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A STABILITY THEOREM FOR CONVERGENCE OF A
LYAPOUNOV FUNCTION ALONG TRAJECTORIES OF

NONEXPANSIVE SEMIGROUPS

RENU CHOUDHARY

Abstract. It is known that a regularly Lyapounov function for a semigroup of

contractions on a Hilbert space converges to its minimum along the trajectories

of the semigroup. In this paper we show that this Lyapounov function nearly
converges to its minimum along trajectories of the semigroup generated by a

small bounded perturbation of the semigroup generator.

1. Introduction

Let K be a closed convex subset of a real Hilbert space H and let {S(t)}t≥0 be a
semigroup of contractions on K generated by a maximal monotone operator A on
H. The study of convergence of a trajectory S(t)x as t →∞ has called the attention
of several mathematicians; see, for example, [4, 5, 6, 7, 8, 10, 11, 13, 14, 15]. In
general S(t)x does not converge strongly or even weakly as t →∞, and convergence
requires additional conditions.

The fact that S(t)x does not converge even weakly, in general, as t →∞, together
with the use of Lyapounov functions to determine the asymptotic behaviour of
semigroups, inspired us to consider a Lyapounov function f : H → R ∪ {∞} and
then study convergence of f(S(t)x) as t →∞.

In [9], we show that, in general in infinite dimensional space, f(S(t)x) 6→ min(f)
as t → ∞, even if f strictly decreases along the trajectories of {S(t)}t≥0. If for a
semigroup {S(t)}t≥0, f decreases along the trajectories at a particular rate, then we
call f regularly Lyapounov for the semigroup {S(t)}t≥0, and we have f(S(t)x) →
min(f) as t →∞. Further, under some mild conditions on A and f , we construct a
complete metric space (A1, d) of the bounded perturbations of the generator A such
that f is Lyapounov for all the semigroups generated by these perturbations. We
show that there is a very large subset F1 of A1 such that f is regularly Lyapounov
for all the semigroups generated by the maximal monotone operators in F1. In
particular, the Lyapounov function f for {S(t)}t≥0, generated by A, converges along
the trajectories of a class of semigroups generated by most bounded perturbations
of A in A1.
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Since a regularly Lyapounov function f for a nonexpansive semigroup on a
Hilbert space converges to its minimum along the trajectories of the semigroup
a natural question arises about the behaviour of f along the trajectories of the
semigroup {S1(t)}t≥0 generated by a small bounded perturbation of the semi-
group generator, not assumed to be in A1. So the main question becomes: is
f(S1(t)x) −min(f) small for large t if the perturbation is small? Theorem 1 and
2 of this paper give an answer to this question. The idea came from the work of
Reich and Zaslavski; in [18] they investigated a similar problem for a continuous
convex function f on a Banach space along the trajectories given by an everywhere
defined bounded vector field on a Banach space. For more recent results on con-
tinuous descent methods see [1, 2, 3]. In [16, 17, 18] one considers the semigroup
generators to be bounded vector fields, whereas here and in [9] we consider them to
be maximal monotone operators. Hence we are not in a position to use [16, 17, 18]
as their suppositions do not hold. On the other hand, you might hope that this
paper would generalise [18]. However, it does not because in [18] one considers
single trajectories and does not assume the semigroup to be nonexpansive or even
Lipschitz continuous. Moreover, because of the properties of maximal monotone
operators in Hilbert space, one needs less stringent conditions on f to obtain a
positive result.

Reich and Zaslavski, in [17, 18], considered a bounded below, convex, continuous
function f on a Banach space X. With f , they associated a complete metric space
of bounded vector fields V : X → X such that the right hand directional derivative
of f at x in the direction of V x is non-positive. In [16] and [17], they considered
two gradient like iterative processes defined by these vector fields. Under some
assumptions on V and f , they showed that for most of the vector fields in this
complete metric space, both iterative processes generate a sequence 〈xn〉∞n=1 such
that f(xn) → inf(f) as n → ∞. In [18], they gave the continuous version of the
same problem. They showed that if there are trajectories given by these vector fields
then f converges to its infimum along these trajectories for most vector fields. They
defined the notion of regular vector fields and showed that the function f converges
to its infimum along the sequences/trajectories given by these regular vector fields.
Under the assumptions that f is coercive and Lipschitz on bounded subsets of the
Banach space, they showed that for regular vector fields the function f remains
close to its infimum along finite horizon perturbed trajectories.

