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GREEN’S FUNCTION AND EXISTENCE OF SOLUTIONS FOR A
FUNCTIONAL FOCAL DIFFERENTIAL EQUATION

DOUGLAS R. ANDERSON, TYLER O. ANDERSON, MATHEW M. KLEBER

Abstract. We determine Green’s function for a third-order three-point bound-

ary-value problem of focal type and determine conditions on the coefficients
and boundary points to ensure its positivity. We then apply this in the de-

termination of the existence of positive solutions to a related higher-order

functional differential equation.

1. finding green’s function

Since at least the time of Chazy’s attempt [5] to completely classify all third-order
differential equations of certain form, analysts have been fascinated by the study of
third-order differential equations in the pure sense, but also in the applied sense, as
in Gamba and Jüngel [8]. Here we will be concerned initially with a certain class
of third-order differential equations, namely the homogeneous three-point mixed
boundary-value type given by

x′′′(t) = 0, t1 ≤ t ≤ t3 (1.1)

αx(t1)− βx′(t1) = 0 (1.2)

γx(t2) + δx′(t2) = 0

x′′(t3) = 0.

Here we assume
(i) t1 < t2 < t3 are real numbers;

(ii) α, β, γ ≥ 0;
(iii) k := αδ + βγ + αγ(t2 − t1) 6= 0;
(iv) δ > max{γ(t3 − t2),

k(t3−t1)
2

2(t2−t1)[α(t3−t1)+β] −
γ
2 (t2 − t1)}; see Lemma 1.1 and

Theorem 2.1.
This is a generalization of the third-order, three-point, right-focal boundary value
problem found in [1, 2, 3, 9], where α = δ = 1 and β = γ = 0. We prove the
existence of and find an explicit formula for Green’s function associated with (1.1),
(1.2); for more on Green’s functions and their applications, see [12].
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Lemma 1.1. The number k satisfies

k = αδ + βγ + αγ(t2 − t1) 6= 0 (1.3)

if and only if the boundary value problem (1.1), (1.2) has only the trivial solution.

Proof. A general solution of (1.1) is x(t) = k1t
2 + k2t+ k3. The condition at t = t3

implies that k1 = 0. The mixed boundary conditions at t1 and t2 lead to the two
equations

βk2 − α(t1k2 + k3) = 0

(t2γ + δ)k2 + γk3 = 0.

The determinant of the coefficients for this system is k. It follows that k2 = k3 = 0
if and only if k 6= 0. This implies the given boundary value problem (1.1), (1.2) has
only the trivial solution if and only if k 6= 0. �

Theorem 1.2. Assume for k given in (1.3) that k > 0. Then Green’s function for
the homogeneous problem (1.1) satisfying the boundary conditions (1.2) is given via

g(t, s) =


s ∈ [t1, t2] :

{
u1(t, s) : t ≤ s

v1(t, s) : t ≥ s

s ∈ [t2, t3] :

{
u2(t, s) : t ≤ s

v2(t, s) : t ≥ s

(1.4)

for t, s ∈ [t1, t3], where

u1(t, s) :=
1
k

(s− t1)[α(t− t1) + β]
[
δ +

γ

2
(2t2 − t1 − s)

]
− 1

2
(t− t1)2,

v1(t, s) := u1(t, s) +
1
2
(t− s)2 =

1
2k

(s− t1)[α(s− t1) + 2β][γ(t2 − t) + δ],

u2(t, s) :=
1
k

[α(t− t1) + β]
[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
− 1

2
(t− t1)2,

v2(t, s) := u2(t, s) +
1
2
(t− s)2.

