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REDUCTION OF INFINITE DIMENSIONAL EQUATIONS

ZHONGDING LI, TAIXI XU

Abstract. In this paper, we use the general Legendre transformation to show

the infinite dimensional integrable equations can be reduced to a finite dimen-
sional integrable Hamiltonian system on an invariant set under the flow of the

integrable equations. Then we obtain the periodic or quasi-periodic solution

of the equation. This generalizes the results of Lax and Novikov regarding the
periodic or quasi-periodic solution of the KdV equation to the general case

of isospectral Hamiltonian integrable equation. And finally, we discuss the

AKNS hierarchy as a special example.

1. Introduction

Soliton equations emerged about 40 years ago [1, 2]. C.W. Cao discovered the
nonlinearization method [3]-[6] to obtain the finite dimensional integrable systems
[7, 8] associated with soliton equations. This way works well for many soliton
equations [9]-[17]. Its main drawback, however, is that there is no single approach
for finding the Lax pair [18]-[19] of a soliton equation. More precisely, different
soliton equations require very different ways of finding their Lax pairs. Furthermore,
this method does not work for every soliton equation, and for some equations, we
have both the Bargmann and Neumann systems, for some others, we only have the
Bargmann systems. So, it is natural to seek how to explain this drawback and to ask
whether there is a single method that works for every infinite dimensional system
(i.e., soliton equation). We have been trying to answer these questions for the last
few years. Even through we have been unable to characterize the conditions that
ensure the existence of both the Bargmann and Neumann systems, we have found,
however, a new method which works for every soliton equation. More specifically,
for every existing infinite dimensional integrable Hamiltonian system, we can obtain
the associated finite dimensional integrable Hamiltonian system without knowing
its Lax pairs for the corresponding higher order soliton equations.

Let J be a Hamiltonian operator, ut = J δH1
δu be an infinite dimensional integrable

Hamiltonian equation (u = (u1, . . . , uN )T ), and {Hm}∞m=0 be the first integrals of
ut = J δH1

δu . Its higher order equations are utm
= J δI

δu (here I =
∑m

l=0 Cm−lHl,
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C0 = 1, Cm−l are constants, m = 0, 1, 2, . . . ). We use the general Legendre trans-
formation to show that the infinite dimensional integrable equation utm

= J δHm

δu
can be reduced to a finite dimensional integrable Hamiltonian system on an in-
variant set S. Then we obtain the periodic or quasi-periodic solution of equations
utm

= J δI
δu (m = 0, 1, 2, . . . ). This generalizes the results of Lax ([18, 19]) and

Novikov [20] regarding the periodic or quasi-periodic solution of the KdV [21, 24]
equation to the general case of isospectral Hamiltonian integrable equations. As a
special example, we will discuss the AKNS [1] hierarchy.

Generally, looking for the periodic or quasi-periodic solution of infinite dimen-
sional integrable equations is very difficult. In [3], the nonlinear Schrödinger equa-
tion is investigated and its periodic solution is obtained. Flaschka [22] and Lax
[18] discussed the algebraic structure of the KdV equation and obtained its pe-
riodic or quasi-periodic solution. Novikov [20] studied in details the relationship
between the KdV equation and its stationary equation and obtained its periodic
solution. Cao [3] used the nonlinearization of Lax pairs and obtained the periodic
or quasi-periodic solutions (involutive solutions) of the AKNS, the KdV, and the
Harry Dym [12, 23] equations. Now we synthesize their results and generalize them
to the (general) isospectral integrable equations, and obtain a (general) method to
solve general infinite dimensional integrable equations utm

= J δHm

δu for periodic or
quasi-periodic solutions. We also discuss the algebraic and geometric properties of
the vector field of the Hamiltonian integrable equations utm = J δHm

δu (m ≥ 0), and
prove that they can be reduced on an invariant subset S to a finite dimensional
integrable Hamiltonian system

q̇i =
∂Tm

∂pi
, ṗi = −∂Tm

∂qi
, i = 1, 2, . . . , n

where q̇i = ∂qi

∂tm
, ṗi = ∂pi

∂tm
, Tm is determined by dTm

dx = − δI
δuJ δHm

δu and is a function
of (q, p) (m = 0, 1, 2, . . . ).

