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OPTIMAL CONTROL OF COMBINED THERAPY IN A SINGLE
STRAIN HIV-1 MODEL

WINSTON GARIRA, SENELANI D. MUSEKWA, TINEVIMBO SHIRI

Abstract. Highly active antiretroviral therapy (HAART) is administered to
symptomatic human immunodeficiency virus (HIV) infected individuals to im-

prove their health. Various administration schemes are used to improve pa-
tients’ lives and at the same time suppressing development of drug resistance,

reduce evolution of new viral strains, minimize serious side effects, improve pa-

tient adherence and also reduce the costs of drugs. We deduce an optimal drug
administration scheme useful in improving patients’ health especially in poor

resourced settings. In this paper we use the Pontryagin’s Maximum Principle

to derive optimal drug dosages based on a mathematical dynamical model.
We use methods of optimal control to determine optimal controls analytically,

and then use the Runge-Kutta scheme of order four to numerically simulate

different therapy effects. We simulate the different effects of a drug regimen
composed of a protease inhibitor and a nucleoside reverse transcriptase in-

hibitor. Our results indicate that for highly toxic drugs, small dosage sizes

and allowing drug holidays make a profound impact in both improving the
quality of life and reducing economic costs of therapy. The results show that

for drugs with less toxicity, continuous therapy is beneficial.

1. Introduction

Recently, there has been a rollout of antiretroviral (ARV) therapies in many
countries around the world, but availability of ARVs in poor resourced settings is
a major concern. The cost of these drugs is beyond reach of many infected pa-
tients, hence there is need to come up with a comprehensive drug administration
scheme that makes a significant impact in conferring clinical benefits and cost ef-
fectiveness. Clinical benefits of drug therapy for HIV infected individuals include
restoration of CD4+ T cells levels, suppressing viral levels below detection limits
and minimizing detrimental side effects such as risk of cardiovascular, acute retrovi-
ral syndrome, fat loss, lactic acidosis, abnormal fat distribution and mitochondrial
damage [3]. There are more than twenty anti-HIV-1 drugs available and these are
administered in many different combinations of three or four drugs. The drugs fall
into three main categories, that is, reverse transcriptase inhibitors (RTIs) (nucleo-
side, nucleotide and nonnucleoside), protease inhibitors (PIs) and fusion inhibitors
(FIs). RTIs prevent new HIV-1 infections by disrupting the conversion of viral
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RNA into DNA that can be incorporated into the host cell’s genome. PIs function
by preventing the assembly of key viral proteins after they have been mistakenly
produced by infected host cells [15]. FIs function by preventing the fusion of the
virus and the host cells. HAART consists of combined drug regimens that in-
cludes two or three nucleoside agents alone or two nucleoside agents combined with
a protease inhibitor or a nonnucleoside reverse trancriptase inhibitor [3]. Exam-
ples of such regimen combinations include EFV (Efavirenz) + (3TC (Lamivudine)
or FTC (Emtricitabine))+ (AZT (Zidovudine) or TDF (Tenofovir Disoproxil Fu-
marate)), a combination of a nonnucleoside reverse transcriptase inhibitor (EFV)
and two nucleoside reverse transcriptase inhibitors (3TC or FTC and AZT) and
LPV/r (Lopinavir) + (3TC or FTC) + AZT, a combination of a protease inhibitor
(LPV/r) and two nucleoside reverse trancriptase inhibitors (3TC or FTC and AZT)
and other options that are selected by government agencies, although these options
are limited by generic formulations [7]. In this paper we explore the effects of a
combination of a protease inhibitor and a nucleoside reverse transcriptase inhibitor,
that is, we only look at effects of two types of drugs that are used in a HAART
regimen. Suppression of viremia to less than detection limits or maintenance of
even partial viremic suppression by selection of an optimal regimen remains the
goal of therapy. The ultimate goal is to prevent further immune deterioration. The
new chemotherapies offer added dosing convenience and improved safety profiles.
Various chemotherapies for patients with HIV-1 are being examined to determine
the optimal scheme for treatment [6].

The primary attention of this paper is to establish when and how treatment
should be initiated, dosage size and means to continue clinical benefit in the face
of challenges like antiretroviral drug failure and antiretroviral resistances. The
optimal controls in this paper represent percentage effects chemotherapies have on
the interaction of the CD4+ T cells with the virus (infection of CD4+ T cells)
and the virions produced by infected cells (burst size). Chemotherapy has side
effects if administered in high dosage sizes or continuously, therefore the length
of treatment is a limited time frame. The interval of treatment is necessary since
a plausible assumption is made that chemotherapy only has a certain designated
time for allowable treatment [10]; [6]. After some finite time frame, HIV-1 is able
to build up resistance to the treatment due to its mutation ability. Therefore,
in this paper we fix the length of treatment. In this paper we need to determine
optimal methodology for administering anti-viral medication therapies to fight HIV-
1 infection. The main reasons for such an optimal therapy are minimization of drug
toxicity or systemic cost, maximization of CD4+ T cell count and minimize cost of
drugs.