2. Preliminaries and Notation

Throughout this paper H stands for a real Hilbert space. Let A be a maximal
monotone operator on H such that A−1{0} 6= ∅ and let {S(t)}t≥0 be the semigroup
of contractions generated by A on K = D(A). Usually −A is called the generator of
{S(t)}t≥0 but we find it more convenient to say A is the generator of {S(t)}t≥0 in the
same sense as Pazy [12]. Since in a Hilbert space there is one to one correspondence
between the maximal monotone operators and the semigroups of contractions [12]
we will switch frequently between semigroups and the maximal monotone operators
generating them.

Definition 2.1. Suppose A is a maximal monotone operator and {S(t)}t≥0 the
semigroup it generates. Assume A−1{0} is nonempty. Let f be a proper l.s.c.
function from H to R ∪ {+∞} such that K = D(A) ⊆ Dom f) and suppose there
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exists x0 ∈ A−1{0} such that f(x0) = min(f) := min{f(x) : x ∈ H}. We say f is
Lyapounov for {S(t)}t≥0 if

f(S(t)x) ≤ f(x) ∀x ∈ K, t ≥ 0,

and strictly Lyapounov if

f(S(t)x) < f(x) ∀x ∈ D(A) \A−1{0}, t > 0.

Definition 2.2. A Lyapounov function f for a semigroup {S(t)}t≥0 is called reg-
ularly Lyapounov for {S(t)}t≥0 if for each positive integer n there exists a positive
number δ(n) (depending on n) such that for every x in Dn, where Dn = {x ∈
D(A) : ‖x‖ ≤ n, f(x) > min(f) + 1

n}, there exists α(x) > 0 such that

f(x)− f(S(t)x) ≥ tδ(n) ∀ t ∈ [0, α(x)) .

The idea of regularity that we use was essentially already given in [18, page
4], and it had previously been given in [17, page 1005], in the study of discrete
descent methods. In [17, 18], they considered a bounded below, convex, continuous
function f on a Banach space X, and with f they associated a bounded vector field
V : X → X. By a regular vector field they mean, for any natural number n there
exists a positive number δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and
f(x) ≥ inf(f) + 1

n ,
f◦(x, V x) ≤ −δ(n), (2.1)

where f◦(x, V x) denotes the right hand directional derivative of f at x in the
direction of V x. That means if there are trajectories governed by a regular vector
field then the function f decreases along these trajectories at a particular rate.
In Definition 2, the function f need not be convex and continuous and we are
considering the decrease of f along trajectories of a semigroup generated by a
maximal monotone operator. In [9, Proposition 4] we assumed f to be convex and
continuous on D(A) and obtained an analogue of (2.1) from Definition 2.2.

Through out this paper, for any real r > 0 by Dr we mean Dr = {x ∈ D(A) :
‖x‖ ≤ r, f(x) > min(f) + 1

r}. Set Dε−1(x0) = {x ∈ D(A) : ‖x− x0‖ < ε−1, f(x) >
min(f) + ε

2}.

3. Stability Theorems

We begin with a simple geometrical result that for a small perturbation of a
closed convex set the elements of minimal norm in perturbed and unperturbed sets
are not very far from each other.

Lemma 3.1. Let K be a closed convex subset of H and e be a given vector in H.
Let K ′ = K + e. Let y◦ and (y′)◦ be the elements of minimal norm in K and K ′

respectively. Then
‖(y′)◦ − y◦‖ ≤ 2‖e‖ .

Proof. Let (y′)◦ = y+e, for some y in K. We note that the nearest point projection
PK of origin and −e in K are y◦ and y. Since PK is a contraction

‖y◦ − y‖ = ‖PK(0)− PK(−e)‖ ≤ ‖e‖ .

