Electronic Journal of Differential Equations, Vol. 2005(2005), No. 94, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND THE FUČÍK SPECTRUM

PETR TOMICZEK

$$
\begin{aligned}
& \text { AbStract. We prove the existence of solutions to the nonlinear problem } \\
& \qquad \begin{array}{c}
u^{\prime \prime}(x)+\lambda_{+} u^{+}(x)-\lambda_{-} u^{-}(x)+g(x, u(x))=f(x), \quad x \in(0, \pi) \\
\qquad u(0)=u(\pi)=0
\end{array}
\end{aligned}
$$

where the point $\left[\lambda_{+}, \lambda_{-}\right]$is a point of the Fučík spectrum and the nonlinearity $g(x, u(x))$ satisfies a potential Landesman-Lazer type condition. We use a variational method based on the generalization of the Saddle Point Theorem.

1. Introduction

We investigate the existence of solutions for the nonlinear boundary-value problem

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda_{+} u^{+}(x)-\lambda_{-} u^{-}(x)+g(x, u(x))=f(x), \quad x \in(0, \pi), \\
u(0)=u(\pi)=0 . \tag{1.1}
\end{gather*}
$$

Here $u^{ \pm}=\max \{ \pm u, 0\}, \lambda_{+}, \lambda_{-} \in \mathbb{R}$, the nonlinearity $g:(0, \pi) \times \mathbb{R} \mapsto \mathbb{R}$ is a Caratheodory function and $f \in L^{1}(0, \pi)$. For $g \equiv 0$ and $f \equiv 0$ problem 1.1) becomes

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda_{+} u^{+}(x)-\lambda_{-} u^{-}(x)=0, \quad x \in(0, \pi) \\
u(0)=u(\pi)=0 \tag{1.2}
\end{gather*}
$$

We define $\Sigma=\left\{\left[\lambda_{+}, \lambda_{-}\right] \in \mathbb{R}^{2}: 1.2\right.$ has a nontrivial solution $\}$. This set is called the Fučík spectrum (see [2]), and can be expressed as $\Sigma=\bigcup_{j=1}^{\infty} \Sigma_{j}$ where

$$
\begin{gathered}
\Sigma_{1}=\left\{\left[\lambda_{+}, \lambda_{-}\right] \in \mathbb{R}^{2}:\left(\lambda_{+}-1\right)\left(\lambda_{-}-1\right)=0\right\}, \\
\Sigma_{2 i}=\left\{\left[\lambda_{+}, \lambda_{-}\right] \in \mathbb{R}^{2}: i\left(\frac{1}{\sqrt{\lambda_{+}}}+\frac{1}{\sqrt{\lambda_{-}}}\right)=1\right\}, \\
\Sigma_{2 i+1}=\Sigma_{2 i+1,1} \cup \Sigma_{2 i+1,2} \text { where } \\
\Sigma_{2 i+1,1}=\left\{\left[\lambda_{+}, \lambda_{-}\right] \in \mathbb{R}^{2}: i\left(\frac{1}{\sqrt{\lambda_{+}}}+\frac{1}{\sqrt{\lambda_{-}}}\right)+\frac{1}{\sqrt{\lambda_{+}}}=1\right\}, \\
\Sigma_{2 i+1,2}=\left\{\left[\lambda_{+}, \lambda_{-}\right] \in \mathbb{R}^{2}: i\left(\frac{1}{\sqrt{\lambda_{+}}}+\frac{1}{\sqrt{\lambda_{-}}}\right)+\frac{1}{\sqrt{\lambda_{-}}}=1\right\} .
\end{gathered}
$$

[^0]We suppose that

$$
\begin{align*}
& {\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m}, \text { if } m \in \mathbb{N} \text { is even }} \\
& {\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m 2}, \text { if } m \in \mathbb{N} \text { is odd }} \tag{1.3}\\
& \quad \text { and } \lambda_{-}<\lambda_{+}<(m+1)^{2}
\end{align*}
$$

Figure 1. Fučík spectrum

Remark 1.1. Assuming that $(m+1)^{2}>\lambda_{+}>\lambda_{-}$, if $\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m}, m \in \mathbb{N}$, then $\lambda_{-}>(m-1)^{2}$.

We define the potential of the nonlinearity g as

$$
G(x, s)=\int_{0}^{s} g(x, t) d t
$$

and

$$
G_{+}(x)=\liminf _{s \rightarrow+\infty} \frac{G(x, s)}{s}, \quad G_{-}(x)=\limsup _{s \rightarrow-\infty} \frac{G(x, s)}{s}
$$

We denote by φ_{m} a nontrivial solution of $\sqrt{1.2}$) corresponding to $\left[\lambda_{+}, \lambda_{-}\right.$] (see Remark 1.2 . We assume that for any φ_{m} the following potential Landesman-Lazer type condition holds:

$$
\begin{equation*}
\int_{0}^{\pi} f(x) \varphi_{m}(x) d x<\int_{0}^{\pi}\left[G_{+}(x)\left(\varphi_{m}(x)\right)^{+}-G_{-}(x)\left(\varphi_{m}(x)\right)^{-}\right] d x \tag{1.4}
\end{equation*}
$$

We suppose that the nonlinearity g is bounded, i.e. there exists $p(x) \in L^{1}(0, \pi)$ such that

$$
\begin{equation*}
|g(x, s)| \leq p(x) \quad \text { for a.e. } x \in(0, \pi), \forall s \in \mathbb{R} \tag{1.5}
\end{equation*}
$$

and we prove the solvability of (1.1) in Theorem (3.1) below.
This article is inspired by a result in [3] where the author studies the case when $g(x, s) / s$ lies (in some sense) between Σ_{1} and Σ_{2} and by a result in [1] with the classical Landesman-Lazer type condition [1, Corollary 2].

Remark 1.2. First we note that if m is even then two different functions $\varphi_{m 1}, \varphi_{m 2}$ of norm 1 correspond to the point $\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m}$. For example for $m=2, \lambda_{+}>\lambda_{-}$ we have

$$
\varphi_{21}(x)= \begin{cases}k_{1} \sqrt{\lambda_{-}} \sin \left(\sqrt{\lambda_{+}} x\right), & x \in\left\langle 0, \pi / \sqrt{\lambda_{+}}\right\rangle \\ -k_{1} \sqrt{\lambda_{+}} \sin \left(\sqrt{\lambda_{-}}\left(x-\pi / \sqrt{\lambda_{+}}\right)\right), & x \in\left\langle\pi / \sqrt{\lambda_{+}}, \pi\right\rangle\end{cases}
$$

where $k_{1}>0$, and

$$
\varphi_{22}(x)= \begin{cases}-k_{2} \sqrt{\lambda_{+}} \sin \left(\sqrt{\lambda_{-}} x\right), & x \in\left\langle 0, \pi / \sqrt{\lambda_{-}}\right\rangle \\ k_{2} \sqrt{\lambda_{-}} \sin \left(\sqrt{\lambda_{+}}\left(x-\pi / \sqrt{\lambda_{-}}\right)\right), & x \in\left\langle\pi / \sqrt{\lambda_{-}}, \pi\right\rangle\end{cases}
$$

where $k_{2}>0$.
For $\lambda_{+}=\lambda_{-}=4$ we set $\varphi_{21}(x)=k_{1} \sin 2 x$ and $\varphi_{22}(x)=-k_{2} \sin 2 x$, where $k_{1}, k_{2}>0$.