Optimal control methods have been applied to the derivation of optimal therapies
for HIV infection. Butler et al. [4] and Fister et al. [11] explored an optimal
chemotherapy strategy using Pontryagin’s Maximum Principle, with a single control
that represents the percentage effect it has on viral infectivity (simulating a drug
such as AZT (zidovudine)) using dynamical HIV models. Kirschner et al. [10]
used an existing model which describes the interaction of the immune system with
HIV. In Kirschner et al. [10] the authors used a single control representing the
percentage effect chemotherapy has on viral production (simulating effects of a
protease inhibitor). Kutch and Gufil [15] investigated the reasons underlying the
development of drug-insensitive HIV-strains, and demonstrated that optimal drug
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administration may be useful in increasing patient health by delaying the emergence
of drug-resistant mutant viral strains. Kutch and Gufil [15] used two controls
representing the percentage effect chemotherapy has on CD4+ T cells infection and
viral production and also incorporated drug efficacy. In the study by Kutch and
Gufil [15], an alternative approach to Pontryagin’s Maximum Principle was adopted,
that involves converting the standard optimal control problem into a parameter
optimization problem by discretizing the control input vector. An HIV immune
dynamics model with three viral strains was used. Joshi [8] explored optimal control
of an ordinary differential equation model taken from [11]. In the paper [8], Joshi
considered two controls, one boosting the immune system and the other delaying
HIV progression. The novel part of our work is that we explore optimal control
of chemotherapy using an HIV dynamical model that incorporates explicit cellular
immune response (lytic mechanism and two non-lytic mechanisms). We use two
controls, one simulating effect of RTIs and the other control simulating effect of
PIs, incorporating drug efficacy. The paper is structured as follows: Firstly in
section 2 we formulate a model of HIV immune dynamics, with explicit immune
response (lytic and non-lytic components). The model mimics virus and CD4+
T cells dynamics in an infected individual. We modify the model to capture the
effects of combined therapy and derive an optimal control problem with an objective
functional that maximizes CD4+ T cells and minimizes systemic costs. In section
3 we prove the existence of an optimal control pair and characterize the control
pair in section 4. In section 5 we state the optimality system, which is the state
system coupled with the adjoint system. In section 6, we prove the uniqueness
of the optimality system and we present numerical illustrations for the optimality
system in section 7. We make some concluding remarks in section 8.

2. The Model

Let T denote the population density of uninfected CD4+ T cells, T ∗ the density
of infected CD4+ T cells, V the density of free viral particles and C the density
of HIV-1 specific cytotoxic T lymphocytes (CTLs). The rate of change of each of
these is governed by a first order differential equation. T cell dynamics are governed
by proliferation due to virus presence, apoptosis, natural death and thymus supply
and viral infectivity inhibited by CTL chemokines. For T the equation is

dT (t)
dt

= s1 +
rT (t)V (t)
BV + V (t)

− e−a0C(t)βV (t)T (t)− µT T (t)− kV (t)T (t)
BT + T (t)

. (2.1)

