Electronic Journal of Differential Equations, Vol. 2005(2005), No. 94, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND THE FUČÍK SPECTRUM

PETR TOMICZEK

ABSTRACT. We prove the existence of solutions to the nonlinear problem

$$u''(x) + \lambda_{+}u^{+}(x) - \lambda_{-}u^{-}(x) + g(x, u(x)) = f(x), \quad x \in (0, \pi),$$
$$u(0) = u(\pi) = 0$$

where the point $[\lambda_+, \lambda_-]$ is a point of the Fučík spectrum and the nonlinearity g(x, u(x)) satisfies a potential Landesman-Lazer type condition. We use a variational method based on the generalization of the Saddle Point Theorem.

1. INTRODUCTION

We investigate the existence of solutions for the nonlinear boundary-value problem $u''(x) + \lambda_+ u^+(x) - \lambda_- u^-(x) + a(x, u(x)) = f(x)$ $x \in (0, -)$

$$u''(x) + \lambda_{+}u^{+}(x) - \lambda_{-}u^{-}(x) + g(x, u(x)) = f(x), \quad x \in (0, \pi),$$

$$u(0) = u(\pi) = 0.$$
 (1.1)

Here $u^{\pm} = \max\{\pm u, 0\}, \lambda_+, \lambda_- \in \mathbb{R}$, the nonlinearity $g: (0, \pi) \times \mathbb{R} \mapsto \mathbb{R}$ is a Caratheodory function and $f \in L^1(0, \pi)$. For $g \equiv 0$ and $f \equiv 0$ problem (1.1) becomes

$$u''(x) + \lambda_{+}u^{+}(x) - \lambda_{-}u^{-}(x) = 0, \quad x \in (0,\pi),$$

$$u(0) = u(\pi) = 0.$$
 (1.2)

We define $\Sigma = \{ [\lambda_+, \lambda_-] \in \mathbb{R}^2 : (1.2) \text{ has a nontrivial solution} \}$. This set is called the Fučík spectrum (see [2]), and can be expressed as $\Sigma = \bigcup_{j=1}^{\infty} \Sigma_j$ where

$$\begin{split} \Sigma_1 &= \left\{ [\lambda_+, \lambda_-] \in \mathbb{R}^2 : \ (\lambda_+ - 1)(\lambda_- - 1) = 0 \right\},\\ \Sigma_{2i} &= \left\{ [\lambda_+, \lambda_-] \in \mathbb{R}^2 : \ i \left(\frac{1}{\sqrt{\lambda_+}} + \frac{1}{\sqrt{\lambda_-}} \right) = 1 \right\},\\ \Sigma_{2i+1} &= \Sigma_{2i+1,1} \cup \Sigma_{2i+1,2} \quad \text{where} \\ \Sigma_{2i+1,1} &= \left\{ [\lambda_+, \lambda_-] \in \mathbb{R}^2 : \ i \left(\frac{1}{\sqrt{\lambda_+}} + \frac{1}{\sqrt{\lambda_-}} \right) + \frac{1}{\sqrt{\lambda_+}} = 1 \right\},\\ \Sigma_{2i+1,2} &= \left\{ [\lambda_+, \lambda_-] \in \mathbb{R}^2 : \ i \left(\frac{1}{\sqrt{\lambda_+}} + \frac{1}{\sqrt{\lambda_-}} \right) + \frac{1}{\sqrt{\lambda_-}} = 1 \right\}. \end{split}$$

²⁰⁰⁰ Mathematics Subject Classification. 35J70, 58E05, 49B27.

Key words and phrases. Resonance; eigenvalue; jumping nonlinearities; Fucik spectrum. ©2005 Texas State University - San Marcos.

Submitted November 26, 2004. Published August 29, 2005.

Partially supported by the Grant Agency of Czech Republic, MSM 4977751301.

We suppose that

$$[\lambda_{+}, \lambda_{-}] \in \Sigma_{m}, \text{ if } m \in \mathbb{N} \text{ is even}$$

$$[\lambda_{+}, \lambda_{-}] \in \Sigma_{m2}, \text{ if } m \in \mathbb{N} \text{ is odd}$$

and $\lambda_{-} < \lambda_{+} < (m+1)^{2}.$ (1.3)

FIGURE 1. Fučík spectrum

Remark 1.1. Assuming that $(m+1)^2 > \lambda_+ > \lambda_-$, if $[\lambda_+, \lambda_-] \in \Sigma_m$, $m \in \mathbb{N}$, then $\lambda_- > (m-1)^2$.

We define the potential of the nonlinearity g as

$$G(x,s) = \int_0^s g(x,t) \, dt$$

and

$$G_+(x) = \liminf_{s \to +\infty} \frac{G(x,s)}{s}, \quad G_-(x) = \limsup_{s \to -\infty} \frac{G(x,s)}{s}$$

We denote by φ_m a nontrivial solution of (1.2) corresponding to $[\lambda_+, \lambda_-]$ (see Remark 1.2). We assume that for any φ_m the following potential Landesman-Lazer type condition holds:

$$\int_0^{\pi} f(x)\varphi_m(x)\,dx < \int_0^{\pi} \left[G_+(x)(\varphi_m(x))^+ - G_-(x)(\varphi_m(x))^-\right]\,dx\,.$$
(1.4)

We suppose that the nonlinearity g is bounded, i.e. there exists $p(x) \in L^1(0,\pi)$ such that

$$|g(x,s)| \le p(x) \quad \text{for a.e. } x \in (0,\pi) \,, \, \forall s \in \mathbb{R}$$

$$(1.5)$$

 $\mathbf{2}$

and we prove the solvability of (1.1) in Theorem (3.1) below.

This article is inspired by a result in [3] where the author studies the case when g(x,s)/s lies (in some sense) between Σ_1 and Σ_2 and by a result in [1] with the classical Landesman-Lazer type condition [1, Corollary 2].