2. The general Legendre transformation

Let L = L(u, u′, u′′, . . . , u(n)) be the Lagrangian, which depends only on u =
(u1, . . . , uN )T and its derivatives with respect to x : u(j) = dju

dxj , j = 1, 2, . . . , n. Let
I =

∫
Ω

Ldx. The Euler-Lagrange equation is

δI

δu
=

n∑
l=0

(−1)l dl

dxl

∂L

∂u(l)
= 0 (2.1)

where, when Ω = (−∞,+∞), u and u(j)(j = 1, 2, . . . ) decrease rapidly as x → ∞
and when Ω = [α, α + T ], u(x + T ) = u(x) for T > 0 and α a constant.

We introduce the following canonical coordinates qi, pi (i = 1, 2, . . . , n).

qi = (q1i, q2i, . . . , qNi)T = u(i−1),

pi = (p1i, p2i, . . . , pNi)T =
n−i∑
l=0

(−1)l dl

dxl

∂L

∂u(i+l)

=
n−i∑
l=0

(−1)l dl

dxl

( ∂L

∂u
(i+l)
1

,
∂L

∂u
(i+l)
2

, . . . ,
∂L

∂u
(i+l)
N

)T

,

(2.2)
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where i = 1, 2, . . . , n. Let

H(q, p) =
n∑

i=1

q′ipi − L =
n∑

i=1

N∑
l=1

q′lipli − L (2.3)

where q = (q1, q2, . . . , qn)T , p = (p1, p2, . . . , pn)T . Equation (2.3) is called the
general Legendre transformation.

Definition 2.1. A Lagrangian L is said to be non-singular if equation (2.2) can
be uniquely solved in the form

u(i) = u(i)(q, p), i = 0, 1, . . . , 2n− 1. (2.4)

Lemma 2.2. If the Lagrange function L satisfies the condition

detQ = det
( ∂2L

∂u
(n)
α ∂u

(n)
β

)
6= 0 (2.5)

where α = 1, 2, . . . , N , β = 1, 2, . . . , N , then L is non-singular.

Proof. Since L = L(u, u′, . . . , u(n)) = L(q, u(n)),

pn =
∂L

∂u(n)
= f(q, u(n)),

and the Jacobi determinant

J(u(n)) =
∣∣∣∣ ∂pn

∂u(n)

∣∣∣∣ =
∣∣∣∣∣ ∂2L

∂u
(n)
α ∂u

(n)
β

∣∣∣∣∣ = detQ 6= 0,

we obtain
u(n) = fn(q, pn). (2.6)

Next,

pn−1 =
∂L

∂u(n−1)
− d

dx

∂L

∂u(n)

=
∂L

∂u(n−1)
−Q · u(n+1) −

n−1∑
j=0

∂2L

∂u(n)∂u(j)
· u(j+1).

So detQ 6= 0 yields

u(n+1) = fn−1(q, pn−1, pn). (2.7)

Similarly, we obtain

u(n+k) = fn−k(q, pn−k, pn−k+1, . . . , pn), k = 0, 1, . . . , n− 1. (2.8)

Thus, the Lagrangian is non-singular. �

Lemma 2.3. If the Lagrangian L has the form

L = a(u(n))2 + L0(u, u′, . . . , u(n−1))

where a 6= 0 is a constant, then L is non-singular.