Hence
‖(y′)◦ − y◦‖ = ‖y + e− y◦‖ ≤ ‖y − y◦‖+ ‖e‖ ≤ 2‖e‖ .

�
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The following hypotheses will be assumed when specified.
(A1) A is a maximal monotone operator on H and A−1{0} is nonempty.
(A2) f : H → R is bounded below and Lipschitzian on bounded subsets of H,

x0 ∈ A−1{0} satisfies f(x0) = min{f(x) : x ∈ H} = min(f), and f is
regularly Lyapounov for the semigroup {S(t)}t≥0 generated by A.

(A3) D(A) is a convex subset of H.
Our next result tells that, under the assumption (A1) and (A2), the function f

behaves almost like a regularly Lyapounov function for the semigroup {S1(t)}t≥0

generated by a small perturbation of A. Note f is not even a Lyapounov function
for {S1(t)}t≥0.

Lemma 3.2. Let A and f satisfy (A1) and (A2). For all ε > 0, there exist positive
numbers δ, δ such that for all A′ satisfying:

(1) A′ is single valued,
(2) D(A) ⊆ D(A′),
(3) A′ is bounded on bounded subsets of D(A),
(4) A′x0 = 0,
(5) A1 = A + A′ is maximal monotone,
(6) sup

{x∈D(A):‖x−x0‖≤ε−1}
‖A′x‖ < δ,

and for every x ∈ Dε−1(x0), where recall Dε−1(x0) = {x ∈ D(A) : ‖x − x0‖ <
ε−1, f(x) > min(f) + ε

2}, there exists α > 0 such that

f(x)− f(S1(t)x) ≥ tδ ∀ t ∈ [0, α) ,

where {S1(t)}t≥0 is the semigroup generated by A1.

Proof. Let ε > 0 be given, and set M to be a positive integer greater than max{ε−1+
‖x0‖, 2ε−1}. Since f is Lipschitzian on bounded subsets of H, there exists L > 0
such that

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ {x ∈ H : ‖x‖ ≤ M} . (3.1)

Since f is a regularly Lyapounov function for the semigroup {S(t)}t≥0, there exists
δ1 > 0 such that for every x ∈ DM there exists α1(x) > 0 such that

f(S(t)x)− f(x) ≤ −tδ1 ∀ t ∈ [0, α1(x)) . (3.2)

Let
δ =

δ1

2
, (3.3)

and
δ =

δ1

8L
. (3.4)

Let A′ satisfy 1-5 and

sup
{x∈D(A):‖x−x0‖≤ε−1}

‖A′x‖ < δ , (3.5)

and let {S1(t)}t≥0 be the semigroup generated by A1. Let x ∈ Dε−1(x0) be given.
We note that ‖S(t)x‖ is bounded for all t ≥ 0 as

‖S(t)x‖ ≤ ‖S(t)x− x0‖+ ‖x0‖ ≤ ‖x− x0‖+ ‖x0‖ ≤ ε−1 + ‖x0‖ ≤ M , (3.6)

and similarly
‖S1(t)x‖ ≤ M ∀ t ≥ 0,∀x ∈ Dε−1(x0) . (3.7)
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Also, we note that x ∈ DM . Therefore, by (3.2) there exists α1(x) > 0 such that

f(S(t)x)− f(x) ≤ −tδ1 ∀ t ∈ [0, α1(x)) . (3.8)

Since limt→0+
S(t)x−x

t = −A◦x, there exists α2(x) > 0 such that

‖S(t)x− x

t
+ A◦x‖ <

δ1

8L
∀ t ∈ (0, α2(x)) . (3.9)

Similarly, since limt→0+
S1(t)x−x

t = −(A1)◦x, there exists α3(x) > 0 such that

‖S1(t)x− x

t
+ (A1)◦x‖ <

δ1

8L
∀ t ∈ (0, α3(x)) . (3.10)