Proof. Note that g(t, s) is well defined for all (t, s) ∈ [t1, t3] × [t1, t3]. First, check
that g satisfies the boundary conditions (1.2). For convenience we note that

∂

∂t
g(t, s) =


s ∈ [t1, t2] :

{
α
k (s− t1)

[
δ + γ

2 (2t2 − t1 − s)
]
− t+ t1

α
k (s− t1)

[
δ + γ

2 (2t2 − t1 − s)
]
− s+ t1

s ∈ [t2, t3] :

{
α
k

[
δ(t2 − t1) + γ

2 (t2 − t1)2
]
− t+ t1

α
k

[
δ(t2 − t1) + γ

2 (t2 − t1)2
]
− s+ t1

and

∂2

∂t2
g(t, s) =


s ∈ [t1, t2] :

{
−1 : t < s

0 : t > s

s ∈ [t2, t3] :

{
−1 : t < s

0 : t > s,

for fixed s; in the rest of this proof we will employ the shorthand g′ and g′′ for these
two expressions.
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For t = t1 and s ∈ [t1, t2]:

αg(t1, s)− βg′(t1, s) = αu1(t1, s)− βu′1(t1, s)

=
αβ

k
(s− t1)

[
δ +

γ

2
(2t2 − t1 − s)

]
− βα

k
(s− t1)

[
δ +

γ

2
(2t2 − t1 − s)

]
= 0.

For t = t1 and s ∈ [t2, t3]:

αg(t1, s)− βg′(t1, s) = αu2(t1, s)− βu′2(t1, s)

=
αβ

k

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
− βα

k

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
= 0.

For t = t2 and s ∈ [t1, t2]:

γg(t2, s) + δg′(t2, s) = γv1(t2, s) + δv′1(t2, s)

=
γ

2
[(t2 − s)2 − (t2 − t1)2]

+
γ

k
(s− t1)[α(t2 − t1) + β]

[
δ +

γ

2
(2t2 − t1 − s)

]
+ δ(t1 − s) +

δα

k
(s− t1)

[
δ +

γ

2
(2t2 − t1 − s)

]
=
γ

2
(2t2 − t1 − s)(t1 − s) + δ(t1 − s)

+ (s− t1)
[
δ +

γ

2
(2t2 − t1 − s)

] k
k

= 0.

For t = t2 and s ∈ [t2, t3]:

γg(t2, s) + δg′(t2, s) = γu2(t2, s) + δu′2(t2, s)

=
γ

k
[α(t2 − t1) + β]

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
− γ

2
(t2 − t1)2 + δ(t1 − t2)

+
δα

k

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
= 0.

Finally, differentiating the expression g′(t, s) with respect to t shows that g′′(t3, s) =
0 for any s ∈ [t1, t3]. Thus, g as in (1.4) satisfies the boundary conditions (1.2).

Now, for any function f continuous on [t1, t3], define

x(t) :=
∫ t3

t1

g(t, s)f(s)ds.
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As shown above, this x satisfies the boundary conditions (1.2) via g. We will show
that x′′′(t) = f(t). Note that for t ∈ [t1, t2],

x′′(t) =
(∫ t2

t1

+
∫ t3

t2

)
g′′(t, s)f(s)ds

=
(∫ t

t1

+
∫ t2

t

)
g′′(t, s)f(s)ds+

∫ t3

t2

(−1)f(s)ds

=
∫ t

t1

(0)f(s)ds+
∫ t2

t

(−1)f(s)ds−
∫ t3

t2

f(s)ds

=
∫ t

t3

f(s)ds,

so that x′′′(t) = f(t) using the Fundamental Theorem of Calculus. Likewise for
t ∈ [t2, t3],

x′′(t) =
∫ t2

t1

(0)f(s)ds+
∫ t

t2

(0)f(s)ds−
∫ t3

t

f(s)ds

again implies that x′′′(t) = f(t). Therefore g as given in (1.4) is Green’s function
for (1.1), (1.2). �

2. positivity of green’s function

Theorem 2.1. Assume k > 0. If

δ > max
{
γ(t3 − t2),

k(t3 − t1)2

2(t2 − t1)[α(t3 − t1) + β]
− γ

2
(t2 − t1)

}
,

then Green’s function as given in (1.4) satisfies g(t, s) > 0 on (t1, t3]× (t1, t3].

