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A MINIMAX INEQUALITY FOR A CLASS OF FUNCTIONALS
AND APPLICATIONS TO THE EXISTENCE OF SOLUTIONS

FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

GHASEM ALIZADEH AFROUZI, SHAPOUR HEIDARKHANI

Abstract. In this paper, we establish an equivalent statement to minimax

inequality for a special class of functionals. As an application, we prove the

existence of three solutions to the Dirichlet problem

−u′′(x) + m(x)u(x) = λf(x, u(x)), x ∈ (a, b),

u(a) = u(b) = 0,

where λ > 0, f : [a, b]×R→ R is a continuous function which changes sign on

[a, b]× R and m(x) ∈ C([a, b]) is a positive function.

1. Introduction

Given two Gâteaux differentiable functionals Φ and T on a real Banach space
X, the minimax inequality

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))), ρ ∈ R, (1.1)

plays a fundamental role for establishing the existence of at least three critical
points for the functional Φ(u)− λT (u).

In this work some conditions that imply the minimax inequality (1.1) are pointed
out and equivalent formulations are proved.

In this paper, our approach is based on a three critical-point theorem proved in
[8] (Theorem 2.1) which stated below for the reader’s convenience. Also we state a
technical lemma that enables us to apply the theorem.

Lemma 2.2 below establishes an equivalent statement of minimax inequality
(1.1) for a special class of functionals, while its consequences (Lemmas 2.5 and 2.7)
guarantee some conditions so that minimax inequality holds.

Finally, we apply Theorem 2.1 to elliptic equations, by using an immediate con-
sequence of Lemma 2.2: We consider the boundary-value problem

−u′′(x) + m(x)u(x) = λf(x, u(x)), x ∈ (a, b),

u(a) = u(b) = 0,
(1.2)
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where λ > 0, f : [a, b] × R → R is a continuous function which changes sign on
[a, b]×R, m is a continuous, positive function and we establish some conditions on
f so that problem (1.2) admits at least three weak solutions.

We say that u is a weak solution to (1.2) if u ∈ W 1,2
0 ([a, b]) and∫ b

a

u′(x)v′(x)dx +
∫ b

a

m(x)u(x)v(x)dx− λ

∫ b

a

f(x, u(x))v(x)dx = 0

for every v ∈ W 1,2
0 ([a, b]).

By arguments similar to those in problem (1.2), we will have the existence of at
least three weak solutions for the problem

−u′′(x) + m(x)u(x) = λh1(x)h2(u(x)), x ∈ (a, b)

u(a) = u(b) = 0,
(1.3)

where h1 ∈ C([a, b]) is a function which changes sign on [a, b] and h2 ∈ C(R) is a
positive function. The existence of at least three weak solutions is also proved for
the problem

−u′′(x) + m(x)u(x) = λf(u(x)), x ∈ (a, b)

u(a) = u(b) = 0,
(1.4)

where f : R → R is a continuous function which changes sign on R.
Conditions that guarantee the existence of multiple solutions to differential equa-

tions are of interest because physical processes described by differential equations
can exhibit more that one solution. For example, certain chemical reactions in tubu-
lar reactors can be mathematically described by a nonlinear, two-point boundary
value problem with the interest in seeing if multiple steady-states to the problem
exist. For a recent treatment of chemical reactor theory and multiple solutions see
[2, section 7] and references therein.

In recent years, many authors have studied multiple solutions from several points
of view and with different approaches and we refer to [1, 3, 4, 7] and the references
therein for more details, for instance, in their interesting paper [3], the authors
studied problem

u′′ + λf(u) = 0,

u(0) = u(1) = 0,
(1.5)

(in the case independent of λ) by using a multiple fixed-point theorem to obtain
three symmetric positive solutions under growth conditions on f .

Also, in [4], the author proves multiplicity results for the problem (1.5) which
for each λ ∈ [0,+∞[, admits at least three solutions in W 1,2

0 ([0, 1]) when f is a
continuous function.

In particular, in [1] we obtained the existence of an interval Λ ⊆ [0,+∞[ and a
positive real number q such that, such that for each λ ∈ Λ problem

∆pu + λf(x, u) = a(x)|u|p−2u in Ω,

u = 0 on ∂Ω,
(1.6)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator, Ω ⊂ RN (N ≥ 2) is non-
empty bounded open set with smooth boundary ∂Ω, p > N , λ > 0, f : Ω×R → R
is a continuous function and positive weight function a(x) ∈ C(Ω), admits at least
three weak solutions whose norms in W 1,p

0 (Ω) are less than q.
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For additional approaches to the existence of multiple solutions to boundary-
value problems, see [2, 5, 6] and references therein.