For the proof of the above lemma, use det Q = 2aN 6= 0 and Lemma 2.2.
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Remark 2.4. If the Lagrangian L is non-singular, then the general Legendre trans-
formation

(u, u′, . . . , u(2n−1))T −→ (q, p)T

satisfies the relations

q′i =
∂H

∂pi
, i = 1, 2, . . . , n, (2.9)

p′1 = −∂H

∂q1
− δI

δu
, p′i = −∂H

∂qi
, i = 2, 3, . . . , n. (2.10)

For calculating the above expressions vote that q′i = qi+1 (i = 1, 2, . . . , n − 1).
we have

H =
n∑

i=1

q′ipi − L = q2p1 + q3p2 + · · ·+ qnpn−1 + q′npn − L,

which implies (2.9). For (2.10), we have

p′1 =
d

dx
p1 =

d

dx

( n−1∑
l=0

(−1)l dl

dxl

∂L

∂u(1+l)

)
=

n−1∑
l=0

(−1)l dl+1

dxl+1

∂L

∂u(1+l)
= −

n∑
k=1

(−1)k dk

dxk

∂L

∂u(k)

=
∂L

∂u
−

n∑
k=0

(−1)k dk

dxk

∂L

∂u(k)

= −∂H

∂q1
− δI

δu
,

which is the first formula of (2.10). Next,

p′i =
d

dx
pi =

d

dx

(
n−i∑
l=0

(−1)l dl

dxl

∂L

∂u(i+l)

)
=

n−i∑
l=0

(−1)l dl+1

dxl+1

∂L

∂u(i+l)

= −
n−i∑
k=1

(−1)k dk

dxk

∂L

∂u(i+k−1)

= −
n−(i−1)∑

k=0

(−1)k dk

dxk

∂L

∂u(i−1+k)
+

∂L

∂u(i−1)

= −pi−1 +
∂L

∂u(i−1)

= −pi−1 +
∂L

∂qi

= −∂H

∂qi
,

which is the second formula of (2.10).

Theorem 2.5. For non-singular Lagrangian L, the Euler-Lagrange equation (2.1)
is equivalent to the Hamiltonian system

q′i =
∂H

∂pi
, p′i = −∂H

∂qi
(i = 1, 2, . . . , n) (2.11)



EJDE-2006/17 REDUCTION OF INFINITE DIMENSIONAL EQUATIONS 5

where H is given by (2.3), and

dH

dx
= −u′

δI

δu
= −

N∑
l=1

u′l
δI

δul
,

where the symbol ‘ ’ indicates ∂
∂x .

Proof. Since (2.1) is δI
δu = 0, (2.9) and (2.10) are equivalent to (2.11). By direct

calculation, we obtain dH
dx = −u′ δI

δu . �

Remark 2.6. The non-singular general Legendre transformation is invertible, i.e.,
we can determine u(i) from (2.2):

u(k) = hk(q, p), k = 0, 1, 2, . . . , 2n− 1. (2.12)

3. The reduction

Suppose

ut = K(u) = J
δH

δu
(3.1)

is an infinite dimensional integrable Hamiltonian equation,

Hm =
∫

Ω

Lmdx (m = −1, 0, 1, 2, . . . )

are its infinitely many involutive first integrals in pair, where H = H1. Its mth-
order equations are defined by

utm
= J

δHm

δu
(3.2)

where J is a differential operator for the corresponding soliton equations. For

examples, for the KdV equation, J = ∂
∂x , for the AKNS equation, J =

(
0 −1
1 0

)
.

The general higher-order stationary equations are defined by
n∑

l=0

Cn−lJ
δHl

δu
= 0 (3.3)

or
δI

δu
= 0 (3.4)

where

I =
n∑

l=−1

Cn−lHl =
∫

Ω

L(u, . . . , u(n))dx, J
δH−1

δu
= 0, n ≥ 0,

C0 = 1, Ci (i = −1, 1, 2, . . . , n + 1) are constants. Suppose the functional space is

E =
{
F : F =

∫
Ω

P (u, u′, . . . , u(m))dx
}
, (m ≥ 0).