Proof. Note that g(t, t1) = 0 for all t ∈ [t1, t3]. We proceed by cases on the two
branches of Green’s function (1.4).
Case I: Let s ∈ (t1, t2]. Then

g(t1, s) = u1(t1, s) =
β

k
(s− t1)

[
δ +

γ

2
(2t2 − t1 − s)

]
≥ 0,

and

∂

∂t
g(t, s) =

∂

∂t
u1(t, s) =

α

k
(s− t1)

[
δ +

γ

2
(2t2 − t1 − s)

]
− t+ t1 ≥ 0

for t ∈ [t1, τ(s)]; here

τ(s) :=
α

k
(s− t1)

[
δ +

γ

2
(2t2 − t1 − s)

]
+ t1 ≤ s (2.1)

for s ∈ (t1, t2], since τ(s) = s only if s = t1 − 2β
α or s = t1, and β ≥ 0. For t ≥ s,

∂

∂t
g(t, s) =

∂

∂t
v1(t, s) = τ(s)− s < 0,
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so that g is increasing in t on [t1, τ(s)], decreasing in t on [τ(s), t3], τ as defined in
(2.1). It follows that g(t, s) > 0 on (t1, t3]× (t1, t2] if g(t3, s) > 0 for these s:

g(t3, s) = v1(t3, s)

=
1
k

(s− t1)[α(t3 − t1) + β]
[
δ +

γ

2
(2t2 − t1 − s)

]
− 1

2
(t3 − t1)2 +

1
2
(t3 − s)2

=
1
2k

(s− t1)[α(s− t1) + 2β][δ + γ(t2 − t3)].

From this expression we see that
∂

∂s
v1(t3, s) =

1
k

[α(s− t1) + β][δ + γ(t2 − t3)] > 0

if δ > γ(t3 − t2); this is the first condition on δ mentioned in the theorem. Since
v1(t3, t1) = 0 and v1(t3, s) is increasing in s, v1(t3, s) > 0 for all s ∈ (t1, t2].
Consequently, g(t, s) > 0 for (t, s) ∈ (t1, t3]× (t1, t2]. In addition, we note for later
use that

0 < g(t, s) ≤ g(τ(s), s)
for (t, s) ∈ (t1, t3]× (t1, t2].
Case II: Now let s ∈ [t2, t3]. For t ≤ s,

∂

∂t
g(t, s) =

∂

∂t
u2(t, s)

=
α

k

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
+ t1 − t

= τ(t2)− t ≥ 0

if t ≤ τ(t2), τ as in (2.1). Note that τ(t2) < t2 ≤ s here. As a result we have that

0 ≤ β

k

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
= u2(t1, s) ≤ g(t, s)

for all (t, s) ∈ [t1, τ(t2)] × [t2, t3]. For t ∈ [τ(t2), s], g is then decreasing in t, and
for t ≥ s,

∂

∂t
g(t, s) =

∂

∂t
v2(t, s)

=
α

k

[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
+ t1 − s

= τ(t2)− s < 0

as mentioned previously. Therefore g is increasing in t on [t1, τ(t2)] and decreasing
in t on [τ(t2), t3], with a maximum at g(τ(t2), s). Again we check to see that
g(t3, s) > 0 for s ∈ [t2, t3]:

g(t3, s) = v2(t3, s)

=
1
k

[α(t3 − t1) + β]
[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
− 1

2
(t3 − t1)2 +

1
2
(t3 − s)2.

As a function of s we have
∂

∂s
g(t3, s) =

∂

∂s
v2(t3, s) = s− t3 ≤ 0



6 D. R. ANDERSON, T. O. ANDERSON, M. M. KLEBER EJDE-2006/12

for s ∈ [t2, t3]; in other words, g(t3, t3) ≤ g(t3, s) for these s. To ensure that

g(t3, t3) =
1
k

[α(t3 − t1) + β]
[
δ(t2 − t1) +

γ

2
(t2 − t1)2

]
− 1

2
(t3 − t1)2

is positive, take

δ >
k(t3 − t1)2

2(t2 − t1)[α(t3 − t1) + β]
− γ

2
(t2 − t1);

this is the second condition on δ mentioned in the theorem. (The fraction in this last
expression is a finite real number, since by (1.3) α and β cannot both be zero.) �

3. functional focal problem

Letting γ = 0 and δ = 1, we now apply Green’s function and its properties from
the first two sections to an investigation of the existence of positive solutions to the
higher-order, three-point functional problem

x(n)(t) = f(t, x(t+ θ)), t1 ≤ t ≤ t3, −τ ≤ θ ≤ 0 (3.1)

x(i)(t1) = 0, 0 ≤ i ≤ n− 4, n ≥ 4

αx(n−3)(t)− βx(n−2)(t) = σ(t), t1 − τ ≤ t ≤ t1

x(n−2)(t2) = x(n−1)(t3) = 0. (3.2)

Here we assume

(i) t1 < t2 < t3;
(ii) α, β > 0, t3 − t1 ≥ τ ≥ 0, and θ ∈ [−τ, 0] is constant;

(iii) σ : [t1 − τ, t1] → R is continuous with σ(t1) = 0;
(iv) f : R2 → R is continuous and nonnegative for x ≥ 0.

For the rest of this paper we also have the assumptions

(A1) G(t, s) is Green’s function for the differential equation

u(n)(t) = 0, t ∈ (t1, t3)

subject to the boundary conditions (3.2) with τ = 0.
(A2) g(t, s) is Green’s function for the differential equation

u′′′(t) = 0, t ∈ (t1, t3)

subject to the boundary conditions

αu(t1)− βu′(t1) = 0

u′(t2) = u′′(t3) = 0

for α, β as in (ii).
(A3) ‖y‖[u,v] := sup

u≤x≤v
|y(n−3)(x)|.

(A4) For Ξ := {s ∈ [t1, t3] : t1 ≤ s+ θ ≤ t3}, the set

Ξh := {s ∈ Ξ : t2 − h ≤ s+ θ ≤ t2 + h}

has nonzero measure for some h ∈ (0, t3 − t2).
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The corresponding Green’s function for the homogeneous problem u′′′(t) = 0
satisfying the boundary conditions (3.3) is given in (1.4), rewritten here for conve-
nience as

g(t, s) =


s ∈ [t1, t2] :

{
1
2 (t− t1)(2s− t− t1) + β

α (s− t1) : t ≤ s
1
2 (s− t1)2 + β

α (s− t1) : s ≤ t

s ∈ [t2, t3] :

{
1
2 (t− t1)(2t2 − t− t1) + β

α (t2 − t1)
1
2 (t− t1)(2t2 − t− t1) + β

α (t2 − t1) + 1
2 (t− s)2

(3.3)

Remark 3.1. As in Theorem 2.1, if
β

α
(t2 − t1) >

1
2
(t3 − t1)(t3 + t1 − 2t2),

then g(t, s) > 0 for all t ∈ (t1, t3], s ∈ (t1, t3]. Note that if the boundary points
satisfy

t3 − t2 < t2 − t1, (3.4)
then the above inequality holds for any choice of α, β > 0. Thus throughout this
section we assume that (3.4) holds. Moreover, as in [1, Lemma 3] or [9, Lemma 1],
we have the following boundedness result.

Lemma 3.2. For all t, s ∈ [t1, t3],

`(t)g(t2, s) ≤ g(t, s) ≤ g(t2, s) (3.5)

where

`(t) :=
α(t− t1)(2t2 − t− t1) + 2β(t2 − t1)

α(t2 − t1)2 + 2β(t2 − t1)
. (3.6)

Remark 3.3. The following discussion is similar to that found in [11] for a two-
point problem on the unit interval. If x is a solution of (3.1), (3.2), it can be written
as

x(t) =

{
x(−τ ; t) t1 − τ ≤ t ≤ t1∫ t3

t1
G(t, s)f(s, x(s+ θ))ds t1 ≤ t ≤ t3

where x(−τ ; t) satisfies

x(n−3)(−τ ; t) = e
α
β (t−t1)x(n−3)(t1) +

1
β

∫ t1

t

e
α
β (t−s)σ(s)ds

for t ∈ [t1 − τ, t1].
Now assume that u0 is the solution of (3.1), (3.2) with f ≡ 0. Then u0 satisfies

u
(n−3)
0 (t) =

{
1
β

∫ t1
t
e

α
β (t−s)σ(s)ds t1 − τ ≤ t ≤ t1

0 t1 ≤ t ≤ t3.
(3.7)