Remark 1.2. First we note that if m is even then two different functions $\varphi_{m1}, \varphi_{m2}$ of norm 1 correspond to the point $[\lambda_+, \lambda_-] \in \Sigma_m$. For example for $m = 2, \lambda_+ > \lambda_$ we have

$$\varphi_{21}(x) = \begin{cases} k_1 \sqrt{\lambda_-} \sin(\sqrt{\lambda_+}x), & x \in \langle 0, \pi/\sqrt{\lambda_+} \rangle, \\ -k_1 \sqrt{\lambda_+} \sin(\sqrt{\lambda_-}(x - \pi/\sqrt{\lambda_+})), & x \in \langle \pi/\sqrt{\lambda_+}, \pi \rangle, \end{cases}$$

where $k_1 > 0$, and

$$\varphi_{22}(x) = \begin{cases} -k_2 \sqrt{\lambda_+} \sin(\sqrt{\lambda_-}x), & x \in \langle 0, \pi/\sqrt{\lambda_-} \rangle, \\ k_2 \sqrt{\lambda_-} \sin(\sqrt{\lambda_+}(x - \pi/\sqrt{\lambda_-})), & x \in \langle \pi/\sqrt{\lambda_-}, \pi \rangle, \end{cases}$$

where $k_2 > 0$.

For $\lambda_+ = \lambda_- = 4$ we set $\varphi_{21}(x) = k_1 \sin 2x$ and $\varphi_{22}(x) = -k_2 \sin 2x$, where $k_1, k_2 > 0.$

FIGURE 2. Solutions corresponding to Σ_2

If m is odd, then $\Sigma_m = \Sigma_{m1} \cup \Sigma_{m2}$ and it corresponds only one function φ_{m1} od norm 1 to the point $[\lambda'_+, \lambda'_-] \in \Sigma_{m1}$, one function φ_{m2} of norm 1 to the point $[\lambda_+, \lambda_-] \in \Sigma_{m2}$, respectively.

For m = 3, $\lambda'_{+} > \lambda'_{-}$, $\lambda_{+} > \lambda_{-}$ we have

$$\varphi_{31}(x)$$

$$=\begin{cases} k_1\sqrt{\lambda'_{-}}\sin(\sqrt{\lambda'_{+}}x), & x \in \langle 0, \pi/\sqrt{\lambda'_{+}} \rangle, \\ -k_1\sqrt{\lambda'_{+}}\sin(\sqrt{\lambda'_{-}}(x-\pi/\sqrt{\lambda'_{+}})), & x \in \langle \pi/\sqrt{\lambda'_{+}}, \pi/\sqrt{\lambda'_{+}} + \pi/\sqrt{\lambda'_{-}} \rangle, \\ k_1\sqrt{\lambda'_{-}}\sin(\sqrt{\lambda'_{+}}(x-\pi/\sqrt{\lambda'_{+}} - \pi/\sqrt{\lambda'_{-}})), & x \in \langle \pi/\sqrt{\lambda'_{+}} + \pi/\sqrt{\lambda'_{-}}, \pi \rangle, \end{cases}$$

where $k_1 > 0$.

$$\varphi_{32}(x)$$

$$= \begin{cases} -k_2\sqrt{\lambda_+}\sin(\sqrt{\lambda_-}x), & x \in \langle 0, \pi/\sqrt{\lambda_-} \rangle, \\ k_2\sqrt{\lambda_-}\sin(\sqrt{\lambda_+}(x-\pi/\sqrt{\lambda_-})), & x \in \langle \pi/\sqrt{\lambda_-}, \pi/\sqrt{\lambda_-} + \pi/\sqrt{\lambda_+} \rangle, \\ -k_2\sqrt{\lambda_+}\sin(\sqrt{\lambda_-}(x-\pi/\sqrt{\lambda_-} - \pi/\sqrt{\lambda_+})), & x \in \langle \pi/\sqrt{\lambda_-} + \pi/\sqrt{\lambda_+}, \pi \rangle, \end{cases}$$

where $k_2 > 0$.

For $\lambda_{+} = \lambda_{-} = m^2$ we set $\varphi_{m1}(x) = k_1 \sin mx$, and $\varphi_{m2}(x) = -k_2 \sin mx$, where $k_1, k_2 > 0$ and from the condition (1.4) we obtain

$$\int_0^{\pi} f(x) \sin mx \, dx < \int_0^{\pi} \left[G_+(x) (\sin mx)^+ - G_-(x) (\sin mx)^- \right] \, dx$$

FIGURE 3. Solutions corresponding to Σ_3

and

$$\int_0^{\pi} f(x)(-\sin mx) \, dx < \int_0^{\pi} \left[G_+(x)(-\sin mx)^+ - G_-(x)(-\sin mx)^- \right] \, dx \, .$$

Hence it follows

$$\int_{0}^{\pi} \left[G_{-}(x)(\sin mx)^{+} - G_{+}(x)(\sin mx)^{-} \right] dx$$

$$< \int_{0}^{\pi} f(x)\sin mx \, dx < \int_{0}^{\pi} \left[G_{+}(x)(\sin mx)^{+} - G_{-}(x)(\sin mx)^{-} \right] dx \,.$$
(1.6)

We obtained the potential Landesman-Lazer type condition (see [6]).

Remark 1.3. We have

$$\langle v, \sin mx \rangle = \int_0^\pi v'(x)(\sin mx)' \, dx = m^2 \int_0^\pi v(x) \sin mx \, dx \quad \forall v \in H$$

(*H* is a Sobolev space defined below). Since and from the definition of the functions $\varphi_{m1}, \varphi_{m2}$ (see remark 1.2) it follows

$$\langle \varphi_{m1}, \sin mx \rangle > 0 \quad \text{and} \quad \langle \varphi_{m2}, \sin mx \rangle < 0.$$
 (1.7)

2. Preliminaries

Notation. We shall use the classical spaces $C(0,\pi)$, $L^p(0,\pi)$ of continuous and measurable real-valued functions whose *p*-th power of the absolute value is Lebesgue integrable, respectively. *H* is the Sobolev space of absolutely continuous functions $u: (0,\pi) \to \mathbb{R}$ such that $u' \in L^2(0,\pi)$ and $u(0) = u(\pi) = 0$. We denote by the symbols $\|\cdot\|$, and $\|\cdot\|_2$ the norm in *H*, and in $L^2(0,\pi)$, respectively. We denote $\langle \cdot, \cdot \rangle$ the pairing in the space *H*.