Choose α = min(α1(x), α2(x), α3(x)). Then for t ∈ (0, α),

f(S1(t)x)− f(x)

= f(S1(t)x)− f(S(t)x) + f(S(t)x)− f(x)

≤ L‖S1(t)x− S(t)x‖+ f(S(t)x)− f(x) ( by (3.6), (3.7) and (3.1) )

≤ L‖S1(t)x− S(t)x‖ − tδ1 (by (3.8))

= Lt‖S1(t)x− x

t
+ (A1)◦x− (A1)◦x + A◦x−A◦x− S(t)x− x

t
‖ − tδ1

≤ Lt

(
‖S1(t)x− x

t
+ (A1)◦x‖+ ‖(A1)◦x−A◦x‖+ ‖A◦x +

S(t)x− x

t
‖
)
− tδ1

≤ tL
δ1

8L
+ tL‖(A1)◦x−A◦x‖+ tL

δ1

8L
− tδ1 (by (3.9) and (3.10))

= tL‖(A1)◦x−A◦x‖ − 3
4
tδ1

≤ tL2‖A′x‖ − 3
4
tδ1 (by Lemma 3.1 )

< tL2δ − 3
4
tδ1 (by (3.5))

= tL2
δ1

8L
− 3

4
tδ1 (by (3.4))

= − tδ1

2
= −tδ (by (3.3)).

�

By using Lemma 3.2, in the next result, we show that the function f may not
converge along the perturbed trajectory S1(t)x but stays close to min(f) if the
perturbation is small, assuming x ∈ D(A).

Lemma 3.3. Let A and f satisfy (A1) and (A2). For all ε > 0, there exists δ > 0
such that for all A′ satisfying:

(1) A′ is single valued,
(2) D(A) ⊆ D(A′),
(3) A′ is bounded on bounded subsets of D(A),
(4) A′x0 = 0,
(5) A1 = A + A′ is maximal monotone,
(6) sup

{x∈D(A):‖x−x0‖≤ε−1}
‖A′x‖ < δ,
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and for every x ∈ {x ∈ D(A) : ‖x− x0‖ ≤ ε−1} there exists T ≥ 0 such that

f(S1(t)x) ≤ min(f) +
ε

2
∀ t ≥ T ,

where {S1(t)}t≥0 is the semigroup generated by A1.

Proof. Let ε > 0 be given. For convenience we write M = ε−1 + ‖x0‖. By Lemma
3.2 there exist positive numbers δ, δ such that for all A′ satisfying 1 - 5 and

sup
{x∈D(A):‖x−x0‖≤ε−1}

‖A′x‖ < δ ,

and for every x ∈ Dε−1(x0) there exists α > 0 such that

f(x)− f(S1(t)x) ≥ tδ ∀ t ∈ [0, α) , (3.11)

where {S1(t)}t≥0 is the semigroup generated by A1. Let x ∈ {x ∈ D(A) : ‖x−x0‖ ≤
ε−1}. Note ‖S1(t)x‖ is bounded, as

‖S1(t)x‖ ≤ ‖S1(t)x− x0‖+ ‖x0‖ ≤ ‖x− x0‖+ ‖x0‖ ≤ ε−1 + ‖x0‖ = M . (3.12)

Also,
‖S1(t)x− x0‖ ≤ ‖x− x0‖ ≤ ε−1 . (3.13)

Since f is Lipschitzian on bounded subsets of H, there exists L > 0 such that

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ {x ∈ H : ‖x‖ ≤ M} . (3.14)

We note that t → f(S1(t)x) is Lipschitz continuous on [0,∞) as for every t1, t2 ∈
[0,∞) we have

|f(S1(t1)x)− f(S1(t2)x)| ≤ L‖S1(t1)x− S1(t2)x‖ (by (3.12) and (3.14))

≤ L|t1 − t2|‖(A1)◦x‖ .

Firstly, we claim that there exists T ≥ 0 such that

f(S1(T )x) ≤ min(f) +
ε

2
.

Assume the contrary. Then

f(S1(t)x) > min(f) +
ε

2
∀ t ≥ 0 .