The Poisson bracket on space E is defined as

{H,F}(x) =
d

dt

∣∣
t=0

H(gt
F u(x)) =

∫
Ω

δH

δu
· J δF

δu
dx =

(δH
δu

, J
δF

δu

)
(3.5)
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where H,F ∈ E, gt
F is the solution operator of equation ut = J δF

δu , and (·, ·) is the
standard inner product in L2(Ω). Hence,

{Hm,Hn} = 0, m, n = −1, 0, 1, 2, . . . . (3.6)

Definition 3.1. In the space E, the Hamiltonian vector field ~F of a functional F
is defined by

L~F (H) =
d

dt

∣∣
t=0

H(gt
F u(x)) = {H,F}, (3.7)

and for any H ∈ E,

Lλ~F (H) = λ{H,F} = λL~F (H) (λ is constant).

Lemma 3.2. All the Hamiltonian vector fields form a Lie algebra. Its Lie bracket
[ ~H, ~F ] is defined by

L[ ~H,~F ] = L~F L ~H − L ~HL~F . (3.8)

Proof. The bilinearity and anti-symmetry are obvious. From the definition of Lie
bracket we have

L[[ ~H,~F ], ~A] = L ~AL~F L ~H − L ~AL ~HL~F + L ~HL~F L ~A − L~F L ~HL ~A

and L[[ ~H,~F ], ~A] +L[[~F , ~A], ~H] +L[[ ~A, ~H], ~F ] has 12 terms in total, and every term appears
twice with opposite signs. So the Jacobi identity holds. �

Lemma 3.3. The vector field ~F of F = {F1, F2} can be represented by
~F = [~F1, ~F2]. (3.9)

Proof. By the Jacobi identity of the Poisson bracket of functionals on the space E
we have

L~F (H) = {H,F} = {H, {F1, F2}} = −{F1, {F2,H}} − {F2, {H,F1}}.
On the other hand,

L[~F1, ~F2]
(H) = (L~F2

L~F1
− L~F1

L~F2
)(H)

= L~F2
L~F1

(H)− L~F1
L~F2

(H)

= L~F2
({H,F1})− L~F1

({H,F2})
= {{H,F1}, F2} − {{H,F2}, F1}
= −{F2, {H,F1}}+ {F1, {H,F2}}
= −{F1, {F2,H}} − {F2, {H,F1}}.

Comparing the above two equations we obtain

L~F (H) = L[~F1, ~F2]
(H)

for arbitrary H ∈ E. �

Corollary 3.4. The map of the Lie algebra of functionals on E onto the Lie algebra
of Hamiltonian vector fields is an algebra homomorphism.

Lemma 3.5.

J
δ{H,F}

δu
=
[
J

δH

δu
, J

δF

δu

]
(3.10)

where
[a, b] = a′[b]− b′[a], a′[b] =

d

dε

∣∣
ε=0

a(u + εb).
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Proof. For any A ∈ E, by the symmetry of ( δA
δu )′, we can show that(δA

δu
, J

δ{H,F}
δu

)
=
(δA

δu
,
(
J

δH

δu

)′[
J

δF

δu

]
−
(
J

δF

δu

)′[
J

δH

δu

])
.

Hence (3.10) holds. �

Corollary 3.6. {J δHm

δu } are the symmetries of uti = J δHi

δu (i = 0, 1, 2, . . . ).

Proof. Since {Hm,Hi} = 0, Lemma 3.5 implies[
J

δHm

δu
,
δHi

δu

]
= J

δ{Hm,Hi}
δu

= 0.

So, by a property of symmetry: σ is a symmetry of ut = K(u) if and only if
[K, σ] = 0, this corollary is proved. �

Theorem 3.7. The flows defined by (3.2) commute with each other.

The above result follows from [ ~Hm, ~Hm] = 0 and Lemma 3.3 or Lemma 3.5.

Theorem 3.8. The solutions of the stationary equation (3.4) form an invariant
manifold S of the flows defined by equation (3.2).

Proof. First we prove that I =
∑n

l=−1 Cn−lHl is a conserved functional of equation
(3.2). It suffices to show {I,Hm} = 0. In fact,

{I, Hm} =
( δI
δu

, J
δHm

δu

)
=
( n∑

l=−1

δHl

δu
, J

δHm

δu

)
=

n∑
l=0

Cn−l

(δHl

δu
, J

δHm

δu

)
=

n∑
l=0

Cn−l{Hl,Hm} = 0.