By a solution of (1.1) we mean a function $u \in C^1(0, \pi)$ such that u' is absolutely continuous, u satisfies the boundary conditions and the equations (1.1) holds a.e. in $(0, \pi)$.

Let $I: H \to \mathbb{R}$ be a functional such that $I \in C^1(H, \mathbb{R})$ (continuously differentiable). We say that u is a critical point of I, if

$$\langle I'(u), v \rangle = 0$$
 for all $v \in H$.

We say that γ is a critical value of I, if there is $u_0 \in H$ such that $I(u_0) = \gamma$ and $I'(u_0) = 0$.

We say that I satisfies Palais-Smale condition (PS) if every sequence (u_n) for which $I(u_n)$ is bounded in H and $I'(u_n) \to 0$ (as $n \to \infty$) possesses a convergent subsequence.

We study (1.1) by the use of a variational method. More precisely, we look for critical points of the functional $I: H \to \mathbb{R}$, which is defined by

$$I(u) = \frac{1}{2} \int_0^{\pi} \left[(u')^2 - \lambda_+ (u^+)^2 - \lambda_- (u^-)^2 \right] dx - \int_0^{\pi} \left[G(x, u) - fu \right] dx \,. \tag{2.1}$$

Every critical point $u \in H$ of the functional I satisfies

$$\int_0^{\pi} \left[u'v' - (\lambda_+ u^+ - \lambda_- u^-)v \right] dx - \int_0^{\pi} \left[g(x, u)v - fv \right] dx = 0 \quad \text{for all } v \in H.$$

Then u is also a weak solution of (1.1) and vice versa.

The usual regularity argument for ODE yields immediately (see Fučík [2]) that any weak solution of (1.1) is also a solution in the sense mentioned above.

We will use the following variant of the Saddle Point Theorem (see [4]) which is proved in Struwe [5, Theorem 8.4].

Theorem 2.1. Let S be a closed subset in H and Q a bounded subset in H with boundary ∂Q . Set $\Gamma = \{h : h \in \mathbf{C}(H, H), h(u) = u \text{ on } \partial Q\}$. Suppose $I \in C^1(H, \mathbb{R})$ and

- (i) $S \cap \partial Q = \emptyset$,
- (*ii*) $S \cap h(Q) \neq \emptyset$, for every $h \in \Gamma$,
- (iii) there are constants μ, ν such that $\mu = \inf_{u \in S} I(u) > \sup_{u \in \partial Q} I(u) = \nu$,
- (iv) I satisfies Palais-Smale condition.

Then the number

$$\gamma = \inf_{h \in \Gamma} \sup_{u \in Q} I(h(u))$$

defines a critical value $\gamma > \nu$ of I.

We say that S and ∂Q link if they satisfy conditions (i), (ii) of the theorem above.

We denote the first integral in the functional I by

$$J(u) = \int_0^{\pi} \left[(u')^2 - \lambda_+ (u^+)^2 - \lambda_- (u^-)^2 \right] dx \,.$$

Now we present a few results needed later.

Lemma 2.2. Let φ be a solution of (1.2) with $[\lambda_+, \lambda_-] \in \Sigma$, $\lambda_+ \ge \lambda_-$. We put $u = a\varphi + w$, $a \ge 0$, $w \in H$. Then the following relation holds

$$\int_0^{\pi} \left[(w')^2 - \lambda_+ w^2 \right] dx \le J(u) \le \int_0^{\pi} \left[(w')^2 - \lambda_- w^2 \right] dx \,. \tag{2.2}$$

Proof. We prove only the right inequality in (2.2), the proof of the left inequality is similar. Since φ is a solution of (1.2) we have

$$\int_0^{\pi} \varphi' w' \, dx = \int_0^{\pi} \left[\lambda_+ \varphi^+ w - \lambda_- \varphi^- w \right] \, dx \quad \text{for } w \in H \tag{2.3}$$

and

$$\int_0^{\pi} (\varphi')^2 \, dx = \int_0^{\pi} \left[\lambda_+ (\varphi^+)^2 + \lambda_- (\varphi^-)^2 \right] \, dx \,. \tag{2.4}$$

By (2.3) and (2.4), we obtain

$$J(u) = \int_{0}^{\pi} \left[((a\varphi + w)')^{2} - \lambda_{+} ((a\varphi + w)^{+})^{2} - \lambda_{-} ((a\varphi + w)^{-})^{2} \right] dx$$

$$= \int_{0}^{\pi} \left[(a\varphi')^{2} + 2a\varphi'w' + (w')^{2} - (\lambda_{+} - \lambda_{-})((a\varphi + w)^{+})^{2} - \lambda_{-} (a\varphi + w)^{2} \right] dx$$

$$= \int_{0}^{\pi} \left[(\lambda_{+} - \lambda_{-})(a\varphi^{+})^{2} + \lambda_{-} (a\varphi)^{2} + 2a((\lambda_{+} - \lambda_{-})\varphi^{+} + \lambda_{-}\varphi)w + (w')^{2} - (\lambda_{+} - \lambda_{-})((a\varphi + w)^{+})^{2} - \lambda_{-} ((a\varphi)^{2} + 2a\varphi w + w^{2}) \right] dx$$

$$= \int_{0}^{\pi} \left\{ (\lambda_{+} - \lambda_{-})[(a\varphi^{+})^{2} + 2a\varphi^{+}w - ((a\varphi + w)^{+})^{2}] + (w')^{2} - \lambda_{-}w^{2} \right\} dx.$$

(2.5)

For the function $(a\varphi^+)^2 + 2a\varphi^+w - ((a\varphi + w)^+)^2$ in the last integral in (2.5) we have

$$(a\varphi^{+})^{2} + 2a\varphi^{+}w - ((a\varphi + w)^{+})^{2}$$

=
$$\begin{cases} -((a\varphi + w)^{+})^{2} \le 0 & \varphi < 0 \\ -w^{2} \le 0 & \varphi \ge 0, a\varphi + w \ge 0 \\ a\varphi^{+}(a\varphi^{+} + w + w) \le 0 & \varphi \ge 0, a\varphi + w < 0. \end{cases}$$

By the assumption $\lambda_+ \geq \lambda_-$, we obtain the assertion of the Lemma 2.2.