Figure 2. Solutions corresponding to Σ_{2}
If m is odd, then $\Sigma_{m}=\Sigma_{m 1} \cup \Sigma_{m 2}$ and it corresponds only one function $\varphi_{m 1}$ od norm 1 to the point $\left[\lambda_{+}^{\prime}, \lambda_{-}^{\prime}\right] \in \Sigma_{m 1}$, one function $\varphi_{m 2}$ of norm 1 to the point $\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m 2}$, respectively.

For $m=3, \lambda_{+}^{\prime}>\lambda_{-}^{\prime}, \lambda_{+}>\lambda_{-}$we have

$$
\begin{aligned}
& \varphi_{31}(x) \\
& = \begin{cases}k_{1} \sqrt{\lambda_{-}^{\prime}} \sin \left(\sqrt{\lambda_{+}^{\prime}} x\right), & x \in\left\langle 0, \pi / \sqrt{\lambda_{+}^{\prime}}\right\rangle, \\
-k_{1} \sqrt{\lambda_{+}^{\prime}} \sin \left(\sqrt{\lambda_{-}^{\prime}}\left(x-\pi / \sqrt{\lambda_{+}^{\prime}}\right)\right), & x \in\left\langle\pi / \sqrt{\lambda_{+}^{\prime}}, \pi / \sqrt{\lambda_{+}^{\prime}}+\pi / \sqrt{\lambda_{-}^{\prime}}\right\rangle, \\
k_{1} \sqrt{\lambda_{-}^{\prime}} \sin \left(\sqrt{\lambda_{+}^{\prime}}\left(x-\pi / \sqrt{\lambda_{+}^{\prime}}-\pi / \sqrt{\lambda_{-}^{\prime}}\right)\right), & x \in\left\langle\pi / \sqrt{\lambda_{+}^{\prime}}+\pi / \sqrt{\lambda_{-}^{\prime}}, \pi\right\rangle,\end{cases}
\end{aligned}
$$

where $k_{1}>0$.

$$
\begin{aligned}
& \varphi_{32}(x) \\
& = \begin{cases}-k_{2} \sqrt{\lambda_{+}} \sin \left(\sqrt{\lambda_{-}} x\right), & x \in\left\langle 0, \pi / \sqrt{\lambda_{-}}\right\rangle, \\
k_{2} \sqrt{\lambda_{-}} \sin \left(\sqrt{\lambda_{+}}\left(x-\pi / \sqrt{\lambda_{-}}\right)\right), & x \in\left\langle\pi / \sqrt{\lambda_{-}}, \pi / \sqrt{\lambda_{-}}+\pi / \sqrt{\lambda_{+}}\right\rangle, \\
-k_{2} \sqrt{\lambda_{+}} \sin \left(\sqrt{\lambda_{-}}\left(x-\pi / \sqrt{\lambda_{-}}-\pi / \sqrt{\lambda_{+}}\right)\right), & x \in\left\langle\pi / \sqrt{\lambda_{-}}+\pi / \sqrt{\lambda_{+}}, \pi\right\rangle,\end{cases}
\end{aligned}
$$

where $k_{2}>0$.
For $\lambda_{+}=\lambda_{-}=m^{2}$ we set $\varphi_{m 1}(x)=k_{1} \sin m x$, and $\varphi_{m 2}(x)=-k_{2} \sin m x$, where $k_{1}, k_{2}>0$ and from the condition (1.4 we obtain

$$
\int_{0}^{\pi} f(x) \sin m x d x<\int_{0}^{\pi}\left[G_{+}(x)(\sin m x)^{+}-G_{-}(x)(\sin m x)^{-}\right] d x
$$

Figure 3. Solutions corresponding to Σ_{3}
and

$$
\int_{0}^{\pi} f(x)(-\sin m x) d x<\int_{0}^{\pi}\left[G_{+}(x)(-\sin m x)^{+}-G_{-}(x)(-\sin m x)^{-}\right] d x
$$

Hence it follows

$$
\begin{align*}
& \int_{0}^{\pi}\left[G_{-}(x)(\sin m x)^{+}-G_{+}(x)(\sin m x)^{-}\right] d x \\
& <\int_{0}^{\pi} f(x) \sin m x d x<\int_{0}^{\pi}\left[G_{+}(x)(\sin m x)^{+}-G_{-}(x)(\sin m x)^{-}\right] d x \tag{1.6}
\end{align*}
$$

We obtained the potential Landesman-Lazer type condition (see [6]).
Remark 1.3. We have

$$
\langle v, \sin m x\rangle=\int_{0}^{\pi} v^{\prime}(x)(\sin m x)^{\prime} d x=m^{2} \int_{0}^{\pi} v(x) \sin m x d x \quad \forall v \in H
$$

(H is a Sobolev space defined below). Since and from the definition of the functions $\varphi_{m 1}, \varphi_{m 2}$ (see remark 1.2) it follows

$$
\begin{equation*}
\left\langle\varphi_{m 1}, \sin m x\right\rangle>0 \quad \text { and } \quad\left\langle\varphi_{m 2}, \sin m x\right\rangle<0 . \tag{1.7}
\end{equation*}
$$

2. Preliminaries

Notation. We shall use the classical spaces $C(0, \pi), L^{p}(0, \pi)$ of continuous and measurable real-valued functions whose p-th power of the absolute value is Lebesgue integrable, respectively. H is the Sobolev space of absolutely continuous functions $u:(0, \pi) \rightarrow \mathbb{R}$ such that $u^{\prime} \in L^{2}(0, \pi)$ and $u(0)=u(\pi)=0$. We denote by the symbols $\|\cdot\|$, and $\|\cdot\|_{2}$ the norm in H, and in $L^{2}(0, \pi)$, respectively. We denote $\langle\cdot, \cdot\rangle$ the pairing in the space H.

By a solution of (1.1) we mean a function $u \in C^{1}(0, \pi)$ such that u^{\prime} is absolutely continuous, u satisfies the boundary conditions and the equations (1.1) holds a.e. in $(0, \pi)$.

Let $I: H \rightarrow \mathbb{R}$ be a functional such that $I \in C^{1}(H, \mathbb{R})$ (continuously differentiable). We say that u is a critical point of I, if

$$
\left\langle I^{\prime}(u), v\right\rangle=0 \quad \text { for all } v \in H
$$

We say that γ is a critical value of I, if there is $u_{0} \in H$ such that $I\left(u_{0}\right)=\gamma$ and $I^{\prime}\left(u_{0}\right)=0$.