If x is any solution of (3.1), (3.2) set u(t) := x(t) − u0(t). Then u(t) ≡ x(t) on
[t1, t3], and u satisfies

u(n−3)(t) =

{
e

α
β (t−t1)u(n−3)(t1) t1 − τ ≤ t ≤ t1∫ t3
t1
g(t, s)f(s, u(s+ θ) + u0(s+ θ))ds t1 ≤ t ≤ t3.

But this implies

u(t) =

{(
β
α

)n−3
e

α
β (t−t1)u(n−3)(t1) t1 − τ ≤ t ≤ t1∫ t3

t1
G(t, s)f(s, u(s+ θ) + u0(s+ θ))ds t1 ≤ t ≤ t3.
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4. Existence of at Least One Positive Solution

As mentioned in the previous section, assume (i)−(iv) and (A1)−(A4) hold. We
are concerned with proving the existence of positive solutions of the higher-order
nonlinear boundary value problem (3.1), (3.2); for related work on the existence of
positive solutions, see [6, 7, 10]. In light of the above discussion in Remark 3.3, the
solutions of (3.1), (3.2) can be found using the fixed points of the operator A with
domain Cn−3[t1 − τ, t3] defined by

Au(t) =

{(
β
α

)n−3
e

α
β (t−t1)u(n−3)(t1) t1 − τ ≤ t ≤ t1∫ t3

t1
G(t, s)f(s, u(s+ θ) + u0(s+ θ))ds t1 ≤ t ≤ t3.

If u = Au, then a solution x of (3.1), (3.2) is given by x = u+u0, where u0 satisfies
(3.7).

Remark 4.1. In the following discussion we will need an h ∈ (0, t3 − t2) to satisfy
(A4); note that

`(t2 + h) = `(t2 − h) =
α(t2 + h− t1)(t2 − h− t1) + 2β(t2 − t1)

α(t2 − t1)2 + 2β(t2 − t1)
(4.1)

for all h ∈ (0, t3 − t2), where ` is given in (3.6), and `(t) ≥ `(t2 + h) for all
t ∈ [t2 − h, t2 + h]. Moreover, let k,m > 0 such that

k−1 :=
∫ t3

t1

g(t2, s)ds

=
1
6
(t2 − t1)2(3t3 − 2t2 − t1) +

β

2α
(t2 − t1)(2t3 − t2 − t1)

and
m−1 :=

∫
Ξh

g(t2, s) ds. (4.2)

Finally, set
M0 := ‖u0‖[t1−τ,t3] (4.3)

for u0 as in (3.7).

We will employ the following fixed point theorem due to Krasnoselskii [13].

Theorem 4.2. Let E be a Banach space, P ⊆ E be a cone, and suppose that Ω1,
Ω2 are bounded open balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose further
that A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \ Ω1).

Theorem 4.3. Assume (i) − (iv) and (A1) − (A4) hold. Let k,m,M0 be as in
(4.2), (4.2), (4.3), respectively, and suppose the following conditions are satisfied.

(C1) There exists a p > 0 such that f(t, w) ≤ kp for t ∈ [t1, t3] and 0 ≤ ‖w‖ ≤
p+M0.

(C2) There exists a q > p such that f(t, w) ≥ mq for t ∈ Ξh and q`(t2 + h) ≤
‖w‖ ≤ q, for h ∈ (0, t3 − t2) and Ξh as in (A4).

Then system (3.1), (3.2) has a positive solution x such that ‖x‖[t1−τ,t3] lies between
max{0, p−M0} and q +M0.
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Proof. Many of the techniques employed here are as in [10, 11]. Let B denote the
Banach space Cn−3[t1 − τ, t3] with the norm

‖u‖[t1−τ,t3] = sup
t∈[t1−τ,t3]

|u(n−3)(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : min
t∈[t2−h,t2+h]

u(n−3)(t) ≥ `(t2 + h)‖u‖[t1−τ,t3]}.

