) is oscillatory.
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