Here the first term on the right-hand side, s1, represents the source of new CD4+ T
cells from the thymus [9]. This is followed by the proliferation term of CD4+ T cells
in the presence of the virus: r is the proliferation rate and BV is a parameter that
determines the amount of antigen needed to generate half maximal stimulation [9].
The third term describes the infection of CD4+ T cells by the virus. The presence
of CTLs that release chemokines, such as β- chemokines that block the entry of
certain virions into target cells [16]; [12], prevent infection of new cells by a factor
e−a0C (effectiveness of CTLs), where a0 is the efficiency of each CTL in reducing
CD4+ T cells infection. The hypothesis is that reduction of infection of CD4+ T
cells is enhanced by the number of HIV-specific CTLs available. The idea goes as
follows: as C → ∞, e−a0C → 0 meaning that the availability of large quantities
of CTLs reduce the rate of infection of CD4+ T cells. The extent of reduction
depends on the effectiveness of CTLs (e−a0C). Conversely as C → 0, e−a0C → 1
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meaning that for low CTL count or zero CTL, the infection rate of CD4+ T cells
by virus is slightly reduced or not reduced at all. The effectiveness value of CTLs
ranges from 0 to 1. We assume that reduction in infection rate has an exponential
effect. Here β is the rate of infection of CD4+ T cells by the virus. The fourth
term is a natural death term, since cells have a finite life span. On average the
life span is 1/µT . The last term represents the destruction of CD4+ T cells by
the influence of toxic viral proteins. The idea is as follows: The parameter k is
the rate of apoptosis. There is a limit to the rate of T cell mortality due to the
induction of apoptosis. The limit is a function of variables such as presentation
of HIV-1 Env gp120/gp41, receptors involved (especially chemokines CCR5 and
CXCR4) and the complexity of target cell contact [1]. In other words, there is a
saturation effect in which the virus can only present itself to so many T cells even
when the CD4+ T cell population is low. Conversely, there is an increase in the
effect of apoptosis at low CD4+ T cell densities. If T cell density is low, there
are more virions per cell and this could lead to higher engagement of apoptosis
receptors. On the other hand, if the T cell density is high, there are less virions
per cell therefore the chances of virus presentation decreases. Thus presentation
exhibits this switching phenomenon and it is this behaviour which is represented
by the Hollings Type II function [13]. The importance of the parameter BT , is that
it determines the scale at which engagement of apoptosis receptors begins to take
effect.

The rate of change of the infected CD4+ T cells is governed by the equation

dT ∗(t)
dt

= e−a0C(t)βV (t)T (t)− αT ∗(t)− hT ∗(t)C(t). (2.2)

The first term on the right-hand side is a gain term for infected cells. The third
term is a direct killing of virus infected cells through perforin-granzyme and Fas-
FasL pathways. Infected cells are lysed by CTLs at a rate h [14]. Infected cells are
also lost by cytopathic effect of virus and natural death such that they have a finite
life span that averages 1/α.

The third equation of the system

dV (t)
dt

= NαT ∗(t)e−a1C(t) − µV V (t), (2.3)

describes the rate of change of viral load. The first term on the right-hand side
explains the source of the virus. Virions are released by a burst of infected cells
[9], where an average of N viral particles are released per infected cell. Nα is
the average rate of virus production per productively infected cell. CTLs release
cytokines such as interferon-γ (INF-γ) that can suppress the rate of virus production
by virus infected cells [2]; [18]. Therefore, they reduce viral burst by a factor of
e−a1C , where a1 is the rate at which each CTL suppresses virus production. The
last term describes natural loss of viral particles.

The fourth equation

dC(t)
dt

= s2 + p0T (t)V (t)C(t)− µCC(t), (2.4)

describes the dynamics of CTLs during HIV-1 infection. Naive CD8+ T cells differ-
entiate into CTLs when stimulated by helper cells (CD4+ T Cells). HIV-1 specific
CTLs decline with increased disease and decreased CD4+ T cell numbers, which
means that the CTL population proliferation depends on the stimulation of CD4+
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T cells. High numbers of CTLs are associated with low virus titers at equilib-
rium and loss of CTLs results in an increase in viral load. The first term on the
right-hand side, s2 models the production rate of HIV specific CD8+ T cells from
pre-cursors [14] and the second term accounts for the differentiation of naive CD8+
T cells into CTLs in response to HIV. Differentiation of CD8+ T cells depends on
the help of CD4+ T cells present where p0 is the rate of the process. Wodarz and
Nowak [20] used a similar term to model the proliferation of HIV specific CTLs.
CTLs are cleared at a rate µC , a blanket term for death (natural and apoptotic).

The model of HIV immune dynamics given by equations (2.1), (2.2), (2.3) and
(2.4) has two steady states in the presence of immune response. The first steady
state is the uninfected state given by(

T̄un =
s1

µT
, T̄ ∗un = 0, V̄un = 0, C̄un =

s2

µC

)
.

If infection persists the system converges to a second steady state, an immune
controlled equilibrium given by:

T̄in =
µV (α + hC̄in)e(a0+a1)C̄in

Nαβ
, T̄ ∗in =

µV

Nα
ea1C̄in V̄in, C̄in =

s2

µC − pT̄inV̄in
,

and

V̄in =

(
s1 + (r − µT )T̄in − βBV T̄ine−a0C̄in − kBV T̄in

BT +T̄in

)
2
(

kT̄in

BT +T̄in
+ βT̄ine−a0C̄in

)
+

((
βBV T̄ine−a0C̄in +

kBV T̄in

BT + T̄in
+ (µT − r)T̄in − s1

)2

− 4
( kT̄in

BT + T̄in
+ βT̄ine−a0C̄in

)(
µT BV T̄in − s1BV

))1/2

÷
(
2
( kT̄in

BT + T̄in
+ βT̄ine−a0C̄in

))
.