Therefore by (3.13), S1(t)x ∈ Dε−1(x0)∀ t ≥ 0. Let V = {T : f(x) − f(S1(τ)x) ≥
τδ ∀ τ ∈ [0, T ]}. Then V is a nonempty subinterval of [0,∞). We claim V is
open and closed in [0,∞). To see V is open in [0,∞) let T ∈ V be given. Since
S1(T )x ∈ Dε−1(x0) there exists α′ > 0 such that

f(S1(T )x)− f(S1(t)S1(T )x) ≥ tδ ∀ t ∈ [0, α′] . (3.15)

Also T ∈ V implies
f(x)− f(S1(T )x) ≥ Tδ . (3.16)

Adding the inequalities (3.15) and (3.16) we get

f(x)− f(S1(t + T )x) ≥ (t + T )δ ∀ t ∈ [0, α′] .

Thus [0, T + α′] ⊆ V , and V is open. To see that V is closed in [0,∞), let 〈tn〉∞n=1

be a sequence in V and, let tn ↗ t as n →∞, t > 0. Since tn ∈ V , for every n, we
have

f(x)− f(S1(tn)x) ≥ tnδ .
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Since t → f(S1(t)x) is continuous on [0,∞), letting n go to infinity we get

f(x)− f(S1(t)x) ≥ tδ .

Hence t ∈ V . Now V is a nonempty open and closed subinterval of [0,∞), and
therefore V = [0,∞). Hence for every t ∈ [0,∞), f(x)− f(S1(t)x) ≥ tδ. Therefore
by taking the limit as t → ∞, we get limt→∞ f(S1(t)x) = −∞, contradicting the
fact that f is bounded below. Hence our assumption is wrong, proving the claim.

Secondly, we show that for every t ≥ T

f(S1(t)x) ≤ min(f) +
ε

2
.

Assume, to obtain a contradiction that there exists T1 > T such that

f(S1(T1)x) > min(f) +
ε

2
.

Since t → f(S1(t)x) is continuous on [0,∞) there exists T2 ∈ (T, T1) such that

f(S1(T2)x) = min(f) +
ε

2
, (3.17)

and
f(S1(τ)x) > min(f) +

ε

2
∀τ ∈ (T2, T1] . (3.18)

Since t → f(S1(t)x) is Lipschitz continuous on [0,∞), it is differentiable a.e. and

f(S1(T1)x) = f(S1(T2)x) +
∫ T1

T2

d

dt
f(S1(t)x)dt . (3.19)

Let T3 ∈ (T2, T1) be such that f(S1(t)x) is differentiable at T3. By (3.13) and
(3.18), S1(T3)x ∈ Dε−1(x0). Therefore by (3.11) there exists α3 > 0 such that

f(S1(T3)x)− f(S1(T3 + t)x) ≥ tδ ∀t ∈ (0, α3) ,

which in turn implies
d

dt
f(S1(T3)x) ≤ −δ . (3.20)

Using (3.20) in (3.19) we get

f(S1(T1)x) ≤ f(S1(T2)x)− δ(T1 − T2) = min(f) +
ε

2
− δ(T1 − T2) ,

which contradicts our assumption. �

Let us recall from [12] that an operator A is maximal M(ω) if and only if A+ωI
is a maximal monotone operator.

Remark 3.4. We note that if we assume f to be Lipschitzian on K, rather than on
bounded sets, and A to be a maximal M(ω) operator, in (A1) and (A2), then the
conclusion of Lemma 3.2 holds. We are unable to extend the conclusion of Lemma
3.3 for a maximal M(ω) operator even if we assume perturbed trajectories to be
bounded.

Finally we establish the first stability theorem, extending Lemma 3.3 by not
assuming x ∈ D(A).