By a theorem given by Lax (see [18, 19]), if I is a conserved functional of (3.2), then
the set of stationary points of I, i.e., the solution set of (3.4), forms an invariant
set for the flow (3.2). �

Using Remark 2.6, we can reduce an arbitrary function

P = P (u, u′, . . . , u(n))

to a function P1 = P1(q, p) where u(k) = hk(q, p) is on the manifold S. We call P1

the reduction of P through equations (2.12) and (2.2), but we still use P to denote
P1. Let J δHi

δu be the reduction of J δHi

δu , and define Ti by:

dTi

dx
= − δI

δu
J

δHi

δu
, i = 0, 1, 2, . . . . (3.11)

Theorem 3.9. If the Lagrangian of equation (3.4) is non-singular, then via the
Legendre transformation (2.2), the stationary equation (3.4) is transformed into a
classical integrable Hamiltonian system:

q′i =
∂H

∂pi
, p′i = −∂H

∂qi
(i = 1, 2, . . . , n) (3.12)
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where the Hamiltonian function

H(q, p) =
n∑

i=1

q′ipi − L(q1, . . . , qn, q′n), (3.13)

dH

dx
= −ux

δI

δu
, (3.14)

and the involutive first integrals are Ti (i = 0, 1, 2, . . . ).

To prove this theorem, we define the Poisson bracket {·, ·} in the symplectic
space (R2n, ω2) and prove that {Ti} is an involutive system.

Definition 3.10. In the symplectic space (R2n, ω2), we define the Poisson bracket
as

{A,B} =
d

dt

∣∣
t=0

A(gt
B(q(x), p(x))) =

n∑
i=1

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(3.15)

where the symplectic structure ω2 =
∑n

i=1 dpi ∧ dqi =
∑n

i=1

∑N
l=1 dpli ∧ dqli.

To prove {Ti, Tj} = 0, {Ti,H} = 0 (i, j = 1, 2, . . . ), we first give the following
theorem.

Theorem 3.11. Under the reduction through equations (2.12) and (2.2), the infi-
nite dimensional Hamiltonian integrable system

∂u

∂tm
= J

δHm

δu
(3.16)

is transformed into the finite dimensional Hamiltonian system on S,

q̇j =
∂Tm

∂pj
, ṗj = −∂Tm

∂qj
(3.17)

where
q̇j =

∂qj

∂tm
, ṗj =

∂pj

∂tm
, j = 1, 2, . . . , n .

Proof. By (3.13), we have

∂2H

∂qj∂pj−1
= 1 (j = 1, 2, . . . , n− 1), (3.18)

∂2H

∂ql∂ps
= 0 (l ≤ s < n or 1 ≤ s < l − 1), (3.19)

∂2H

∂pn∂pj
= 0 (j < n). (3.20)

From Remark 2.4 we see that δI
δu = 0 is only one of the Hamiltonian equations

(3.12). Same as [20], the other equations of (3.12) can be considered as a relation
between (q1, . . . , qn, p1, . . . , pn) and (u, u′, . . . , u(2n−1)). Hence, from the identity
formulas (2.9)− (2.11) we obtain

dTm

dx
= − δI

δu
J

δHm

δu
=
(∂H

∂q1
+ p′1

)
J

δHm

δu
. (3.21)

On the other hand,

dTm

dx
=

∂Tm

∂p1
p′1 +

n∑
l=2

∂Tm

∂pl
p′l +

n∑
l=1

∂Tm

∂ql
q′l
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=
∂Tm

∂p1
p′1 −

n∑
l=2

∂Tm

∂pl

∂H

∂ql
+

n∑
l=1

∂Tm

∂ql

∂H

∂pl
.