We say that I satisfies Palais-Smale condition (PS) if every sequence $\left(u_{n}\right)$ for which $I\left(u_{n}\right)$ is bounded in H and $I^{\prime}\left(u_{n}\right) \rightarrow 0($ as $n \rightarrow \infty)$ possesses a convergent subsequence.

We study 1.1 by the use of a variational method. More precisely, we look for critical points of the functional $I: H \rightarrow \mathbb{R}$, which is defined by

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\lambda_{+}\left(u^{+}\right)^{2}-\lambda_{-}\left(u^{-}\right)^{2}\right] d x-\int_{0}^{\pi}[G(x, u)-f u] d x . \tag{2.1}
\end{equation*}
$$

Every critical point $u \in H$ of the functional I satisfies

$$
\int_{0}^{\pi}\left[u^{\prime} v^{\prime}-\left(\lambda_{+} u^{+}-\lambda_{-} u^{-}\right) v\right] d x-\int_{0}^{\pi}[g(x, u) v-f v] d x=0 \quad \text { for all } v \in H .
$$

Then u is also a weak solution of 1.1 and vice versa.
The usual regularity argument for ODE yields immediately (see Fučík [2]) that any weak solution of 1.1 is also a solution in the sense mentioned above.

We will use the following variant of the Saddle Point Theorem (see [4]) which is proved in Struwe [5, Theorem 8.4].

Theorem 2.1. Let S be a closed subset in H and Q a bounded subset in H with boundary ∂Q. Set $\Gamma=\{h: h \in \mathbf{C}(H, H), h(u)=u$ on $\partial Q\}$. Suppose $I \in$ $C^{1}(H, \mathbb{R})$ and
(i) $S \cap \partial Q=\emptyset$,
(ii) $S \cap h(Q) \neq \emptyset$, for every $h \in \Gamma$,
(iii) there are constants μ, ν such that $\mu=\inf _{u \in S} I(u)>\sup _{u \in \partial Q} I(u)=\nu$,
(iv) I satisfies Palais-Smale condition.

Then the number

$$
\gamma=\inf _{h \in \Gamma} \sup _{u \in Q} I(h(u))
$$

defines a critical value $\gamma>\nu$ of I.
We say that S and ∂Q link if they satisfy conditions (i), (ii) of the theorem above.

We denote the first integral in the functional I by

$$
J(u)=\int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\lambda_{+}\left(u^{+}\right)^{2}-\lambda_{-}\left(u^{-}\right)^{2}\right] d x
$$

Now we present a few results needed later.
Lemma 2.2. Let φ be a solution of (1.2) with $\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma, \lambda_{+} \geq \lambda_{-}$. We put $u=a \varphi+w, a \geq 0, w \in H$. Then the following relation holds

$$
\begin{equation*}
\int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{+} w^{2}\right] d x \leq J(u) \leq \int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right] d x \tag{2.2}
\end{equation*}
$$

Proof. We prove only the right inequality in 2.2 , the proof of the left inequality is similar. Since φ is a solution of (1.2) we have

$$
\begin{equation*}
\int_{0}^{\pi} \varphi^{\prime} w^{\prime} d x=\int_{0}^{\pi}\left[\lambda_{+} \varphi^{+} w-\lambda_{-} \varphi^{-} w\right] d x \quad \text { for } w \in H \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi}\left(\varphi^{\prime}\right)^{2} d x=\int_{0}^{\pi}\left[\lambda_{+}\left(\varphi^{+}\right)^{2}+\lambda_{-}\left(\varphi^{-}\right)^{2}\right] d x \tag{2.4}
\end{equation*}
$$

By 2.3 and 2.4, we obtain

$$
\begin{align*}
J(u)= & \int_{0}^{\pi}\left[\left((a \varphi+w)^{\prime}\right)^{2}-\lambda_{+}\left((a \varphi+w)^{+}\right)^{2}-\lambda_{-}\left((a \varphi+w)^{-}\right)^{2}\right] d x \\
= & \int_{0}^{\pi}\left[\left(a \varphi^{\prime}\right)^{2}+2 a \varphi^{\prime} w^{\prime}+\left(w^{\prime}\right)^{2}-\left(\lambda_{+}-\lambda_{-}\right)\left((a \varphi+w)^{+}\right)^{2}\right. \\
& \left.-\lambda_{-}(a \varphi+w)^{2}\right] d x \\
= & \int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left(a \varphi^{+}\right)^{2}+\lambda_{-}(a \varphi)^{2}+2 a\left(\left(\lambda_{+}-\lambda_{-}\right) \varphi^{+}+\lambda_{-} \varphi\right) w\right. \tag{2.5}\\
& \left.+\left(w^{\prime}\right)^{2}-\left(\lambda_{+}-\lambda_{-}\right)\left((a \varphi+w)^{+}\right)^{2}-\lambda_{-}\left((a \varphi)^{2}+2 a \varphi w+w^{2}\right)\right] d x \\
= & \int_{0}^{\pi}\left\{\left(\lambda_{+}-\lambda_{-}\right)\left[\left(a \varphi^{+}\right)^{2}+2 a \varphi^{+} w-\left((a \varphi+w)^{+}\right)^{2}\right]\right. \\
& \left.+\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right\} d x
\end{align*}
$$

For the function $\left(a \varphi^{+}\right)^{2}+2 a \varphi^{+} w-\left((a \varphi+w)^{+}\right)^{2}$ in the last integral in 2.5) we have

$$
\begin{aligned}
& \left(a \varphi^{+}\right)^{2}+2 a \varphi^{+} w-\left((a \varphi+w)^{+}\right)^{2} \\
& = \begin{cases}-\left((a \varphi+w)^{+}\right)^{2} \leq 0 & \varphi<0 \\
-w^{2} \leq 0 & \varphi \geq 0, a \varphi+w \geq 0 \\
a \varphi^{+}\left(a \varphi^{+}+w+w\right) \leq 0 & \varphi \geq 0, a \varphi+w<0\end{cases}
\end{aligned}
$$

By the assumption $\lambda_{+} \geq \lambda_{-}$, we obtain the assertion of the Lemma 2.2 .
Remark 2.3. It follows from the previous proof that we obtain the equality

$$
J(u)=\int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right] d x
$$

in 2.2 if $a \varphi+w \leq 0$ when $\varphi<0$, and $w=0$ when $\varphi \geq 0$. Consequently, if the equality holds and if w in $\operatorname{span}\{\sin x, \ldots, \sin k x\}, k \in \mathbb{N}$, then $w=0$.

3. Main result

Theorem 3.1. Under the assumptions (1.3), (1.4), and (1.5), Problem (1.1) has at least one solution in H.

Proof. First we suppose that m is even. We shall prove that the functional I defined by (2.1) satisfies the assumptions in Theorem 2.1. Let $\varphi_{m 1}, \varphi_{m 2}$ be the normalized solutions of 1.2 described above (see Remark 1.2).