Remark 2.3. It follows from the previous proof that we obtain the equality

$$J(u) = \int_0^\pi \left[(w')^2 - \lambda_- w^2 \right] dx$$

in (2.2) if $a\varphi + w \leq 0$ when $\varphi < 0$, and w = 0 when $\varphi \geq 0$. Consequently, if the equality holds and if w in span{ $\sin x, \ldots, \sin kx$ }, $k \in \mathbb{N}$, then w = 0.

3. Main result

Theorem 3.1. Under the assumptions (1.3), (1.4), and (1.5), Problem (1.1) has at least one solution in H.

Proof. First we suppose that m is even. We shall prove that the functional I defined by (2.1) satisfies the assumptions in Theorem 2.1. Let $\varphi_{m1}, \varphi_{m2}$ be the normalized solutions of (1.2) described above (see Remark 1.2).

Let H^- be the subspace of H spanned by functions $\sin x, \ldots, \sin(m-1)x$. We define $V \equiv V_1 \cup V_2$ where

$$V_1 = \{ u \in H : u = a_1 \varphi_{m1} + w, \ 0 \le a_1, \ w \in H^- \},$$

$$V_2 = \{ u \in H : u = a_2 \varphi_{m2} + w, \ 0 \le a_2, \ w \in H^- \}.$$

Let K > 0, L > 0 then we define $Q \equiv Q_1 \cup Q_2$ where

$$Q_1 = \{ u \in V_1 : 0 \le a_1 \le K, \|w\| \le L \},\$$
$$Q_2 = \{ u \in V_2 : 0 \le a_2 \le K, \|w\| \le L \}.$$

Let S be the subspace of H spanned by functions $\sin(m+1)x$, $\sin(m+2)x$,....

Next, we verify the assumptions of Theorem 2.1. We see that S is a closed subset in H and Q is a bounded subset in H.

(i) Firstly we note that for $z \in H^- \oplus S$ we have $\langle z, \sin mx \rangle = 0$. We suppose for contradiction that there is $u \in \partial Q \cap S$. Then

$$0 \stackrel{u \in S}{=} \langle u, \sin mx \rangle \stackrel{u \in \partial Q}{=} \langle a_i \varphi_{mi} + w, \sin mx \rangle \stackrel{w \in H^-}{=} a_i \langle \varphi_{mi}, \sin mx \rangle$$

i = 1, 2. From previous equalities and inequalities (1.7) it follows that $a_i = 0$, i = 1, 2 and u = w. For $u = w \in \partial Q$ we have ||u|| = L > 0 and we obtain a contradiction with $u \in H^- \cap S = \{o\}$.

(ii) We prove that $H = V \oplus S$. We can write a function $h \in H$ in the form

$$h = \sum_{i=1}^{m-1} b_i \sin ix + b_m \sin mx + \sum_{i=m+1}^{\infty} b_i \sin ix$$
$$= \overline{h} + b_m \sin mx + \widetilde{h}, \ b_i \in \mathbb{R},$$

 $i \in \mathbb{N}$. The inequalities (1.7) yield that there are constants $b_{m1}, b_{m2} > 0$ such that $\sin mx = b_{m1}(\varphi_{m1} - \overline{\varphi}_{m1} - \widetilde{\varphi}_{m1})$ and $-\sin mx = b_{m2}(\varphi_{m2} - \overline{\varphi}_{m2} - \widetilde{\varphi}_{m2})$. Hence we have for $b_m \ge 0$,

$$h = \overline{h} + b_m b_{m1} (\varphi_{m1} - \overline{\varphi}_{m1} - \widetilde{\varphi}_{m1}) + \widetilde{h}$$

= $\underbrace{(\overline{h} - b_m b_{m1} \overline{\varphi}_{m1} + \overline{b_m b_{m1}} \varphi_{m1})}_{\in V} + \underbrace{(\widetilde{h} - b_m b_{m1} \widetilde{\varphi}_{m1})}_{\in S}$.

Similarly for $b_m \leq 0$,

$$h = \overline{h} + |b_m|b_{m2}(\varphi_{m2} - \overline{\varphi}_{m2} - \widetilde{\varphi}_{m2}) + \overline{h}$$

= $\underbrace{(\overline{h} - |b_m|b_{m2}\overline{\varphi}_{m2} + \underbrace{|b_m|b_{m2}}_{\in V}\varphi_{m2})}_{\in V} + \underbrace{(\widetilde{h} - |b_m|b_{m2}\widetilde{\varphi}_{m2})}_{\in S}.$

We proved that H is spanned by V and S.

The proof of the assumption $S \cap h(Q) \neq \emptyset \quad \forall h \in \Gamma$ is similar to the proof in [5, example 8.2]. Let $\pi: H \to V$ be the continuous projection of H onto V. We have to show that $0 \in \pi(h(Q))$. For $t \in [0, 1]$, $u \in Q$ we define

$$h_t(u) = t\pi(h(u)) + (1-t)u$$
.

The function h_t defines a homotopy of $h_0 = id$ with $h_1 = \pi \circ h$. Moreover, $h_t | \partial Q = id$ for all $t \in [0, 1]$. Hence the topological degree $\deg(h_t, Q, 0)$ is well-defined and by homotopy invariance we have

$$\deg(\pi\circ h,Q,0)=\deg(\mathrm{id},Q,0)=1$$

Hence $0 \in \pi(h(Q))$, as needed.