2. Main results

First, we recall the three critical point theorem by Ricceri [8] when choosing
h(λ) = λρ.

Theorem 2.1. Let X be a separable and reflexive real Banach space; Φ : X → R
a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗; Ψ : X → R
a continuously Gâteaux differentiable functional whose Gâteaux derivative is com-
pact. Assume that

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞

for all λ ∈ [0,+∞[, and that there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + λρ) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + λρ).

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, the equation

Φ′(u) + λΨ′(u) = 0

has at least three solutions in X whose norms are less than q.

Here and in the sequel, X will denote the Sobolev space W 1,2
0 ([a, b]) with the

norm

‖u‖ :=
( ∫ b

a

|u′(x)|2dx
)1/2

,

f : [a, b]× R → R is a continuous function and g : [a, b]× R → R is defined by

g(x, t) =
∫ t

0

f(x, ξ)dξ

for each (x, t) ∈ [a, b]× R. Now, we define

‖u‖∗ :=
( ∫ b

a

(|u′(x)|2 + m(x)|u(x)|2)dx
)1/2

.

So the Poincaré’s inequality and the positivity of the function m(x) ∈ C([a, b]),
there exist positive suitable constants c1 and c2 such that

c1‖u‖ ≤ ‖u‖∗ ≤ c2‖u‖ (2.1)

(i.e., the above norms are equivalent). We now introduce two positive special
functionals on the Sobolev space X: For u ∈ X, let

Φ(u) :=
‖u‖2∗

2
,

T (u) :=
∫ b

a

g(x, u(x))dx
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Let ρ, r ∈ R, w ∈ X be such that 0 < ρ < T (w) and 0 < r < Φ(w). We put

β1(ρ,w) := ρ
Φ(w)
T (w)

, (2.2)

β2(r, w) := r
T (w)
Φ(w)

, (2.3)

β3(ρ,w) :=
1
c1

(b− a

2
β1(ρ,w)

)1/2
, (2.4)

Clearly, β1(ρ,w), β2(r, w) and β3(ρ,w) are positive. Now, we put

δ1 := inf{ (b− a)1/2

2c1
‖u‖∗ ∈ R+;T (u) ≥ ρ},

δ2 := inf
{ (b− a)1/2

2c1
‖u‖∗ ∈ R+, such that

(b− a) max
(x,t)∈[a,b]×[− (b−a)1/2

2c1
‖u‖∗,

(b−a)1/2

2c1
‖u‖∗]

g(x, t) ≥ ρ
}

and
δρ := δ1 − δ2. (2.5)

Clearly, δ1 ≥ δ2. Taking into account that for every u ∈ X,

max
x∈[a,b]

|u(x)| ≤ (b− a)1/2

2
‖u‖

and (2.1), we have

max
x∈[a,b]

|u(x)| ≤ (b− a)1/2

2c1
‖u‖∗

for each u ∈ X. So that

T (u) =
∫ b

a

g(x, u(x))dx ≤ (b− a) max g(x, t)

where (x, t) ∈ [a, b]× [− (b−a)1/2

2c1
‖u‖∗ , (b−a)1/2

2c1
‖u‖∗]. Namely

T (u) ≤ (b− a) max g(x, t),

where (x, t) ∈ [a, b] × [− (b−a)1/2

2c1
‖u‖∗ , (b−a)1/2

2c1
‖u‖∗ ]; therefore, { (b−a)1/2

2c1
‖u‖∗ ∈

R+;T (u) ≥ ρ} is a subset of{ (b− a)1/2

2c1
‖u‖∗ ∈ R+ such that

(b− a) max
(x,t)∈[a,b]×[− (b−a)1/2

2c1
‖u‖∗ ,

(b−a)1/2

2c1
‖u‖∗ ]

g(x, t) ≥ ρ
}
.

So, we have δ1 ≥ δ2 and δρ ≥ 0.
Our main results depend on the following lemma:

Lemma 2.2. Assume that there exist ρ ∈ R, w ∈ X such that
(i) 0 < ρ < T (w),
(ii) (b − a) max(x,t)∈[a,b]×[−β3(ρ,w)+δρ, β3(ρ,w)−δρ] g(x, t) < ρ, where β3(ρ,w) is

given by (2.4) and δρ by (2.5).
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Then, there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).