Let H^{-}be the subspace of H spanned by functions $\sin x, \ldots, \sin (m-1) x$. We define $V \equiv V_{1} \cup V_{2}$ where

$$
\begin{aligned}
& V_{1}=\left\{u \in H: u=a_{1} \varphi_{m 1}+w, 0 \leq a_{1}, w \in H^{-}\right\} \\
& V_{2}=\left\{u \in H: u=a_{2} \varphi_{m 2}+w, 0 \leq a_{2}, w \in H^{-}\right\}
\end{aligned}
$$

Let $K>0, L>0$ then we define $Q \equiv Q_{1} \cup Q_{2}$ where

$$
\begin{aligned}
& Q_{1}=\left\{u \in V_{1}: 0 \leq a_{1} \leq K,\|w\| \leq L\right\} \\
& Q_{2}=\left\{u \in V_{2}: 0 \leq a_{2} \leq K,\|w\| \leq L\right\}
\end{aligned}
$$

Let S be the subspace of H spanned by functions $\sin (m+1) x, \sin (m+2) x, \ldots$

Next, we verify the assumptions of Theorem 2.1. We see that S is a closed subset in H and Q is a bounded subset in H.
(i) Firstly we note that for $z \in H^{-} \oplus S$ we have $\langle z, \sin m x\rangle=0$. We suppose for contradiction that there is $u \in \partial Q \cap S$. Then

$$
0 \stackrel{u \in S}{=}\langle u, \sin m x\rangle \stackrel{u \in \partial Q}{=}\left\langle a_{i} \varphi_{m i}+w, \sin m x\right\rangle \stackrel{w \in H^{-}}{=} a_{i}\left\langle\varphi_{m i}, \sin m x\right\rangle
$$

$i=1,2$. From previous equalities and inequalities (1.7) it follows that $a_{i}=0$, $i=1,2$ and $u=w$. For $u=w \in \partial Q$ we have $\|u\|=L>0$ and we obtain a contradiction with $u \in H^{-} \cap S=\{o\}$.
(ii) We prove that $H=V \oplus S$. We can write a function $h \in H$ in the form

$$
\begin{aligned}
h & =\sum_{i=1}^{m-1} b_{i} \sin i x+b_{m} \sin m x+\sum_{i=m+1}^{\infty} b_{i} \sin i x \\
& =\bar{h}+b_{m} \sin m x+\widetilde{h}, b_{i} \in \mathbb{R}
\end{aligned}
$$

$i \in \mathbb{N}$. The inequalities (1.7) yield that there are constants $b_{m 1}, b_{m 2}>0$ such that $\sin m x=b_{m 1}\left(\varphi_{m 1}-\bar{\varphi}_{m 1}-\widetilde{\varphi}_{m 1}\right)$ and $-\sin m x=b_{m 2}\left(\varphi_{m 2}-\bar{\varphi}_{m 2}-\widetilde{\varphi}_{m 2}\right)$. Hence we have for $b_{m} \geq 0$,

$$
\begin{aligned}
h & =\bar{h}+b_{m} b_{m 1}\left(\varphi_{m 1}-\bar{\varphi}_{m 1}-\widetilde{\varphi}_{m 1}\right)+\widetilde{h} \\
& =\underbrace{(\overbrace{\bar{h}-b_{m} b_{m 1} \bar{\varphi}_{m 1}}^{\in H^{-}}+\overbrace{b_{m} b_{m 1}}^{\geq 0} \varphi_{m 1})}_{\in V}+\underbrace{\left(\widetilde{h}-b_{m} b_{m 1} \widetilde{\varphi}_{m 1}\right)}_{\in S} .
\end{aligned}
$$

Similarly for $b_{m} \leq 0$,

$$
\begin{aligned}
h & =\bar{h}+\left|b_{m}\right| b_{m 2}\left(\varphi_{m 2}-\bar{\varphi}_{m 2}-\widetilde{\varphi}_{m 2}\right)+\widetilde{h} \\
& =\underbrace{(\overbrace{\bar{h}-\left|b_{m}\right| b_{m 2} \bar{\varphi}_{m 2}}^{\in H^{-}}+\overbrace{\left|b_{m}\right| b_{m 2}}^{\geq 0} \varphi_{m 2})}_{\in V}+\underbrace{\left(\widetilde{h}-\left|b_{m}\right| b_{m 2} \widetilde{\varphi}_{m 2}\right)}_{\in S} .
\end{aligned}
$$

We proved that H is spanned by V and S.
The proof of the assumption $S \cap h(Q) \neq \emptyset \quad \forall h \in \Gamma$ is similar to the proof in [5], example 8.2]. Let $\pi: H \rightarrow V$ be the continuous projection of H onto V. We have to show that $0 \in \pi(h(Q))$. For $t \in[0,1], u \in Q$ we define

$$
h_{t}(u)=t \pi(h(u))+(1-t) u
$$

The function h_{t} defines a homotopy of $h_{0}=i d$ with $h_{1}=\pi \circ h$. Moreover, $h_{t} \mid \partial Q=$ id for all $t \in[0,1]$. Hence the topological degree $\operatorname{deg}\left(h_{t}, Q, 0\right)$ is well-defined and by homotopy invariance we have

$$
\operatorname{deg}(\pi \circ h, Q, 0)=\operatorname{deg}(\mathrm{id}, Q, 0)=1
$$

Hence $0 \in \pi(h(Q))$, as needed.
(iii) Firstly, we note that by assumption 1.5, one has

$$
\begin{equation*}
\lim _{\|u\| \rightarrow \infty} \int_{0}^{\pi} \frac{G(x, u)-f u}{\|u\|^{2}} d x=0 \tag{3.1}
\end{equation*}
$$

First we show that the infimum of functional I on the set S is a real number. We prove for this that

$$
\begin{equation*}
\lim _{\|u\| \rightarrow \infty} I(u)=\infty \quad \text { for all } u \in S \tag{3.2}
\end{equation*}
$$

and I is bounded on bounded sets.
Because of the compact imbedding of H into $C(0, \pi)\left(\|u\|_{C(0, \pi)} \leq c_{1}\|u\|\right)$, and of H into $\mathrm{L}^{2}(0, \pi)\left(\|u\|_{2} \leq c_{2}\|u\|\right)$, and the assumption 1.5 one has

$$
\begin{aligned}
I(u) & =\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\lambda_{+}\left(u^{+}\right)^{2}-\lambda_{-}\left(u^{-}\right)^{2}\right] d x-\int_{0}^{\pi}[G(x, u)-f u] d x \\
& \leq \frac{1}{2}\left(\|u\|^{2}+\lambda_{+}\left\|u^{+}\right\|_{2}^{2}+\lambda_{-}\left\|u^{-}\right\|_{2}^{2}\right)+\int_{0}^{\pi}[(|p|+|f|)|u|] d x \\
& \leq \frac{1}{2}\left(\|u\|^{2}+\lambda_{+} c_{2}\left\|u^{+}\right\|^{2}+\lambda_{-} c_{2}\left\|u^{-}\right\|^{2}\right)+\left(\|p\|_{1}+\|f\|_{1}\right) c_{1}\|u\| .
\end{aligned}
$$