(iii) Firstly, we note that by assumption (1.5), one has

$$\lim_{\|u\| \to \infty} \int_0^{\pi} \frac{G(x, u) - fu}{\|u\|^2} \, dx = 0 \,. \tag{3.1}$$

First we show that the infimum of functional I on the set S is a real number. We prove for this that

$$\lim_{\|u\| \to \infty} I(u) = \infty \quad \text{for all } u \in S \tag{3.2}$$

and I is bounded on bounded sets.

Because of the compact imbedding of H into $C(0,\pi)$ $(||u||_{C(0,\pi)} \leq c_1 ||u||)$, and of H into $L^2(0,\pi)$ $(||u||_2 \leq c_2 ||u||)$, and the assumption (1.5) one has

$$\begin{split} I(u) &= \frac{1}{2} \int_0^{\pi} \left[(u')^2 - \lambda_+ (u^+)^2 - \lambda_- (u^-)^2 \right] dx - \int_0^{\pi} \left[G(x, u) - fu \right] dx \\ &\leq \frac{1}{2} \left(\|u\|^2 + \lambda_+ \|u^+\|_2^2 + \lambda_- \|u^-\|_2^2 \right) + \int_0^{\pi} \left[\left(|p| + |f| \right) |u| \right] dx \\ &\leq \frac{1}{2} \left(\|u\|^2 + \lambda_+ c_2 \|u^+\|^2 + \lambda_- c_2 \|u^-\|^2 \right) + \left(\|p\|_1 + \|f\|_1 \right) c_1 \|u\| \,. \end{split}$$

Hence I is bounded on bounded subsets of S.

To prove (3.2), we argue by contradiction. We suppose that there is a sequence $(u_n) \subset S$ such that $||u_n|| \to \infty$ and a constant c_3 satisfying

$$\liminf_{n \to \infty} I(u_n) \le c_3 \,. \tag{3.3}$$

For $u \in S$ the following relation holds

$$||u||^{2} = \int_{0}^{\pi} (u')^{2} dx \ge (m+1)^{2} \int_{0}^{\pi} u^{2} dx = (m+1)^{2} ||u||_{2}^{2}.$$
 (3.4)

The definition of I, (3.1), (3.3) and (3.4) yield

$$0 \ge \liminf_{n \to \infty} \frac{I(u_n)}{\|u_n\|^2} \ge \liminf_{n \to \infty} \frac{((m+1)^2 - \lambda_+) \|u_n^+\|_2^2 + ((m+1)^2 - \lambda_-) \|u_n^-\|_2^2}{2\|u_n\|^2}.$$
(3.5)

It follows from (3.5) and (1.3) that $||u_n||_2^2/||u_n||^2 \to 0$ and from the definition of I and (3.1) we have

$$\liminf_{\|u_n\| \to \infty} \frac{I(u_n)}{\|u_n\|^2} = \frac{1}{2}$$

a contradiction to (3.5). We proved that there is $\mu \in \mathbb{R}$ such that $\inf_{u \in S} I(u) = \mu$.

Second we estimate the value I(u) for $u \in \partial Q$. We remark that $u \in \partial Q$ can be either of the form $K\varphi_m + w$, with $||w|| \leq L$ or of the form $a_i\varphi_{mi}$, with $0 \leq a_i \leq K$, ||w|| = L (i = 1, 2). We prove that

$$\sup_{(K+L)\to\infty} I(K\varphi_m + w) = \sup_{\|u\|\to\infty} I(u) = -\infty \quad \text{for} \quad u \in \partial Q.$$
(3.6)

For (3.6), we argue by contradiction. Suppose that (3.6) is not true then there are a sequence $(u_n) \subset \partial Q$ such that $||u_n|| \to \infty$ and a constant c_4 satisfying

$$\limsup_{n \to \infty} I(u_n) \ge c_4 \,. \tag{3.7}$$

Hence, it follows

$$\limsup_{n \to \infty} \left[\frac{1}{2} \int_0^\pi \frac{(u_n')^2 - \lambda_+(u_n^+)^2 - \lambda_-(u_n^-)^2}{\|u_n\|^2} \, dx - \int_0^\pi \frac{G(x, u_n) - fu_n}{\|u_n\|^2} \, dx \right] \ge 0 \,.$$
(3.8)

Set $v_n = u_n/||u_n||$. Since dim $\partial Q < \infty$ there is $v_0 \in \partial Q$ such that $v_n \to v_0$ strongly in H (also strongly in $L^2(0,\pi)$). Then (3.8) and (3.1) yield

$$\frac{1}{2} \int_0^{\pi} \left[(v_0')^2 - \lambda_+ (v_0^+)^2 - \lambda_- (v_0^-)^2 \right] dx \ge 0.$$
(3.9)

Let $v_0 = a_0 \varphi_m + w_0, a_0 \in \mathbb{R}^+_0, w_0 \in H^-$. It follows from Lemma 2.2 that

$$\int_0^{\pi} \left[(v_0')^2 - \lambda_+ (v_0^+)^2 - \lambda_- (v_0^-)^2 \right] dx \le \int_0^{\pi} \left[(w_0')^2 - \lambda_- (w_0)^2 \right] dx.$$
(3.10)

For $w_0 \in H^-$ we have

$$\int_0^{\pi} \left[(w_0')^2 - \lambda_- w_0^2 \right] dx \le \int_0^{\pi} \left[((m-1)^2 - \lambda_-) w_0^2 \right] dx.$$
(3.11)

Since $(m-1)^2 < \lambda_-$ (see Remark 1.1) then (3.9), (3.10) and (3.11) yield

$$\int_0^{\pi} \left[(v_0')^2 - \lambda_+ (v_0^+)^2 - \lambda_- (v_0^-)^2 \right] dx = ((m-1)^2 - \lambda_-) \|w_0\|_2^2 = 0.$$