Proof. From (ii), we obtain

β3(ρ,w)− δρ /∈ {l ∈ R+ : (b− a) max
(x,t)∈[a,b]×[−l,l]

g(x, t) ≥ ρ}.

Moreover

inf{l ∈ R+; (b− a) max
(x,t)∈[a,b]×[−l,l]

g(x, t) ≥ ρ} ≥ β3(ρ,w)− δρ;

in fact, arguing by contradiction, we assume that there is l1 ∈ R+ such that

(b− a) max
(x,t)∈[a,b]×[−l1,l1]

g(x, t) ≥ ρ

and
l1 < β3(ρ,w)− δρ,

so

(b−a) max
(x,t)∈[a,b]×[−β3(ρ,w)+δρ , β3(ρ,w)−δρ]

g(x, t) ≥ (b−a) max
(x,t)∈[a,b]×[−l1,l1]

g(x, t) ≥ ρ .

This is a contradiction. So

inf{l ∈ R+; (b− a) max
(x,t)∈[a,b]×[−l,l]

g(x, t) ≥ ρ} > β3(ρ,w)− δρ.

Therefore,

inf{ (b− a)1/2

2c1
‖u‖∗ ∈ R+ :

(b− a) max
(x,t)∈[a,b]×[− (b−a)1/2

2c1
‖u‖∗ ,

(b−a)1/2

2c1
‖u‖∗]

g(x, t) ≥ ρ}

> β3(ρ,w)− δρ;

namely β3(ρ,w) < δ1. So, we have

inf{‖u‖
2
∗

2
∈ R+;T (u) ≥ ρ} > β1(ρ,w),

or equivalently

inf{Φ(u); u ∈ T−1([ρ,+∞[)} > ρ
Φ(w)
T (w)

,

and, taking in to account that (i) holds, one has

inf{Φ(u); u ∈ T−1([ρ,+∞[)}
ρ

>
Φ(w)− inf{Φ(u); u ∈ T−1([ρ,+∞[)}

T (w)− ρ
.

Now, there exists λ ∈ R such that

λ >
Φ(w)− inf{Φ(u); u ∈ T−1([ρ,+∞[)}

T (w)− ρ

and

λ <
inf{Φ(u); u ∈ T−1([ρ,+∞[)}

ρ
.

or equivalently

inf{Φ(u); u ∈ T−1([ρ,+∞[)} > Φ(w) + λ(ρ− T (w))
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and
λρ < inf{Φ(u); u ∈ T−1([ρ,+∞[)}.

Therefore, thanks to the 0 < ρ < T (w), we obtain

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf{Φ(u); u ∈ T−1([ρ,+∞[)}. (2.6)

On other hand,

inf
u∈X

(Φ(u) + λ(ρ− T (u))) ≤ (Φ(0) + λ(ρ− T (0))) = λρ. (2.7)

So, with (2.6) and (2.7), one has

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf{Φ(u); u ∈ T−1([ρ,+∞[)}.

Therefore, thanks to the

inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))) = inf{Φ(u); u ∈ T−1([ρ,+∞[)},

we have

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).

�

Remark 2.3. Note that supλ≥0 infu∈X(Φ(u)+λ(ρ−T (u))) is well defined, because
λ → infu∈X(Φ(u) + λ(ρ− T (u))) is upper semicontinuous in [0,+∞[ and tends to
−∞ as λ → +∞.

Remark 2.4. If β3(ρ,w)− δρ ≤ 0 in Lemma 2.2,; then then the lemma still holds.
Because, β3(ρ,w) ≤ δ1− δ2 ≤ δ1, and by arguing as in the proof of Lemma 2.2, the
results holds.

If instead of condition (ii) in Lemma 2.2, we put

(b− a) max
(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)]

g(x, t) < ρ,

then the result holds, because

(b− a) max
(x,t)∈[a,b]×[−β3(ρ,w)+δρ , β3(ρ,w)−δρ]

g(x, t)

≤ (b− a) max
(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)]

g(x, t) < ρ.

So, we have the following result.

Lemma 2.5. Assume that there exist ρ ∈ R, w ∈ X such that
(i) 0 < ρ < T (w),
(ii) (b − a) max(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)] g(x, t) < ρ, where β3(ρ,w) is given

by (2.4)
Then, there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).