Hence I is bounded on bounded subsets of S .
To prove $\sqrt{3.2}$, we argue by contradiction. We suppose that there is a sequence $\left(u_{n}\right) \subset S$ such that $\left\|u_{n}\right\| \rightarrow \infty$ and a constant c_{3} satisfying

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} I\left(u_{n}\right) \leq c_{3} \tag{3.3}
\end{equation*}
$$

For $u \in S$ the following relation holds

$$
\begin{equation*}
\|u\|^{2}=\int_{0}^{\pi}\left(u^{\prime}\right)^{2} d x \geq(m+1)^{2} \int_{0}^{\pi} u^{2} d x=(m+1)^{2}\|u\|_{2}^{2} \tag{3.4}
\end{equation*}
$$

The definition of $I,(3.1),(3.3)$ and (3.4) yield

$$
\begin{equation*}
0 \geq \liminf _{n \rightarrow \infty} \frac{I\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}} \geq \liminf _{n \rightarrow \infty} \frac{\left((m+1)^{2}-\lambda_{+}\right)\left\|u_{n}^{+}\right\|_{2}^{2}+\left((m+1)^{2}-\lambda_{-}\right)\left\|u_{n}^{-}\right\|_{2}^{2}}{2\left\|u_{n}\right\|^{2}} \tag{3.5}
\end{equation*}
$$

It follows from (3.5) and $\sqrt{1.3)}$ that $\left\|u_{n}\right\|_{2}^{2} /\left\|u_{n}\right\|^{2} \rightarrow 0$ and from the definition of I and (3.1) we have

$$
\liminf _{\left\|u_{n}\right\| \rightarrow \infty} \frac{I\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}}=\frac{1}{2}
$$

a contradiction to (3.5). We proved that there is $\mu \in \mathbb{R}$ such that $\inf _{u \in S} I(u)=\mu$.
Second we estimate the value $I(u)$ for $u \in \partial Q$. We remark that $u \in \partial Q$ can be either of the form $K \varphi_{m}+w$, with $\|w\| \leq L$ or of the form $a_{i} \varphi_{m i}$, with $0 \leq a_{i} \leq K$, $\|w\|=L(i=1,2)$. We prove that

$$
\begin{equation*}
\sup _{(K+L) \rightarrow \infty} I\left(K \varphi_{m}+w\right)=\sup _{\|u\| \rightarrow \infty} I(u)=-\infty \quad \text { for } \quad u \in \partial Q \tag{3.6}
\end{equation*}
$$

For (3.6), we argue by contradiction. Suppose that (3.6) is not true then there are a sequence $\left(u_{n}\right) \subset \partial Q$ such that $\left\|u_{n}\right\| \rightarrow \infty$ and a constant c_{4} satisfying

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} I\left(u_{n}\right) \geq c_{4} \tag{3.7}
\end{equation*}
$$

Hence, it follows

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\frac{1}{2} \int_{0}^{\pi} \frac{\left(u_{n}^{\prime}\right)^{2}-\lambda_{+}\left(u_{n}^{+}\right)^{2}-\lambda_{-}\left(u_{n}^{-}\right)^{2}}{\left\|u_{n}\right\|^{2}} d x-\int_{0}^{\pi} \frac{G\left(x, u_{n}\right)-f u_{n}}{\left\|u_{n}\right\|^{2}} d x\right] \geq 0 \tag{3.8}
\end{equation*}
$$

Set $v_{n}=u_{n} /\left\|u_{n}\right\|$. Since $\operatorname{dim} \partial Q<\infty$ there is $v_{0} \in \partial Q$ such that $v_{n} \rightarrow v_{0}$ strongly in H (also strongly in $\left.L^{2}(0, \pi)\right)$. Then (3.8) and (3.1) yield

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{\pi}\left[\left(v_{0}^{\prime}\right)^{2}-\lambda_{+}\left(v_{0}^{+}\right)^{2}-\lambda_{-}\left(v_{0}^{-}\right)^{2}\right] d x \geq 0 \tag{3.9}
\end{equation*}
$$

Let $v_{0}=a_{0} \varphi_{m}+w_{0}, a_{0} \in \mathbb{R}_{0}^{+}, w_{0} \in H^{-}$. It follows from Lemma 2.2 that

$$
\begin{equation*}
\int_{0}^{\pi}\left[\left(v_{0}^{\prime}\right)^{2}-\lambda_{+}\left(v_{0}^{+}\right)^{2}-\lambda_{-}\left(v_{0}^{-}\right)^{2}\right] d x \leq \int_{0}^{\pi}\left[\left(w_{0}^{\prime}\right)^{2}-\lambda_{-}\left(w_{0}\right)^{2}\right] d x \tag{3.10}
\end{equation*}
$$

For $w_{0} \in H^{-}$we have

$$
\begin{equation*}
\int_{0}^{\pi}\left[\left(w_{0}^{\prime}\right)^{2}-\lambda_{-} w_{0}^{2}\right] d x \leq \int_{0}^{\pi}\left[\left((m-1)^{2}-\lambda_{-}\right) w_{0}^{2}\right] d x \tag{3.11}
\end{equation*}
$$

Since $(m-1)^{2}<\lambda_{-}$(see Remark 1.1) then 3.9, 3.10 and 3.11) yield

$$
\int_{0}^{\pi}\left[\left(v_{0}^{\prime}\right)^{2}-\lambda_{+}\left(v_{0}^{+}\right)^{2}-\lambda_{-}\left(v_{0}^{-}\right)^{2}\right] d x=\left((m-1)^{2}-\lambda_{-}\right)\left\|w_{0}\right\|_{2}^{2}=0
$$

Hence we obtain $w_{0}=0$ and $v_{0}=a_{0} \varphi_{m},\left\|v_{0}\right\|=1$. Now we divide 3.7) by $\left\|u_{n}\right\|$ then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\frac{1}{2} \int_{0}^{\pi} \frac{\left(u_{n}^{\prime}\right)^{2}-\lambda_{+}\left(u_{n}^{+}\right)^{2}-\lambda_{-}\left(u_{n}^{-}\right)^{2}}{\left\|u_{n}\right\|} d x-\int_{0}^{\pi} \frac{G\left(x, u_{n}\right)-f u_{n}}{\left\|u_{n}\right\|} d x\right] \geq 0 \tag{3.12}
\end{equation*}
$$

By Lemma 2.2 the first integral in 3.12 is less then or equal to 0 . Hence it follows