The virus reproductive number, R0 which is the number of newly infected cells that
arise from any one infected cell when almost all cells are uninfected, is given by

R0 =
Nβαs1e

−(a0+a1)C̄un

µV µT (α + hC̄un)

where C̄un = s2
µC

. The reproductive number is governed by several factors including
the efficiency with which HIV infects CD4+ T cells, β (infectivity constant), number
of virions produced by one infected cell (burst size, N), rate of virion clearance
from the body, µV , death rate of uninfected CD4+ T cells, µT , CD4+ T cells
production rate, s1, effectiveness of CTLs in reducing infection and reducing burst
size (e−(a0+a1)C̄un), the effect of CTLs in killing virally infected cells, hC̄un and
the the cytopathic effect of the virus, α. Determination of stability of equilibrium
states give us the following results: if R0 < 1, uninfected equilibrium state is
asymptotically stable, that is, infection is abortive. If R0 > 1, the uninfected state
is unstable and it converges to an immune controlled equilibrium state that is locally
asymptotically stable. The virus will spread after infection and the abundance of
uninfected cells, infected cells, free viruses and CTLs is given by equations in T̄in,



6 W. GARIRA, S. D. MUSEKWA, T. SHIRI EJDE-2005/52

T̄ ∗in, V̄in and C̄in respectively. If R0 = 1 the uninfected state and the infected state
coincide. If R0 > 1 infection persists, then it will eventually leads to the acquired
immune deficiency syndrome (AIDS) stage, associated with a weakened immune
system which has difficulty fighting off opportunistic infections [19]. It is at this
stage when therapy is initiated to boost the health of infected individuals.

After initiation of combined chemotherapy, combination of RTIs and PIs, infec-
tion rate of CD4+ T cells is reduced and the number of viral particles produced
by an actively infected CD4+ T cell is reduced. If we let uRTI(t) represent the
normalized RTI dosage as a function of time, then β will be modified to become
(1 − 1

2uRTI(t))β where 1
2 models drug efficacy [15]) and it is meant to take into

account the effectiveness of the delivery. If we also let uPI(t) be the normalized
PI dosage, then the parameter N will be modified to become (1− 1

2uPI(t))N [15].
Hence the state system becomes

dT (t)
dt

= s1 +
rT (t)V (t)
BV + V (t)

− (1− 1
2
uRTI(t))βe−a0C(t)V (t)T (t)

− µT T (t)− kV (t)T (t)
BT + T (t)

dT ∗(t)
dt

= (1− 1
2
uRTI(t))βe−a0C(t)V (t)T (t)− αT ∗(t)− hT ∗(t)C(t)

dV (t)
dt

= (1− 1
2
uPI(t))Ne−a1C(t)αT ∗(t)− µV V (t)

dC(t)
dt

= s2 + p0T (t)V (t)C(t)− µCC(t).

(2.5)

The controls uRTI(t) and uPI(t) represent the action of RTI (viral infectivity re-
duction) and PI (viral replication suppression) drugs respectively.
The objective functional is defined as,

J(uRTI , uPI) =
∫ Tf

0

[
T (t)−

(A1

2
u2

RTI(t) +
A2

2
u2

PI(t)
)]

dt (2.6)

where T (t) is the benefit based on CD4+ T cells and the other terms are systemic
costs of the drug treatments. The benefit of treatment is based on an increase of
CD4+T cells and systemic costs of drugs are minimized. The positive constants
A1 and A2 represent desired weight on the benefit and cost, and u2

RTI , u2
PI reflect

the severity of the side effects of the drugs [8]. The cost function is assumed to
be nonlinear, basing on the fact that there is no linear relationship between the
effects of treatment on CD4+ T cells or viral load hence the choice of a quadratic
cost function [10]. We impose a condition for treatment time, t ∈ [0, Tf ], limited
treatment window [4], that monitors global effects of these phenomena; treatment
lasts for a given period of time because HIV can mutate and develop resistance to
treatment after some finite time frame and in addition treatment has potentially
harmful side effects, and these side effects increase with duration of treatment. The
time t = 0 is the time when treatment is initiated and time t = Tf is the time when
treatment is stopped. The main objective is to maximize the benefit based on
the CD4+ T cell count (increase in quality of life) and the systemic cost based on
the percentage effect of the chemotherapy given (RTIs and PIs) is being minimized
(toxic side effects being avoided as much as possible and not causing patient death).
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We seek an optimal control pair, u∗RTI , u∗PI such that

J(u∗RTI , u
∗
PI) = max {J(uRTI , uPI)|(uRTI , uPI) ∈ U} (2.7)

where

U =
{
(uRTI , uPI), uRTI , uPI measurable, 0 ≤ a11 ≤ uRTI ≤ b11 ≤ 1

and 0 ≤ a22 ≤ uPI ≤ b22 ≤ 1
}

is the control set where t ∈ [0, Tf ].
The basic framework of this problem is to characterize the optimal control and

prove the existence of the optimal control and uniqueness of the optimality system.