Consider the mapping A : P → B via

Au(t) =

{(
β
α

)n−3
e

α
β (t−t1)u(n−3)(t1) t1 − τ ≤ t ≤ t1∫ t3

t1
G(t, s)f(s, u(s+ θ) + u0(s+ θ))ds t1 ≤ t ≤ t3.

Then

(Au)(n−3)(t) =

{
e

α
β (t−t1)

∫ t3
t1
g(t1, s)f(s, u(s+ θ) + u0(s+ θ))ds∫ t3

t1
g(t, s)f(s, u(s+ θ) + u0(s+ θ))ds,

(4.4)

so that (Au)(n−3)(t) ≤ (Au)(n−3)(t1) for t1 − τ ≤ t ≤ t1. In other words,
‖Au‖[t1−τ,t3] = ‖Au‖[t1,t3]. It follows for h ∈ (0, t3− t2) and t ∈ [t2−h, t2 +h] that

(Au)(n−3)(t) =
∫ t3

t1

g(t, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥ `(t)
∫ t3

t1

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥ `(t2 + h)‖Au‖[t1−τ,t3] (4.5)

by properties of Green’s function (3.5), so that A : P → P.
For 0 < p < q as in the statement of the theorem, define open sets

Ωp = {u ∈ B : ‖u‖[t1−τ,t3] < p}, Ωq = {u ∈ B : ‖u‖[t1−τ,t3] < q};

then 0 ∈ Ωp ⊂ Ωq. If u ∈ P ∩ ∂Ωp, then ‖u‖ = p and

|u(n−3)(t) + u
(n−3)
0 (t)| ≤ p+M0 (4.6)

for all t ∈ [t1, t3]. As a result,

‖Au‖ =
∫ t3

t1

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

≤ kp

∫ t3

t1

g(t2, s) ds = p = ‖u‖

using (C1) and (4.2). Thus, ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp.
Similarly, let u ∈ P ∩ ∂Ωq, so that ‖u‖ = q. Then for s ∈ Ξh,

u(n−3)(s+ θ) ≥ min
t∈[t2−h,t2+h]

u(n−3)(t) ≥ ‖u‖`(t2 + h)

for all h ∈ (0, t3 − t2) and `(·) as in (4.1). Consequently,

q`(t2 + h) ≤ u(n−3)(s+ θ) + u
(n−3)
0 (s+ θ) ≤ q (4.7)
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for s ∈ Ξh, since u(n−3)
0 ≡ 0 on [t1, t3]. It follows that

‖Au‖ =
∫ t3

t1

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥
∫

Ξh

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥ mq

∫
Ξh

g(t2, s)ds = q = ‖u‖

by (C2) and (4.2). Consequently, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωq. By Theorem 4.2,
A has a fixed point u ∈ P ∩ (Ωq \ Ωp) with

p ≤ ‖u‖ ≤ q.

We conclude that a positive solution of (3.1), (3.2) is x = u + u0 for u0 satisfying
(3.7), such that p−M0 ≤ ‖x‖ ≤ q +M0, for M0 as in (4.3). �

5. Existence of at Least Two Positive Solutions

In this section we prove the existence of at least two positive solutions to (3.1),
(3.2), again under certain restrictions on the nonlinearity f . The following lemma,
pertinent to the discussion that follows, in easily proven using the branches of
Green’s function (3.3).

Lemma 5.1. Let h ∈ (0, t3− t2). Then g(t2 +h, s) ≥ g(t2−h, s) for all s ∈ [t1, t3].

The following is the Avery-Henderson Fixed Point Theorem [4], that we will
employ to prove the existence of two solutions. Notationally, the cone P has subsets
of the form P (χ, c) := {u ∈ P : χ(u) < c} for a given functional χ.