Hence we obtain $w_0 = 0$ and $v_0 = a_0 \varphi_m$, $||v_0|| = 1$. Now we divide (3.7) by $||u_n||$ then

$$\limsup_{n \to \infty} \left[\frac{1}{2} \int_0^\pi \frac{(u_n')^2 - \lambda_+(u_n^+)^2 - \lambda_-(u_n^-)^2}{\|u_n\|} \, dx - \int_0^\pi \frac{G(x, u_n) - fu_n}{\|u_n\|} \, dx \right] \ge 0 \,.$$
(3.12)

By Lemma 2.2 the first integral in (3.12) is less than or equal to 0. Hence it follows

$$\limsup_{n \to \infty} \int_0^\pi \frac{-G(x, u_n) + fu_n}{\|u_n\|} \, dx = \limsup_{n \to \infty} \int_0^\pi \left[\frac{-G(x, u_n)}{u_n} v_n + fv_n\right] \, dx \ge 0 \,.$$
(3.13)

Because of the compact imbedding $H^- \subset C(0,\pi)$, we have $v_n \to a_0 \varphi_m$ in $C(0,\pi)$ and we get

$$\lim_{n \to \infty} u_n(x) = \begin{cases} +\infty & \text{for } x \in (0,\pi) \text{ such that } \varphi_m(x) > 0, \\ -\infty & \text{for } x \in (0,\pi) \text{ such that } \varphi_m(x) < 0. \end{cases}$$

We note that from (1.5) it follows that $-|p(x)| \leq G_+(x)$, $G_-(x) \leq |p(x)|$ for a.e. $x \in (0, \pi)$. We obtain from Fatou's lemma and (3.13)

$$\int_0^{\pi} f(x)\varphi_m(x) \, dx \ge \int_0^{\pi} \left[G_+(x)(\varphi_m(x))^+ - G_-(x)(\varphi_m(x))^- \right] dx \,,$$

a contradiction to (1.4). We proved that by choosing K, L sufficiently large there is $\nu \in \mathbb{R}$ such that $\sup_{u \in \partial Q} I(u) = \nu < \mu$. Then Assumption (iii) of Theorem 3.1 is verified.

(iv) Now we show that I satisfies the Palais-Smale condition. First, we suppose that the sequence (u_n) is unbounded and there exists a constant c_5 such that

$$\left|\frac{1}{2}\int_0^{\pi} \left[(u_n')^2 - \lambda_+(u_n^+)^2 - \lambda_-(u_n^-)^2\right] dx - \int_0^{\pi} \left[G(x,u_n) - fu_n\right] dx\right| \le c_5 \quad (3.14)$$

and

$$\lim_{n \to \infty} \|I'(u_n)\| = 0.$$
 (3.15)

Let (w_k) be an arbitrary sequence bounded in H. It follows from (3.15) and the Schwarz inequality that

$$\left|\lim_{\substack{n\to\infty\\k\to\infty}}\int_0^{\pi} \left[u'_nw'_k - (\lambda_+u_n^+ - \lambda_-u_n^-)w_k\right]dx - \int_0^{\pi} \left[g(x,u_n)w_k - fw_k\right]dx\right|$$

$$= \left|\lim_{\substack{n\to\infty\\k\to\infty\\k\to\infty}} \langle I'(u_n), w_k \rangle\right|$$

$$\leq \lim_{\substack{n\to\infty\\k\to\infty\\k\to\infty}} \|I'(u_n)\| \cdot \|w_k\| = 0.$$
(3.16)

Put $v_n = u_n/||u_n||$. Due to compact imbedding $H \subset L^2(0,\pi)$ there is $v_0 \in H$ such that (up to subsequence) $v_n \rightharpoonup v_0$ weakly in H, $v_n \rightarrow v_0$ strongly in $L^2(0,\pi)$. We divide (3.16) by $||u_n||$ and we obtain

$$\lim_{n,k\to\infty} \int_0^{\pi} \left[v'_n w'_k - (\lambda_+ v_n^+ - \lambda_- v_n^-) w_k \right] dx = 0$$
(3.17)

and

$$\lim_{k \to \infty} \int_0^{\pi} \left[v'_i w'_k - (\lambda_+ v_i^+ - \lambda_- v_i^-) w_k \right] dx = 0.$$
 (3.18)

We subtract equalities (3.17) and (3.18) we have

$$\lim_{n,i,k\to\infty} \int_0^\pi \left[(v'_n - v'_i)w'_k - (\lambda_+(v^+_n - v^+_i) - \lambda_-(v^-_n - v^-_i))w_k \right] dx = 0.$$
(3.19)

Because (w_k) is a arbitrary bounded sequence we can set $w_k = v_n - v_i$ in (3.19) and we get

$$\lim_{n,i\to\infty} \left[\|v_n - v_i\|^2 - \int_0^\pi \left[\left[\lambda_+ (v_n^+ - v_i^+) - \lambda_- (v_n^- - v_i^-) \right] (v_n - v_i) \right] dx \right] = 0.$$
(3.20)

Since $v_n \to v_0$ strongly in $L^2(0, \pi)$ the integral in (3.20) converges to 0 and then v_n is a Cauchy sequence in H and $v_n \to v_0$ strongly in H and $||v_0|| = 1$.

It follows from (3.17) and the usual regularity argument for ordinary differential equations (see Fučík [2]) that v_0 is the solution of the equation

$$v_0'' + \lambda_+ v_0^+ - \lambda_- v_0^- = 0$$

From the assumption $[\lambda_+, \lambda_-] \in \Sigma_m$ it follows that $v_0 = a_0 \varphi_m, a_0 > 0$.