Proposition 2.6. The following assertions are equivalent:
(a) There are ρ ∈ R, w ∈ X such that

(i) 0 < ρ < T (w),
(ii) (b − a) max(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)] g(x, t) < ρ, where β3(ρ,w) is
given by (2.4).
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(b) There are r ∈ R, w ∈ X such that
(iii) 0 < r < Φ(w),
(iv) (b − a) max

(x,t)∈[a,b]×[− 1
c1

√
b−a
2 r , 1

c1

√
b−a
2 r]

g(x, t) < β2(r, w), where

β2(r, w) is given by (2.3).

Proof. (a) ⇒ (b). First we note that 0 < Φ(w), because if Φ(w) = 0, one has
(b−a)1/2

2c1
‖w‖∗ = 0. Hence, taking into account (ii), one has

T (w) ≤ (b− a) max
(x,t)∈[a,b]×[− (b−a)1/2

2c1
‖w‖∗ ,

(b−a)1/2

2c1
‖w‖∗ ]

g(x, t) = 0,

and that is in contradiction to (i). We now put β1(ρ,w) = r. We obtain ρ = β2(r, w)

and β3(ρ,w) = 1
c1

√
b−a
2 r. Therefore, from (i) and (ii), one has 0 < r < Φ(w) and

(b− a) max
(x,t)∈[a,b]×[− 1

c1

√
b−a
2 r , 1

c1

√
b−a
2 r]

g(x, t) < β2(r, w).

(b) ⇒ (a) First we note that 0 < T (w), because if 0 ≥ T (w), from (iii) one has
r T (w)

Φ(w) ≤ 0; namely, β2(r, w) ≤ 0. Hence, from (iv) one has

0 = T (0) ≤ (b− a) max
(x,t)∈[a,b]×[− 1

c1

√
b−a
2 r , 1

c1

√
b−a
2 r]

g(x, t) < 0,

and this is a contradiction. We now put β2(r, w) = ρ. We obtain r = β1(ρ,w) and
1
c1

√
b−a
2 r = β3(ρ,w). Therefore, from (iii) and (iv), we have the conclusion. �

The following lemma is another consequence of Lemma 2.2.

Lemma 2.7. Assume that there exist r ∈ R, w ∈ X such that

(i) 0 < r < Φ(w),
(ii) (b−a) max

(x,t)∈[a,b]×[− 1
c1

√
b−a
2 r , 1

c1

√
b−a
2 r]

g(x, t) < β2(r, w), where β2(r, w)

is given by (2.3).

Then, there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).

The above lemma follows from Lemma 2.5 and Proposition 2.6.
Finally, we are interested in ensuring the existence of at least three weak solutions

for the Dirichlet problem (1.2). Now, we have the following result.

Theorem 2.8. Assume that there exist ρ ∈ R, a1 ∈ L1([a, b]), w ∈ X and a positive
constant γ with γ < 2 such that

(i) 0 < ρ <
∫ b

a
g(x, w(x))dx,

(ii) (b− a) max(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)] g(x, t) < ρ
(iii) g(x, t) ≤ a1(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R,

where β3(ρ,w) is given by (2.4).

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (1.2) admits at least three solutions in X whose norms
are less than q.
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Proof. For each u ∈X, we put

Φ(u) =
‖u‖2∗

2
,

Ψ(u) = −
∫ b

a

g(x, u(x))dx.

J(u) = Φ(u) + λΨ(u).

In particular, for each u, v ∈ X one has

Φ′(u)(v) =
∫ b

a

(u′(x)v′(x) + m(x)u(x)v(x))dx,Ψ′(u)(v) = −
∫ b

a

f(x, u(x))v(x)dx.

It is well known that the critical points of J are the weak solutions of (1.2), our goal
is to prove that Φ and Ψ satisfy the assumptions of Theorem 2.1. Clearly, Φ is a
continuously Gâteaux differentiable and sequentially weakly lower semi continuous
functional whose Gâteaux derivative admits a continuous inverse on X∗ and Ψ
is a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact.

Thanks to (iii), for each λ > 0 one has

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞ .

Furthermore, thanks to Lemma 2.5, from (i) and (ii), we have

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + λρ) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + λρ).

Therefore, we can apply Theorem 2.1. It follows that there exists an open interval
Λ ⊆ [0,+∞[ and a positive real number q such that, for each λ ∈ Λ, problem (1.2)
admits at least three solutions in X whose norms are less than q. �

We also have the following existence result.