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{0}^{\pi} \frac{-G\left(x, u_{n}\right)+f u_{n}}{\left\|u_{n}\right\|} d x=\limsup _{n \rightarrow \infty} \int_{0}^{\pi}\left[\frac{-G\left(x, u_{n}\right)}{u_{n}} v_{n}+f v_{n}\right] d x \geq 0 \tag{3.13}
\end{equation*}
$$

Because of the compact imbedding $H^{-} \subset C(0, \pi)$, we have $v_{n} \rightarrow a_{0} \varphi_{m}$ in $C(0, \pi)$ and we get

$$
\lim _{n \rightarrow \infty} u_{n}(x)= \begin{cases}+\infty & \text { for } x \in(0, \pi) \text { such that } \varphi_{m}(x)>0 \\ -\infty & \text { for } x \in(0, \pi) \text { such that } \varphi_{m}(x)<0\end{cases}
$$

We note that from (1.5) it follows that $-|p(x)| \leq G_{+}(x), G_{-}(x) \leq|p(x)|$ for a.e. $x \in(0, \pi)$. We obtain from Fatou's lemma and 3.13)

$$
\int_{0}^{\pi} f(x) \varphi_{m}(x) d x \geq \int_{0}^{\pi}\left[G_{+}(x)\left(\varphi_{m}(x)\right)^{+}-G_{-}(x)\left(\varphi_{m}(x)\right)^{-}\right] d x
$$

a contradiction to (1.4). We proved that by choosing K, L sufficiently large there is $\nu \in \mathbb{R}$ such that $\sup _{u \in \partial Q} I(u)=\nu<\mu$. Then Assumption (iii) of Theorem 3.1 is verified.
(iv) Now we show that I satisfies the Palais-Smale condition. First, we suppose that the sequence $\left(u_{n}\right)$ is unbounded and there exists a constant c_{5} such that

$$
\begin{equation*}
\left|\frac{1}{2} \int_{0}^{\pi}\left[\left(u_{n}^{\prime}\right)^{2}-\lambda_{+}\left(u_{n}^{+}\right)^{2}-\lambda_{-}\left(u_{n}^{-}\right)^{2}\right] d x-\int_{0}^{\pi}\left[G\left(x, u_{n}\right)-f u_{n}\right] d x\right| \leq c_{5} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I^{\prime}\left(u_{n}\right)\right\|=0 \tag{3.15}
\end{equation*}
$$

Let $\left(w_{k}\right)$ be an arbitrary sequence bounded in H. It follows from 3.15 and the Schwarz inequality that

$$
\begin{align*}
& \left|\lim _{\substack{n \rightarrow \infty \\
k \rightarrow \infty}} \int_{0}^{\pi}\left[u_{n}^{\prime} w_{k}^{\prime}-\left(\lambda_{+} u_{n}^{+}-\lambda_{-} u_{n}^{-}\right) w_{k}\right] d x-\int_{0}^{\pi}\left[g\left(x, u_{n}\right) w_{k}-f w_{k}\right] d x\right| \\
& =\left|\lim _{\substack{n \rightarrow \infty \\
k \rightarrow \infty}}\left\langle I^{\prime}\left(u_{n}\right), w_{k}\right\rangle\right| \tag{3.16}\\
& \leq \lim _{\substack{n \rightarrow \infty \\
k \rightarrow \infty}}\left\|I^{\prime}\left(u_{n}\right)\right\| \cdot\left\|w_{k}\right\|=0 .
\end{align*}
$$

Put $v_{n}=u_{n} /\left\|u_{n}\right\|$. Due to compact imbedding $H \subset L^{2}(0, \pi)$ there is $v_{0} \in H$ such that (up to subsequence) $v_{n} \rightharpoonup v_{0}$ weakly in $\mathrm{H}, v_{n} \rightarrow v_{0}$ strongly in $L^{2}(0, \pi)$. We divide $\sqrt{3.16}$ by $\left\|u_{n}\right\|$ and we obtain

$$
\begin{equation*}
\lim _{n, k \rightarrow \infty} \int_{0}^{\pi}\left[v_{n}^{\prime} w_{k}^{\prime}-\left(\lambda_{+} v_{n}^{+}-\lambda_{-} v_{n}^{-}\right) w_{k}\right] d x=0 \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i, k \rightarrow \infty} \int_{0}^{\pi}\left[v_{i}^{\prime} w_{k}^{\prime}-\left(\lambda_{+} v_{i}^{+}-\lambda_{-} v_{i}^{-}\right) w_{k}\right] d x=0 \tag{3.18}
\end{equation*}
$$

We subtract equalities (3.17) and (3.18) we have

$$
\begin{equation*}
\lim _{n, i, k \rightarrow \infty} \int_{0}^{\pi}\left[\left(v_{n}^{\prime}-v_{i}^{\prime}\right) w_{k}^{\prime}-\left(\lambda_{+}\left(v_{n}^{+}-v_{i}^{+}\right)-\lambda_{-}\left(v_{n}^{-}-v_{i}^{-}\right)\right) w_{k}\right] d x=0 \tag{3.19}
\end{equation*}
$$

Because $\left(w_{k}\right)$ is a arbitrary bounded sequence we can set $w_{k}=v_{n}-v_{i}$ in 3.19 and we get

$$
\begin{equation*}
\lim _{n, i \rightarrow \infty}\left[\left\|v_{n}-v_{i}\right\|^{2}-\int_{0}^{\pi}\left[\left[\lambda_{+}\left(v_{n}^{+}-v_{i}^{+}\right)-\lambda_{-}\left(v_{n}^{-}-v_{i}^{-}\right)\right]\left(v_{n}-v_{i}\right)\right] d x\right]=0 . \tag{3.20}
\end{equation*}
$$

Since $v_{n} \rightarrow v_{0}$ strongly in $L^{2}(0, \pi)$ the integral in 3.20 converges to 0 and then v_{n} is a Cauchy sequence in H and $v_{n} \rightarrow v_{0}$ strongly in H and $\left\|v_{0}\right\|=1$.

It follows from (3.17) and the usual regularity argument for ordinary differential equations (see Fučík [2]) that v_{0} is the solution of the equation

$$
v_{0}^{\prime \prime}+\lambda_{+} v_{0}^{+}-\lambda_{-} v_{0}^{-}=0
$$

From the assumption $\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m}$ it follows that $v_{0}=a_{0} \varphi_{m}, a_{0}>0$.
We set $u_{n}=a_{n} \varphi_{m}+\widehat{u}_{n}$, where $a_{n} \geq 0, \widehat{u}_{n} \in H^{-} \oplus S$. We remark that $u=u^{+}-u^{-}$ and using (2.3) in the first integral in 3.16) we obtain