We set $u_n = a_n \varphi_m + \widehat{u}_n$, where $a_n \ge 0$, $\widehat{u}_n \in H^- \oplus S$. We remark that $u = u^+ - u^$ and using (2.3) in the first integral in (3.16) we obtain

$$\begin{split} I_{1} &= \int_{0}^{\pi} \left[(a_{n}\varphi_{m} + \widehat{u}_{n})'w_{k}' - (\lambda_{+}u_{n}^{+} - \lambda_{-}u_{n}^{-})w_{k} \right] dx \\ &= \int_{0}^{\pi} \left[a_{n}\varphi_{m}'w_{k}' + (\widehat{u}_{n})'w_{k}' - ((\lambda_{+} - \lambda_{-})u_{n}^{+} + \lambda_{-}u_{n})w_{k} \right] dx \\ &= \int_{0}^{\pi} \left[a_{n}(\lambda_{+}\varphi_{m}^{+} - \lambda_{-}\varphi_{m}^{-})w_{k} + (\widehat{u}_{n})'w_{k}' - ((\lambda_{+} - \lambda_{-})u_{n}^{+} + \lambda_{-}u_{n})w_{k} \right] dx \\ &= \int_{0}^{\pi} \left\{ a_{n}[(\lambda_{+} - \lambda_{-})\varphi_{m}^{+} + \lambda_{-}\varphi_{m}]w_{k} + (\widehat{u}_{n})'w_{k}' \\ &- \left[(\lambda_{+} - \lambda_{-})(a_{n}\varphi_{m} + \widehat{u}_{n})^{+} + \lambda_{-}(a_{n}\varphi_{m} + \widehat{u}_{n}) \right]w_{k} \right\} dx \\ &= \int_{0}^{\pi} \left[(\lambda_{+} - \lambda_{-})(a_{n}\varphi_{m}^{+} - (a_{n}\varphi_{m} + \widehat{u}_{n})^{+})w_{k} + (\widehat{u}_{n})'w_{k}' - \lambda_{-}\widehat{u}_{n}w_{k} \right] dx \,. \end{split}$$
(3.21)

Similarly we obtain

$$I_{1} = \int_{0}^{\pi} \left[(\lambda_{+} - \lambda_{-})(a_{n}\varphi_{m}^{-} - (a_{n}\varphi_{m} + \widehat{u}_{n})^{-})w_{k} + (\widehat{u}_{n})'w_{k}' - \lambda_{+}\widehat{u}_{n}w_{k} \right] dx.$$
(3.22)

Adding (3.21) and (3.22) and we have

$$2I_{1} = \int_{0}^{\pi} \left[(\lambda_{+} - \lambda_{-}) (|a_{n}\varphi_{m}| - |a_{n}\varphi_{m} + \widehat{u}_{n}|)w_{k} + 2(\widehat{u}_{n})'w_{k}' - (\lambda_{+} + \lambda_{-})\widehat{u}_{n}w_{k} \right] dx \,.$$
(3.23)

We set $\hat{u}_n = \overline{u}_n + \widetilde{u}_n$ where $\overline{u}_n \in H^-$, $\widetilde{u}_n \in S$ and we put in (3.23) $w_k = (\overline{u}_n - \widetilde{u}_n)/\|\widehat{u}_n\|$ then we have

$$2I_1 = \frac{1}{\|\widehat{u}_n\|} \int_0^{\pi} \left[(\lambda_+ - \lambda_-)(|a_n\varphi_m| - |a_n\varphi_m + \overline{u}_n + \widetilde{u}_n|)(\overline{u}_n - \widetilde{u}_n) + 2 (\overline{u}'_n)^2 - 2(\widetilde{u}'_n)^2 - (\lambda_+ + \lambda_-)(\overline{u}_n^2 - \widetilde{u}_n^2) \right] dx.$$

$$(3.24)$$

Hence

$$2I_{1} \leq \frac{1}{\|\widehat{u}_{n}\|} \left(\int_{0}^{\pi} \left[(\lambda_{+} - \lambda_{-}) |\overline{u}_{n} + \widetilde{u}_{n}| |\overline{u}_{n} - \widetilde{u}_{n}| \right] dx + 2 \|\overline{u}_{n}\|^{2} - 2 \|\widetilde{u}_{n}\|^{2} - (\lambda_{+} + \lambda_{-}) (\|\overline{u}_{n}\|_{2}^{2} - \|\widetilde{u}_{n}\|_{2}^{2}) \right) = \frac{1}{\|\widehat{u}_{n}\|} \left(\int_{0}^{\pi} \left[(\lambda_{+} - \lambda_{-}) |\overline{u}_{n}^{2} - \widetilde{u}_{n}^{2}| \right] dx + 2 \|\overline{u}_{n}\|^{2} - (\lambda_{+} + \lambda_{-}) \|\overline{u}_{n}\|_{2}^{2} - 2 \|\widetilde{u}_{n}\|^{2} + (\lambda_{+} + \lambda_{-}) \|\widetilde{u}_{n}\|_{2}^{2} \right).$$

$$(3.25)$$

The inequality $|a^2 - b^2| \le \max\{a^2, b^2\}$, (3.25) and (1.3) yield

$$I_{1} \leq \max\{\|\overline{u}_{n}\|^{2} - \lambda_{-}\|\overline{u}_{n}\|_{2}^{2}, -\|\widetilde{u}_{n}\|^{2} + \lambda_{+}\|\widetilde{u}_{n}\|_{2}^{2}\}\frac{1}{\|\widehat{u}_{n}\|}.$$
 (3.26)

We note that the following relations hold $\|\overline{u}_n\|^2 \leq (m-1)^2 \|\overline{u}_n\|_2^2$, $\|\widetilde{u}_n\|^2 \geq (m+1)^2 \|\widetilde{u}_n\|_2^2$. Hence from assumption (1.3) and (3.26) it follows that there is $\varepsilon > 0$ such that

$$I_1 \le -\varepsilon \max\left\{\|\overline{u}_n\|^2, \|\widetilde{u}_n\|^2\right\} \frac{1}{\|\widehat{u}_n\|}.$$
(3.27)