Theorem 2.9. Assume that there exist r ∈ R, a2 ∈ L1([a, b]), w ∈ X and a positive
constant γ with γ < 2 such that

(i) 0 < r <
‖w‖2∗

2 ;
(ii) (b− a) max

(x,t)∈[a,b]×[− 1
c1

√
b−a
2 r , 1

c1

√
b−a
2 r]

g(x, t) < β2(r, w);

(iii) g(x, t) ≤ a2(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R,
where β2(r, w) is given by (2.3).

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (1.2) admits at least three solutions in X whose
norms are less than q.

The above theorem follows from Lemma 2.7 and Theorem 2.8.
Let h1 ∈ C([a, b]) be a function which changes sign on [a, b] and h2 ∈ C(R) be a

positive function. For for (x, t) ∈ [a, b]× R, put

f(x, t) = h1(x)h2(t).

For for t ∈ R, put

α(t) =
∫ t

0

h2(ξ)dξ .
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For almost every x ∈ [a, b], put

a3(x) =
a1(x)
h1(x)

Then, using Theorem 2.8, we have the following result.

Theorem 2.10. Assume that there exist ρ ∈ R, a3 ∈ L1([a, b]), w ∈ X and a
positive constant γ with γ < 2 such that

(i) 0 < ρ <
∫ b

a
(h1(x)α(w(x)))dx;

(ii) (b− a) maxx∈[a,b] h1(x) < ρ
α(β3(ρ,w)) ;

(iii) α(t) ≤ a3(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R, where
β3(ρ,w) is given by (2.4).

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (1.3) admits at least three solutions in X whose norms
are less than q.

Put

a4(x) =
a2(x)
h1(x)

for almost every x ∈ [a, b]. Then, by Theorem 2.9, we have the following existence
result.

Theorem 2.11. Assume that there exist r ∈ R, a4 ∈ L1([a, b]), w ∈ X and a
positive constant γ with γ < 2 such that

(i) 0 < r <
‖w‖2∗

2 ;
(ii) (b− a) maxx∈[a,b] h1(x) < β2(r,w)

α( 1
c1

√
b−a
2 r)

;

(iii) α(t) ≤ a4(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R, where
β2(r, w) is given by (2.3).

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (1.3) admits at least three solutions in X whose
norms are less than q.

We now want to point out two simple consequences of Theorems 2.8 and 2.9.
Let f : R → R be a continuous function which changes sign on R. For t ∈ R, put
g(t) =

∫ t

0
f(ξ)dξ. So we have the following results.

Theorem 2.12. Assume that there exist ρ ∈ R, w ∈ X and two positive constants
γ and η with γ < 2 such that

(i) 0 < ρ <
∫ b

a
g(w(x))dx;

(ii) (b− a) maxt∈[−β3(ρ,w) , β3(ρ,w)] g(t) < ρ;
(iii) g(t) ≤ η(1 + |t|γ) for each t ∈ R, where β3(ρ,w) is given by (2.4).

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (1.4) admits at least three solutions in X whose
norms are less than q.

Theorem 2.13. Assume that there exist r ∈ R, w ∈ X and two positive constants
γ and µ with γ < 2 such that

(i) 0 < r <
‖w‖2∗

2 ;
((ii) (b− a) max

t∈[− 1
c1

√
b−a
2 r, 1

c1

√
b−a
2 r]

g(t) < β2(r, w);
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(iii) g(t) ≤ µ(1 + |t|γ) for each t ∈ R, where β2(r, w) is given by (2.3).
Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (1.4) admits at least three solutions in X whose
norms are less than q.

Example 2.14. Let Ω = (0, 1) and consider the problem

−u′′ + exu = λ(euu2(3 + u)), x ∈ (0, 1)

u(0) = u(1) = 0.
(2.8)

Then, there exists an open interval Λ ⊆ [0,+∞[ and a positive real number q such
that, for each λ ∈ Λ, problem (2.8) admits at least three solutions in W 1,2

0 ([0, 1])
whose norms are less than q. In fact, by choosing ρ = 1

4 and

w(x) =

{
x, x ∈ (0, 1)
0, otherwise

so that β3(ρ,w) = 1
c1

( e−1
96−32e )1/2, all assumptions of Theorem 2.12, are satisfied with

γ = 1, c1 is positive constant such that the inequality (2.1) hold for m(x) = ex and
η sufficiently large, also with choose r = 1

2 so that β2(r, w) = 6−2e
e−1 , all assumptions

of Theorem 2.13, are satisfied with µ sufficiently large.
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