Theorem 5.2. Let P be a cone in a real Banach space B. Let η and χ be increas-
ing, nonnegative continuous functionals on P. Let ψ be a nonnegative continuous
functional on P with ψ(0) = 0 such that, for some positive constants c and M ,

χ(u) ≤ ψ(u) ≤ η(u) and ||u|| ≤Mχ(u), ∀u ∈ P (χ, c).

Suppose that there exist positive numbers a and b with a < b < c such that

ψ(λu) ≤ λψ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P (ψ, b).

Suppose A : P (χ, c) → P is a completely continuous operator satisfying

(i) χ(Au) > c for all u ∈ ∂P (χ, c);
(ii) ψ(Au) < b for all u ∈ ∂P (ψ, b);
(iii) P (η, a) 6= ∅ and η(Au) > a for all u ∈ ∂P (η, a).

Then A has at least two fixed points u1 and u2 such that

a < η(u1) with ψ(u1) < b and b < ψ(u2) with χ(u2) < c.

Again let B denote the Banach space Cn−3[t1 − τ, t3] with the norm

‖u‖[t1−τ,t3] = sup
t∈[t1−τ,t3]

|u(n−3)(t)|.
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Define the cone P ⊂ B by

P =
{
u ∈ B : u(n−3) is nondecreasing on [t1, t2],

u(n−3) is nonincreasing on [t2, t3];

u is nonnegative valued on [t1, t3];

u(n−3)(t2 + h) ≥ u(n−3)(t2 − h), and

min
t∈[t2−h,t2+h]

u(n−3)(t) ≥ `(t2 + h)‖u‖[t1−τ,t3]

}
.

(5.1)

Finally, let the nonnegative increasing continuous functionals χ, ψ, and η be defined
on the cone P by

χ(u) = min
t∈[t2−h,t2+h]

u(n−3)(t) = u(n−3)(t2 − h),

ψ(u) = max
t∈[t1,t2−h]∪[t2+h,t3]

u(n−3)(t) = u(n−3)(t2 + h),

η(u) = max
t∈[t2−h,t2+h]

u(n−3)(t) = u(n−3)(t2).

Observe that, for each u ∈ P,

χ(u) ≤ ψ(u) ≤ η(u), (5.2)

‖u‖ = u(n−3)(t2) ≤
1

`(t2 + h)
u(n−3)(t2) =

1
`(t2 + h)

η(u), (5.3)

‖u‖ ≤ 1
`(t2 + h)

u(n−3)(t2 − h) =
1

`(t2 + h)
χ(u) ≤ 1

`(t2 + h)
ψ(u). (5.4)

Theorem 5.3. Assume (i) − (iv) and (A1)-(A4) hold. Let `(t2 + h), m, and M0

be as in (4.1), (4.2), and (4.3), respectively. Suppose there exist positive numbers
a, b, and c such that 0 < a < b < c, and suppose a continuous function f satisfies
the following conditions:

(i) f(s, w) ≥ 0 for all s ∈ [t1, t3] and ‖w‖ ∈
[
0, c

`(t2+h) +M0

]
,

(ii) f(s, w) > am for all s ∈ Ξh and ‖w‖ ∈ [a, a
`(t2+h) +M0],

(iii) f(s, w) < bR t3
t1

g(t2+h,s)ds
for all s ∈ [t1, t3] and ‖w‖ ∈ [0, b

`(t2+h) +M0],

(iv) f(s, w) > cm
`(t2+h) for s ∈ Ξh and ‖w‖ ∈ [c, c

`(t2+h) +M0].

Then, the higher-order boundary value problem (3.1), (3.2), has at least two positive
solutions x1 and x2 such that

max
t∈[t2−h,t2+h]

x
(n−3)
1 (t) > a with max

t∈[t1,t2−h]∪[t2+h,t3]
x

(n−3)
1 (t) < b,

and

max
t∈[t1,t2−h]∪[t2+h,t3]

x
(n−3)
2 (t) > b with min

t∈[t2−h,t2+h]
x

(n−3)
2 (t) < c.