The identity (2.10) is true for arbitrary u(x). Hence in (3.21) we can consider that
p′1 is arbitrary. Thus, comparing the above two expressions, we obtain

J
δHm

∂u
=

∂Tm

∂p1
. (3.22)

By (3.16) and q1 = u, on S we have

q̇1 =
dq1

dtm
=

du

dtm
= J

δHm

δu
=

∂Tm

∂p1
,

i.e.,

q̇1 =
∂Tm

∂p1
.

We prove this theorem by mathematical induction. Let us assume q̇j = ∂Tm

∂pj
(j =

1, 2, . . . , k), then as j = k + 1, we have

q̇k+1 = (q̇k)′ =
d

dx

(∂Tm

∂pk

)
. (3.23)

Let A = (A1, . . . , AN )T , B and Ai are the functionals with respect to

(q, p) = (q1, q2, . . . , qn, p1, p2, . . . , pn) ∈ R2n.

We define
{A,B} ≡ ({A1, B}, . . . , {AN , B})T .

Using of the Jacobi identity of the Poisson bracket (3.15) and {Tm,H} = 0 on S,
we have

q̇k+1 =
dqk+1

dt
=

dq′k
dt

=
d

dx
(q̇k)

=
d

dx

(∂Tm

∂pk

)
=

d

dx
{qk, Tm} = {{qk, Tm},H}

= −{{Tm,H}, qk} − {{H, qk}, Tm}
= {{qk,H}, Tm}
= {q′k, Tm}

=
∂Tm

∂pk+1
.

(3.24)

Hence

q̇j =
∂Tm

∂pj
, j = 1, 2, . . . , n .

Next we prove the formulas

ṗj = −∂Tm

∂qj
, j = 1, 2, . . . , n.

Since (q̇n)′ = (q′n)·, we have (∂Tm

∂pn

)′ =
( ∂H

∂pn

)·
. (3.25)



10 Z. LI, T. XU EJDE-2006/17

By (3.18) − (3.20) and the Jacobi identity of the the Poisson bracket, we have on
S ( ∂H

∂pn

)· =
n∑

j=1

∂2H

∂pn∂qj

∂Tm

∂pj
+

∂2H

∂p2
n

ṗn. (3.26)

On the other hand,(∂Tm

∂pn

)′ = (q̇n)′ = {q̇n,H}

=
{∂Tm

∂pn
,H
}

= {{qn, Tm},H}

= −{{Tm,H}, qn} − {{H, qn}, Tm}

= {{qn,H}, Tm} =
{ ∂H

∂pn
, Tm

}
That is (∂Tm

∂pn

)′ =
n∑

j=1

∂2H

∂pn∂qj

∂Tm

∂pj
− ∂2H

∂p2
n

∂Tm

∂qn
. (3.27)

Comparing (3.26) with (3.27), we have

ṗn = −∂Tm

∂qn
.

Now we use mathematical induction again. Let us assume ṗj = −∂Tm

∂qj
(j = n, n−

1, . . . , k). Then when j = k − 1, similarly we obtain

(ṗk)′ = −
n∑

j=1

∂2H

∂qk∂qj

∂Tm

∂qj
+

∂2H

∂qk∂pn

∂Tm

∂qn
+

∂Tm

∂qk−1
, (3.28)

(p′k)· = −
n∑

j=1

∂2H

∂qk∂qj

∂Tm

∂qj
+

∂2H

∂qk∂pn

∂Tm

∂qn
− ṗk−1. (3.29)

Using (3.18) and (p′k)· = (ṗk)′ we obtain

ṗk−1 = − ∂Tm

∂qk−1
(k = n, n− 1, . . . , 3, 2) (3.30)

which completes the proof. �

Corollary 3.12. The flows defined by equation (3.17) commute with each other on
S.

Proof. From Theorem 3.7, the solution operators of utm
= J δHm

δu commute, and
when n = 1, H1 = H. Denoting t1 by x, the solution operators of utn

= J δHn

δu and
ux = J δH

δu commute. By the invertibility of the general Legendre transformation

(u, u′, . . . , u(2n−1) −→ (q, p),

we obtain that the solution operators determined by (3.17) commute. �

Theorem 3.13. System {Ti} defined by (3.11) is an involutive system.