From (3.16), (3.27) it follows

$$\lim_{n \to \infty} -\varepsilon \frac{\max\left\{\|\overline{u}_n\|^2, \|\widetilde{u}_n\|^2\right\}}{\|\widehat{u}_n\|} - \int_0^\pi \left[(g(x, u_n) - f) \frac{\overline{u}_n - \widetilde{u}_n}{\|\widehat{u}_n\|}\right] dx \ge 0.$$
(3.28)

Now we suppose that $\|\widehat{u}_n\| \to \infty$. We note that $\|\widehat{u}_n\|^2 = \|\overline{u}_n\|^2 + \|\widetilde{u}_n\|^2$, we divide (3.28) by $\|\widehat{u}_n\|$ and using (1.5) we have

$$-\frac{\varepsilon}{2} \ge \lim_{n \to \infty} -\varepsilon \frac{\max\{\|\overline{u}_n\|^2, \|\widetilde{u}_n\|^2\}}{\|\widehat{u}_n\|^2} - \int_0^\pi \frac{g(x, u_n) - f}{\|\widehat{u}_n\|} \frac{\overline{u}_n - \widetilde{u}_n}{\|\widehat{u}_n\|} \, dx \ge 0 \qquad (3.29)$$

a contradiction to $\varepsilon > 0$. This implies that the sequence (\hat{u}_n) is bounded. We use (2.2) from Lemma 2.2 with $w = \hat{u}_n$ and we obtain

$$\int_0^{\pi} \left[(\widehat{u}_n')^2 - \lambda_+ \widehat{u}_n^2 \right] dx \le J(u_n) \le \int_0^{\pi} \left[(\widehat{u}_n')^2 - \lambda_- \widehat{u}_n^2 \right] dx \,.$$

Hence

$$\lim_{n \to \infty} \frac{J(u_n)}{\|u_n\|} = \lim_{n \to \infty} \frac{\int_0^{\pi} \left[(u'_n)^2 - \lambda_+ u_n^2 - \lambda_- u_n^2 \right] dx}{\|u_n\|} = 0.$$
(3.30)

We divide (3.14) by $||u_n||$ and (3.30) yield

$$\lim_{n \to \infty} \int_0^{\pi} \left[\frac{-G(x, u_n) + fu_n}{\|u_n\|} \right] dx = 0$$
(3.31)

and using Fatou's lemma in (3.31) we obtain a contradiction to (1.4).

P. TOMICZEK

This implies that the sequence (u_n) is bounded. Then there exists $u_0 \in H$ such that $u_n \rightarrow u_0$ in H, $u_n \rightarrow u_0$ in $L^2(0, \pi)$ (up to subsequence). It follows from the equality (3.16) that

$$\lim_{u,i,k\to\infty} \int_0^{\pi} \left[(u_n - u_i)' w_k' - [\lambda_+ (u_n^+ - u_i^+) - \lambda_- (u_n^- - u_i^-)] w_k \right] dx = 0.$$
 (3.32)

We put $w_k = u_n - u_i$ in (3.32) and the strong convergence $u_n \to u_0$ in $L^2(0, \pi)$ and (3.32) imply the strong convergence $u_n \to u_0$ in H. This shows that the functional I satisfies Palais-Smale condition and the proof of Theorem 3.1 for meven is complete.

Now we suppose that m is odd. We have $[\lambda_+, \lambda_-] \in \Sigma_{m2}$ and the nontrivial solution φ_{m2} of (1.2) corresponding to $[\lambda_+, \lambda_-]$. Then there is k > 0 such that $[\lambda_+-k, \lambda_--k] \in \Sigma_{m1}$ and solution φ_{m1} corresponding to $[\lambda_+-k, \lambda_--k] = [\lambda'_+, \lambda'_-]$ (see Remark 1.2).

We define the sets Q and S like for m even and the proof of the steps (i), (ii) of theorem 3.1 is the same. In the step (iii) we change inequality (3.10) if $v_0 = a_0 \varphi_{m1}$ as it follows

$$\int_{0}^{\pi} \left[(v_{0}')^{2} - \lambda_{+} (v_{0}^{+})^{2} - \lambda_{-} (v_{0}^{-})^{2} \right] dx$$

=
$$\int_{0}^{\pi} \left[(v_{0}')^{2} - (\lambda_{+} - k)(v_{0}^{+})^{2} - (\lambda_{-} - k)(v_{0}^{-})^{2} \right] dx - k \int_{0}^{\pi} v_{0}^{2} dx \qquad (3.33)$$

$$\leq -k \int_{0}^{\pi} v_{0}^{2} dx + \int_{0}^{\pi} \left[(w_{0}')^{2} - \lambda_{-} (w_{0})^{2} \right] dx.$$

Then by (3.9), (3.33) and (3.11) we obtain $k \int_0^{\pi} v_0^2 dx = 0$, a contradiction to $||v_0|| = 1$. The proof of the step (iv) is similar to the prove for *m* even. The proof of the theorem 3.1 is complete.

References

- A. K. Ben-Naoum, C. Fabry, & D. Smets; Resonance with respect to the Fučík spectrum, Electron J. Diff. Eqns., Vol. 2000(2000), No. 37, pp. 1-21.
- [2] S. Fučík; Solvability of Nonlinear Equations and Boundary Value problems, D. Reidel Publ. Company, Holland 1980.
- M. Cuesta, J. P. Gossez; A variational approach to nonresonance with respect to the Fučík spectrum, Nonlinear Analysis 5 (1992), 487-504.
- [4] P. Rabinowitz; Minmax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. no 65, Amer. Math. Soc. Providence, RI., (1986).
- [5] M. Struwe; Variational Methods, Springer, Berlin, (1996).
- [6] P. Tomiczek; The generalization of the Landesman-Lazer conditon, Electron. J. Diff. Eeqns., Vol. 2001(2001), No. 04, pp. 1-11.

Petr Tomiczek

Department of Mathematics, University of West Bohemia, Universitní 22, 306 14 Plzeň, Czech Republic

E-mail address: tomiczek@kma.zcu.cz