Theorem 3.5. Let A and f satisfy (A1) and (A2). For all ε > 0, there exists
δ > 0 such that for all A′ satisfying:

(1) A′ is single valued,
(2) D(A) ⊆ D(A′),
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(3) A′ is bounded on bounded subsets of D(A),
(4) A′x0 = 0,
(5) A1 = A + A′ is maximal monotone,
(6) sup

{x∈D(A):‖x−x0‖≤ε−1}
‖A′x‖ < δ,

and for every x ∈ {x ∈ D(A) : ‖x− x0‖ < ε−1}, there exists T ≥ 0 such that

f(S1(t)x) ≤ min(f) + ε ∀ t ≥ T ,

where {S1(t)}t≥0 is the semigroup generated by A1.

Proof. Let ε > 0 be given, and set M = ε−1+‖x0‖. Let x ∈ {x ∈ D(A) : ‖x−x0‖ <
ε−1} then there exists a sequence 〈xk〉∞k=1 in {x ∈ D(A) : ‖x − x0‖ ≤ ε−1} such
that xk → x as k → ∞. Since f is Lipschitzian on bounded subsets of H, there
exists L > 0 such that

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ {x ∈ H : ‖x‖ ≤ M} . (3.21)

Since xk → x there exists a positive integer k′ such that

‖xk′ − x‖ <
1

L + 1
.
ε

2
. (3.22)

By Lemma 3.3, noting xk′ ∈ D(A), and ‖xk′ − x0‖ ≤ ε−1, there exists δ > 0 such
that for all A′ satisfying 1-6 of this theorem, there exists T ≥ 0 such that

f(S1(t)xk′) ≤ min(f) +
ε

2
∀ t ≥ T , (3.23)

where {S1(t)}t≥0 is the semigroup generated by A1. Note for every k, and all t ≥ 0,
‖S1(t)xk‖ and ‖S1(t)x‖ are bounded as

‖S1(t)xk‖ ≤ ‖S1(t)xk−x0‖+‖x0‖ ≤ ‖xk−x0‖+‖x0‖ ≤ ε−1 +‖x0‖ = M , (3.24)

and

‖S1(t)x‖ ≤ ‖S1(t)x− x0‖+ ‖x0‖ ≤ ‖x− x0‖+ ‖x0‖ ≤ ε−1 + ‖x0‖ = M . (3.25)

Thus by (3.24), (3.25), (3.21) and (3.22), for all t ≥ 0,

|f(S1(t)xk′)− f(S1(t)x)| < L‖S1(t)xk′ − S1(t)x‖
≤ L‖xk′ − x‖ (as S1 is a contraction)

<
L

L + 1
.
ε

2

<
ε

2

(3.26)

Combining (3.26) and (3.23) we get ∀ t ≥ T

f(S1(t)x) ≤ |f(S1(t)x)− f(S1(t)xk′)|+ f(S1(t)xk′)

<
ε

2
+ min(f) +

ε

2
= min(f) + ε .

�

Instead of assuming A+A′ to be maximal monotone, one can choose A′ satisfying
additional conditions such that A+A′ is maximal monotone operator. In Theorem
2, we use our perturbation result of [9] to replace (5) of Theorem 3.5 by some
suitable conditions.
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Theorem 3.6. Let A and f satisfy (A1)-(A3). Then for all ε > 0, there exists
δ > 0 such that for all A′ satisfying:

(1) A′ is single valued, hemicontinuous and monotone on D(A),
(2) D(A) ⊆ D(A′),
(3) A′ is bounded on bounded subsets of D(A),
(4) A′x0 = 0,
(5) sup

{x∈D(A):‖x−x0‖≤ε−1}
‖A′x‖ < δ,

we have A1 = A + A′ maximal monotone, and the semigroup {S1(t)}t≥0 generated
by A1 has the property that for every x ∈ {x ∈ D(A) : ‖x− x0‖ < ε−1} there exists
T ≥ 0 such that

f(S1(t)x) ≤ min(f) + ε ∀ t ≥ T .

Proof. By [9, Proposition 4], 1,2,3 and (A3), imply that A + A′ is maximal mono-
tone. By Theorem 3.5 we have our conclusion. �

Acknowledgments. The author is indebted to B. Calvert for his assistance and
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