Proof. By Corollary 3.12, the flows defined by equation (3.17) commute. By a
theorem given by V.I. Arnold (see [7, page 211]), two flows commute if and only if
the Poisson bracket of their corresponding vector fields is equal to zero. Thus, we
obtain {Ti, Tj} = 0. �
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The involutivity of {Ti} implies the following theorem.

Theorem 3.14. The Hamiltonian system defined by (3.17) is a FIH system in the
symplectic space (R2n, ω2) on S.

Proof of Theorem 3.9. Since we have {Ti,H} = 0 (i = 0, 1, 2, . . . ) and {Ti, Tj} = 0
(i, j = 0, 1, 2, . . . ), the finite dimensional Hamiltonian system defined by (3.12) is a
FIH system in the symplectic space (R2n, ω2) on S. �

Remark 3.15. The first component q1 = u of system (3.17) is the solution of
the higher order equation utm

= J δHm

δu . When Ω = [α, α + T ], we can obtain its
periodic solution and when Ω = (−∞,+∞), we can obtain the rapid decreasing
solution at infinity.

4. A special example: The AKNS hierarchy

By [1, page 54] the mth order AKNS equation can be written in the Hamiltonian
form

utn
= J

δHn

δu
, (4.1)

where

u = (v, w)T ,

J =
(

0 −1
1 0

)
,

Hn = Hn(v, w) =
∫

Ω

µndx,

µ0 = −vw,

µ1 = −wvx,

µ2 = −wvxx + (wv)2,

µ3 = −wvxxx + 4vw2vx + wv2wx,

µ4 = −wvxxxx + 6vwvxwx + 5w2v2
x + 6vw2vxx − 2(wv)3 + wv2wxx,

...

µn+1 = w
(µn

w

)
x

+
n−1∑
k=0

µkµn−1−k.

Using integration by parts, we rewrite Hn as follows.

H0 = −
∫

Ω

wvdx,

H1 = −
∫

Ω

wvxdx =
∫

Ω

L1dx,

H2 =
∫

Ω

[wxvx + (wv)2]dx =
∫

Ω

L2dx,

H3 =
∫

Ω

[wxvxx + 4w2vvx + wv2wx]dx =
∫

Ω

L3dx,

H4 =
∫

Ω

[−wxxvxx − w2v2
x − v2w2

x − 8wwxvvx − 2(vw)3]dx =
∫

Ω

L4dx,
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...

Hn =
∫

Ω

Ln(u, u′, . . . , u(m))dx, n = 0, 1, 2, . . .

where

m =

{
k if n = 2k,

k + 1 if n = 2k + 1,
(k = 0, 1, 2, . . . ).

Lemma 4.1. The Lagrangian L2n = L2n(u, u′, . . . , u(n)) is non-singular.

Proof. The result of this lemma follows from the following formulas

L2n = (−1)n+1v(n)w(n) + (terms with order less than n),

and

Q = (−1)(n+1)

[
0 1
1 0

]
.

Thus, detQ 6= 0, and L2n is non-singular. �

Consider the 2nth order stationary equation
2n∑
l=0

C2n−lJ
δH1

δu
= J

δI

δu
= 0

or
δI

δu
= 0 (4.2)

where

I =
2n∑
l=0

C2n−lHl =
∫

Ω

2n∑
l=0

C2n−lLldx =
∫

Ω

L(u, u′, . . . , u(n))dx, (4.3)

C0 = 1, and Ci are constants.

Theorem 4.2. Under the reduction of (2.2) and (2.12), where N = 2, the infinite
dimensional integrable AKNS hierarchy (4.1) can be transformed into the finite
dimensional integrable Hamiltonian system (3.17) on S. Where S is the solution
set of equation (4.2).