$$
\begin{align*}
I_{1}= & \int_{0}^{\pi}\left[\left(a_{n} \varphi_{m}+\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}-\left(\lambda_{+} u_{n}^{+}-\lambda_{-} u_{n}^{-}\right) w_{k}\right] d x \\
= & \int_{0}^{\pi}\left[a_{n} \varphi_{m}^{\prime} w_{k}^{\prime}+\left(\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}-\left(\left(\lambda_{+}-\lambda_{-}\right) u_{n}^{+}+\lambda_{-} u_{n}\right) w_{k}\right] d x \\
= & \int_{0}^{\pi}\left[a_{n}\left(\lambda_{+} \varphi_{m}^{+}-\lambda_{-} \varphi_{m}^{-}\right) w_{k}+\left(\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}-\left(\left(\lambda_{+}-\lambda_{-}\right) u_{n}^{+}+\lambda_{-} u_{n}\right) w_{k}\right] d x \\
= & \int_{0}^{\pi}\left\{a_{n}\left[\left(\lambda_{+}-\lambda_{-}\right) \varphi_{m}^{+}+\lambda_{-} \varphi_{m}\right] w_{k}+\left(\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}\right. \\
& \left.-\left[\left(\lambda_{+}-\lambda_{-}\right)\left(a_{n} \varphi_{m}+\widehat{u}_{n}\right)^{+}+\lambda_{-}\left(a_{n} \varphi_{m}+\widehat{u}_{n}\right)\right] w_{k}\right\} d x \\
= & \int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left(a_{n} \varphi_{m}^{+}-\left(a_{n} \varphi_{m}+\widehat{u}_{n}\right)^{+}\right) w_{k}+\left(\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}-\lambda_{-} \widehat{u}_{n} w_{k}\right] d x . \tag{3.21}
\end{align*}
$$

Similarly we obtain

$$
\begin{equation*}
I_{1}=\int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left(a_{n} \varphi_{m}^{-}-\left(a_{n} \varphi_{m}+\widehat{u}_{n}\right)^{-}\right) w_{k}+\left(\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}-\lambda_{+} \widehat{u}_{n} w_{k}\right] d x \tag{3.22}
\end{equation*}
$$

Adding (3.21) and 3.22 and we have
$2 I_{1}=\int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left(\left|a_{n} \varphi_{m}\right|-\left|a_{n} \varphi_{m}+\widehat{u}_{n}\right|\right) w_{k}+2\left(\widehat{u}_{n}\right)^{\prime} w_{k}^{\prime}-\left(\lambda_{+}+\lambda_{-}\right) \widehat{u}_{n} w_{k}\right] d x$.
We set $\widehat{u}_{n}=\bar{u}_{n}+\widetilde{u}_{n} \quad$ where $\quad \bar{u}_{n} \in H^{-}, \widetilde{u}_{n} \in S$ and we put in 3.23 $w_{k}=$ $\left(\bar{u}_{n}-\widetilde{u}_{n}\right) /\left\|\widehat{u}_{n}\right\|$ then we have

$$
\begin{align*}
2 I_{1}= & \frac{1}{\left\|\widehat{u}_{n}\right\|} \int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left(\left|a_{n} \varphi_{m}\right|-\left|a_{n} \varphi_{m}+\bar{u}_{n}+\widetilde{u}_{n}\right|\right)\left(\bar{u}_{n}-\widetilde{u}_{n}\right)\right. \tag{3.24}\\
& \left.+2\left(\bar{u}_{n}^{\prime}\right)^{2}-2\left(\widetilde{u}_{n}^{\prime}\right)^{2}-\left(\lambda_{+}+\lambda_{-}\right)\left(\bar{u}_{n}^{2}-\widetilde{u}_{n}^{2}\right)\right] d x .
\end{align*}
$$

Hence

$$
\begin{align*}
2 I_{1} \leq & \frac{1}{\left\|\widehat{u}_{n}\right\|}\left(\int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left|\bar{u}_{n}+\widetilde{u}_{n}\right|\left|\bar{u}_{n}-\widetilde{u}_{n}\right|\right] d x\right. \\
& \left.+2\left\|\bar{u}_{n}\right\|^{2}-2\left\|\widetilde{u}_{n}\right\|^{2}-\left(\lambda_{+}+\lambda_{-}\right)\left(\left\|\bar{u}_{n}\right\|_{2}^{2}-\left\|\widetilde{u}_{n}\right\|_{2}^{2}\right)\right) \\
= & \frac{1}{\left\|\widehat{u}_{n}\right\|}\left(\int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left|\bar{u}_{n}^{2}-\widetilde{u}_{n}^{2}\right|\right] d x\right. \tag{3.25}\\
& \left.+2\left\|\bar{u}_{n}\right\|^{2}-\left(\lambda_{+}+\lambda_{-}\right)\left\|\bar{u}_{n}\right\|_{2}^{2}-2\left\|\widetilde{u}_{n}\right\|^{2}+\left(\lambda_{+}+\lambda_{-}\right)\left\|\widetilde{u}_{n}\right\|_{2}^{2}\right) .
\end{align*}
$$

The inequality $\left|a^{2}-b^{2}\right| \leq \max \left\{a^{2}, b^{2}\right\}, 3.25$ and 1.3 yield

$$
\begin{equation*}
I_{1} \leq \max \left\{\left\|\bar{u}_{n}\right\|^{2}-\lambda_{-}\left\|\bar{u}_{n}\right\|_{2}^{2},-\left\|\widetilde{u}_{n}\right\|^{2}+\lambda_{+}\left\|\widetilde{u}_{n}\right\|_{2}^{2}\right\} \frac{1}{\left\|\widehat{u}_{n}\right\|} \tag{3.26}
\end{equation*}
$$

We note that the following relations hold $\left\|\bar{u}_{n}\right\|^{2} \leq(m-1)^{2}\left\|\bar{u}_{n}\right\|_{2}^{2}, \quad\left\|\widetilde{u}_{n}\right\|^{2} \geq$ $(m+1)^{2}\left\|\widetilde{u}_{n}\right\|_{2}^{2}$. Hence from assumption (1.3) and (3.26) it follows that there is $\varepsilon>0$ such that

$$
\begin{equation*}
I_{1} \leq-\varepsilon \max \left\{\left\|\bar{u}_{n}\right\|^{2},\left\|\widetilde{u}_{n}\right\|^{2}\right\} \frac{1}{\left\|\widehat{u}_{n}\right\|} \tag{3.27}
\end{equation*}
$$

From (3.16), (3.27) it follows

$$
\begin{equation*}
\lim _{n \rightarrow \infty}-\varepsilon \frac{\max \left\{\left\|\bar{u}_{n}\right\|^{2},\left\|\widetilde{u}_{n}\right\|^{2}\right\}}{\left\|\widehat{u}_{n}\right\|}-\int_{0}^{\pi}\left[\left(g\left(x, u_{n}\right)-f\right) \frac{\bar{u}_{n}-\widetilde{u}_{n}}{\left\|\widehat{u}_{n}\right\|}\right] d x \geq 0 \tag{3.28}
\end{equation*}
$$