Proof. As in the previous section, the solutions of (3.1), (3.2) can be found from
the fixed points of the operator A, defined by

Au(t) =

{(
β
α

)n−3
e

α
β (t−t1)u(n−3)(t1) t1 − τ ≤ t ≤ t1∫ t3

t1
G(t, s)f(s, u(s+ θ) + u0(s+ θ))ds t1 ≤ t ≤ t3,
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where u0 satisfies (3.7). Note that if u ∈ P, then Au(t) ≥ 0 on [t1, t3]. Using the
properties of g in (3.3), (4.4) implies that (Au)(n−3) is nondecreasing on [t1, t2] and
nonincreasing on [t2, t3]. ¿From Lemma 5.1 it follows that

(Au)(n−3)(t2 + h) ≥ (Au)(n−3)(t2 − h),

and

min
t∈[t2−h,t2+h]

(Au)(n−3)(t) ≥ `(t2 + h)‖Au‖[t1−τ,t3]

as in (4.5). Therefore A : P → P. For any u ∈ P, (5.2) and (5.4) imply that

χ(u) ≤ ψ(u) ≤ η(u),

‖u‖ ≤ 1
`(t2 + h)

χ(u).

It is clear that ψ(0) = 0, and for all u ∈ P, λ ∈ [0, 1] we have

ψ(λu) = max
t∈[t1,t2−h]∪[t2+h,t3]

(λu)(n−3)(t)

= λ max
t∈[t1,t2−h]∪[t2+h,t3]

u(n−3)(t) = λψ(u).

Since 0 ∈ P and a > 0, P (η, a) 6= ∅.
In the following claims, we verify the remaining conditions of Theorem 5.2.

Claim 1. If u ∈ ∂P (η, a), then η(Au) > a: Note that u ∈ ∂P (η, a) and (5.3) yield
a = ‖u‖ ≤ a

`(t2+h) . By hypothesis (ii),

η(Au) = max
t∈[t2−h,t2+h]

∫ t3

t1

g(t, s)f(s, u(s+ θ) + u0(s+ θ))ds

=
∫ t3

t1

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥
∫

Ξh

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

> am

∫
Ξh

g(t2, s)ds = a.

Claim 2. If u ∈ ∂P (ψ, b), then ψ(Au) < b: In this case u ∈ ∂P (ψ, b) implies that
b ≤ ‖u‖ ≤ b

`(t2+h) by (5.4), so that ‖u+ u0‖ ≤ b
`(t2+h) +M0. We then get

ψ(Au) = max
t∈[t1,t2−h]∪[t2+h,t3]

∫ t3

t1

g(t, s)f(s, u(s+ θ) + u0(s+ θ))ds

=
∫ t3

t1

g(t2 + h, s)f(s, u(s+ θ) + u0(s+ θ))ds

<
b∫ t3

t1
g(t2 + h, s)ds

∫ t3

t1

g(t2 + h, s)ds = b

by hypothesis (iii).
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Claim 3. If u ∈ ∂P (χ, c), then χ(Au) > c: Since u ∈ ∂P (χ, c), from (5.4) we have
that min

t∈[t2−h,t2+h]
u(n−3)(t) = c and c ≤ ‖u‖ ≤ c

`(t2+h) . Thus,

χ(Au) = min
t∈[t2−h,t2+h]

∫ t3

t1

g(t, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥ min
t∈[t2−h,t2+h]

`(t)
∫ t3

t1

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

≥ `(t2 + h)
∫

Ξh

g(t2, s)f(s, u(s+ θ) + u0(s+ θ))ds

> `(t2 + h)
cm

`(t2 + h)

∫
Ξh

g(t2, s)ds = c

by hypothesis (iv), using arguments as in Claim 1. Therefore the hypotheses of
Theorem 5.2 are satisfied and there exist at least two positive fixed points u1 and
u2 of A in P (χ, c). Thus, the higher-order boundary value problem (3.1), (3.2), has
at least two positive solutions x1 and x2 such that

a < η(x1) with ψ(x1) < b ,

b < ψ(x2) with χ(x2) < c

since x ≡ u on [t1, t3] as shown in Remark 3.3. �
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