For example, let n = 2, Ci = 0 (i 6= 0), C0 = 1, the equation (4.2) has the form

δI

δu
=
[
−wxxxx + 6vw2

x + 8wvwxx + 4wwxvx + 2w2vxx − 6w3v2

−vxxxx + 6wv2
x + 8wvvxx + 4vvxwx + 2v2wxx − 6v3w2

]
=
[
c0
0

]
.

(4.4)

The corresponding Legendre transformation is

q1 = (v, w)T = (q11, q21)T ,

q2 = (v, w)T
x = (q12, q22)T ,

p1 =
∂L4

∂u′
−
(∂L4

∂u′′
)′ =

[
−2vxw2 − 8vwwx + wxxx

−2wxv2 − 8vwvx + vxxx

]
=
[
p11

p21

]
,

p2 =
∂L4

∂u′′
=
[
−wxx

−vxx

]
=
[
p12

p22

]
.
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It can be solved for u(i):

(v, w) = (q11, q21),

(v, w)x = (q12, q22),

(v, w)xx = −(p22, p12),

(v, w)xxx = (p21 + 2q2
11q22 + 8q11q12q21, p11 + 2q2

21q12 + 8q11q21q22).

The Hamiltonian H corresponding to the Lagrangian L is

H = (q12p11 + q22p21 − p12p22) + 2(q11q21)3 + q2
12q

2
21 + 8q11q12q21q22 + q2

11q
2
22.

Thus, the Euler-Lagrange equation (4.4) is equivalent to the following classical
integrable Hamiltonian equation:

q′j =
∂H

∂pj
, p′j = −∂H

∂qj
, j = 1, 2. (4.5)

And the involutive first integrals in pair are

Ti = −
∫

δI

δu
J

δHi

δu
dx, i = 0, 1, 2, . . . .

Here the integral constants are zeros. By direct calculations we have:

T0 = q11p11 + q12p12 − (q21p21 + q22p22),

T1 = H = q12p11 + q22p21 − p12p22 + 2(q11q21)3

+ q2
12q

2
21 + 8q11q12q21q22 + q2

11q
2
22,

T2 = −p11p22 + p21p12

+ 2(q21q
2
12q22 − q11q

2
22q12 + q11q

2
21p21 − q21q

2
11p11)

+ 4(−q11q12q21p22 + q11q22q21p12) + 6(q3
11q

2
21q22 − q3

21q
2
11q12),

T3 = (2q2
21q12 + 2q11q21q22 + p11)(2q2

11q22 + 2q11q21q12 + p21)

− (q21p22 + q11p12 + q12q22 + 3q2
11q

2
21)

3.

Moreover,

∂

∂ti

(
qj

pj

)
=

(
∂Ti

∂pj

−∂Ti

∂qj

)
(4.6)

are the constraining AKNS equations on S. Let i = 2 and i = 3 in (4.6), we obtain
the following systems

∂

∂t2

[
q11

q21

]
=
[
−p22 − 2q21q

2
11

p12 + 2q11q
2
21

]
, (4.7)

∂

∂t3

[
q11

q21

]
=
[
p21 + 2q22q

2
11 + 2q11q21q12

p11 + 2q12q
2
21 + 2q11q21q22

]
. (4.8)

Or
∂u

∂t2
=
[
v
w

]
t2

=
[

vxx − 2wv2

−wxx + 2vw2

]
= J

δH2

δu
,

∂u

∂t3
=
[
v
w

]
t3

=
[

vxxx − 6vwvx

wxxx − 6vwwx

]
= J

δH3

δu
.
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Remark 4.3. Note that systems (4.5), (4.7) and (4.8) are new finite dimensional
completely integrable Hamiltonian systems derived from the infinite dimensional
integrable AKNS system using our new method.

Also, systems (4.5), (4.7) and (4.8) are perhaps the easiest ones to construct out
of infinitely many finite dimensional completely integrable Hamiltonian systems.
They can be obtained by taking different coefficients C2n−l or different values of n
in (4.3).

Contrary to the beliefs of experts about twenty years ago that the finite dimen-
sional completely integrable Hamiltonian systems are very rare, we have constructed
infinitely many of them.
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