Now we suppose that $\left\|\widehat{u}_{n}\right\| \rightarrow \infty$. We note that $\left\|\widehat{u}_{n}\right\|^{2}=\left\|\bar{u}_{n}\right\|^{2}+\left\|\widetilde{u}_{n}\right\|^{2}$, we divide (3.28) by $\left\|\widehat{u}_{n}\right\|$ and using (1.5) we have

$$
\begin{equation*}
-\frac{\varepsilon}{2} \geq \lim _{n \rightarrow \infty}-\varepsilon \frac{\max \left\{\left\|\bar{u}_{n}\right\|^{2},\left\|\widetilde{u}_{n}\right\|^{2}\right\}}{\left\|\widehat{u}_{n}\right\|^{2}}-\int_{0}^{\pi} \frac{g\left(x, u_{n}\right)-f}{\left\|\widehat{u}_{n}\right\|} \frac{\bar{u}_{n}-\widetilde{u}_{n}}{\left\|\widehat{u}_{n}\right\|} d x \geq 0 \tag{3.29}
\end{equation*}
$$

a contradiction to $\varepsilon>0$. This implies that the sequence $\left(\widehat{u}_{n}\right)$ is bounded. We use (2.2) from Lemma 2.2 with $w=\widehat{u}_{n}$ and we obtain

$$
\int_{0}^{\pi}\left[\left(\widehat{u}_{n}^{\prime}\right)^{2}-\lambda_{+} \widehat{u}_{n}^{2}\right] d x \leq J\left(u_{n}\right) \leq \int_{0}^{\pi}\left[\left(\widehat{u}_{n}^{\prime}\right)^{2}-\lambda_{-} \widehat{u}_{n}^{2}\right] d x .
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{J\left(u_{n}\right)}{\left\|u_{n}\right\|}=\lim _{n \rightarrow \infty} \frac{\int_{0}^{\pi}\left[\left(u_{n}^{\prime}\right)^{2}-\lambda_{+} u_{n}^{2}-\lambda_{-} u_{n}^{2}\right] d x}{\left\|u_{n}\right\|}=0 \tag{3.30}
\end{equation*}
$$

We divide (3.14) by $\left\|u_{n}\right\|$ and (3.30 yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left[\frac{-G\left(x, u_{n}\right)+f u_{n}}{\left\|u_{n}\right\|}\right] d x=0 \tag{3.31}
\end{equation*}
$$

and using Fatou's lemma in 3.31 we obtain a contradiction to 1.4 .
This implies that the sequence $\left(u_{n}\right)$ is bounded. Then there exists $u_{0} \in H$ such that $u_{n} \rightharpoonup u_{0}$ in $H, u_{n} \rightarrow u_{0}$ in $L^{2}(0, \pi)$ (up to subsequence). It follows from the equality (3.16) that

$$
\begin{equation*}
\lim _{n, i, k \rightarrow \infty} \int_{0}^{\pi}\left[\left(u_{n}-u_{i}\right)^{\prime} w_{k}^{\prime}-\left[\lambda_{+}\left(u_{n}^{+}-u_{i}^{+}\right)-\lambda_{-}\left(u_{n}^{-}-u_{i}^{-}\right)\right] w_{k}\right] d x=0 . \tag{3.32}
\end{equation*}
$$

We put $w_{k}=u_{n}-u_{i}$ in 3.32 and the strong convergence $u_{n} \rightarrow u_{0}$ in $L^{2}(0, \pi)$ and (3.32) imply the strong convergence $u_{n} \rightarrow u_{0}$ in H. This shows that the functional I satisfies Palais-Smale condition and the proof of Theorem 3.1 for m even is complete.

Now we suppose that m is odd. We have $\left[\lambda_{+}, \lambda_{-}\right] \in \Sigma_{m 2}$ and the nontrivial solution $\varphi_{m 2}$ of 1.2 corresponding to $\left[\lambda_{+}, \lambda_{-}\right]$. Then there is $k>0$ such that $\left[\lambda_{+}-k, \lambda_{-}-k\right] \in \Sigma_{m 1}$ and solution $\varphi_{m 1}$ corresponding to $\left[\lambda_{+}-k, \lambda_{-}-k\right]=\left[\lambda_{+}^{\prime}, \lambda_{-}^{\prime}\right]$ (see Remark 1.2) .

We define the sets Q and S like for m even and the proof of the steps (i), (ii) of theorem 3.1 is the same. In the step (iii) we change inequality 3.10 if $v_{0}=a_{0} \varphi_{m 1}$ as it follows

$$
\begin{align*}
& \int_{0}^{\pi}\left[\left(v_{0}^{\prime}\right)^{2}-\lambda_{+}\left(v_{0}^{+}\right)^{2}-\lambda_{-}\left(v_{0}^{-}\right)^{2}\right] d x \\
& =\int_{0}^{\pi}\left[\left(v_{0}^{\prime}\right)^{2}-\left(\lambda_{+}-k\right)\left(v_{0}^{+}\right)^{2}-\left(\lambda_{-}-k\right)\left(v_{0}^{-}\right)^{2}\right] d x-k \int_{0}^{\pi} v_{0}^{2} d x \tag{3.33}\\
& \leq-k \int_{0}^{\pi} v_{0}^{2} d x+\int_{0}^{\pi}\left[\left(w_{0}^{\prime}\right)^{2}-\lambda_{-}\left(w_{0}\right)^{2}\right] d x
\end{align*}
$$

Then by 3.9, 3.33 and 3.11 we obtain $k \int_{0}^{\pi} v_{0}^{2} d x=0$, a contradiction to $\left\|v_{0}\right\|=1$. The proof of the step (iv) is similar to the prove for m even. The proof of the theorem 3.1 is complete.

References

[1] A. K. Ben-Naoum, C. Fabry, \& D. Smets; Resonance with respect to the Fučik spectrum, Electron J. Diff. Eqns., Vol. 2000(2000), No. 37, pp. 1-21.
[2] S. Fučík; Solvability of Nonlinear Equations and Boundary Value problems, D. Reidel Publ. Company, Holland 1980.
[3] M. Cuesta, J. P. Gossez; A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Analysis 5 (1992), 487-504.
[4] P. Rabinowitz; Minmax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. no 65, Amer. Math. Soc. Providence, RI., (1986).
[5] M. Struwe; Variational Methods, Springer, Berlin, (1996).
[6] P. Tomiczek; The generalization of the Landesman-Lazer conditon, Electron. J. Diff. Eeqns., Vol. 2001(2001), No. 04, pp. 1-11.

Petr Tomiczek
Department of Mathematics, University of West Bohemia, Univerzitní 22, 30614 Plzeñ, Czech Republic

E-mail address: tomiczek@kma.zcu.cz

[^0]: 2000 Mathematics Subject Classification. 35J70, 58E05, 49B27.
 Key words and phrases. Resonance; eigenvalue; jumping nonlinearities; Fucik spectrum. (C) 2005 Texas State University - San Marcos.

 Submitted November 26, 2004. Published August 29, 2005.
 Partially supported by the Grant Agency of Czech Republic, MSM 4977751301.

