M'hamed Kassi
Abstract:
Let
be a
-dimensional
complete Riemannian manifold with a
pole, and
a Riemannian manifold. Let
be a strictly increasing
function such that
and
.
We show that if
, then every
-harmonic
map
with finite
-energy
(i.e a local extremal of
and
is finite) is a constant map provided that the radial curvature of
satisfies a pinching condition depending to
.
Submitted March 24, 2005. Published January 31, 2006.
Math Subject Classifications: 58E20, 53C21, 58J05.
Key Words: F-harmonic maps; Liouville propriety; Stokes formula;
comparison theorem.
Show me the PDF file (212K), TEX file, and other files for this article.
M'hamed Kassi Equipe d'Analyse Complexe, Laboratoire d'Analyse Fonctionnelle Harmonique et Complexe Département de Mathématiques, Faculté des Sciences Université Ibn Tofail, Kénitra, Maroc email: mhamedkassi@yahoo.fr |
Return to the EJDE web page