3. Existence of an Optimal Control Pair

The existence of the optimal control pair can be obtained using a result by Joshi
[8], Fister et al. [6], and other references quoted therein.

Theorem 3.1. Given the objective functional

J(uRTI , uPI) =
∫ Tf

0

[
T (t)−

(
A1

2
u2

RTI(t) +
A2

2
u2

PI(t)
)]

dt ,

where U = {(uRTI(t), uPI(t)) , piecewise continuous such that 0 < a11 ≤ uRTI(t) ≤
b11 < 1, 0 < a22 ≤ uPI(t) ≤ b22 < 1} for all t ∈ [0, Tf ] subject to equations of
system (2.5) with T (0) = T0, T ∗(0) = T ∗0 , V (0) = V0 and C(0) = C0, then there
exists an optimal control pair u∗RTI , u∗PI such that

max{J(uRTI , uPI)|(uRTI , uPI) ∈ U} = J(u∗RTI , u
∗
PI)

if the following conditions are met:
(1) The class of all initial conditions with an optimal control pair uRTI , uPI

in the admissible control set along with each state equation being satisfied
is not empty.

(2) The admissible control set U is closed and convex.
(3) Each right hand side of equations of system (2.5) is continuous, is bounded

above by a sum of the bounded control and the state, and can be written
as a linear function of an optimal control pair uRTI , uPI with coefficients
depending on time and the state.

(4) The integrand J(uRTI , uPI) is concave.
(5) The integrand J(uRTI , uPI) is bounded above by C2−C1(|uRTI |2 + |uPI |2)

with C1 > 0.

Proof. Our definition of the control set satisfies conditions 1 and 2. For the model
to be realistic, we impose the restrictions that CD4+ T cells and CD8+ T cells
do not grow unbounded, so we use T (t) < Tmax and C(t) < Cmax where Tmax and
Cmax are the maximum numbers of CD4+ T cells and CD8+ T cells that can be
found in an individual respectively. Using T (t) < Tmax and C(t) < Cmax, upper
bounds on the solutions of system (2.5) are found.

dT̄ ∗

dt
= βe−a0CmaxTmaxV̄ , T̄ ∗(0) = T̄ ∗0 ,

where β > 0, Tmax > 0 and 0 < e−a0Cmax < 1.

dV̄

dt
= Nαe−a1Cmax T̄ ∗, V̄ (0) = T̄0,
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where N > 0, α > 0 and 0 < e−a1Cmax < 1. Since this system is linear in finite
time with bounded coefficients, then the supersolutions T̄ ∗ and V̄ are uniformly
bounded. Since our state system is bilinear in uRTI and uPI , the right hand side
of equations of system (2.5) satisfies condition 3.

The right hand side of system (2.5) is continuous and it can be written as:

f(t,T,u) = α(t,T) + γ(t,T)u

and the boundedness of solutions gives

|f(t,T,u)| ≤ C1(1 + |T|+ |u|)
for 0 ≤ t ≤ Tf where T ∈ <4, u ∈ <2 where T = (T, T ∗, V, C) and u = (uRTI , uPI))
and C1 depends on the coefficients of the system.

The vectors α and γ are vector-valued functions of T. In order to verify the
convexity of the integrand of our objective functional, J we show that

J(t,T, (1− ε)u + εv) ≥ (1− ε)J(t,T,u) + εJ(t,T,v) (3.1)

for 0 < ε < 1 and J(t,T,u) = T − (A1
2 u2

RTI + A2
2 u2

PI).

J(t,T, (1− ε)u + εv)

=
[
T − A1

2
((1− ε)uRTI + εvRTI)

2 − A2

2
((1− ε)uPI + εvPI)

2

]
= T − A1

2
[
u2

RTI − 2εu2
RTIε

2u2
RTI + 2(1− ε)uRTIεvRTI + ε2v2

RTI

]
− A2

2
[
u2

PI − 2εu2
PI + ε2u2

PI + 2(1− ε)uPIεvPI + ε2v2
PI

]
= T − (

A1

2
u2

RTI +
A2

2
u2

PI)

− A1

2
[(ε2 − 2ε)u2

RTI + ε2v2
RTI + 2ε(1− ε)uRTIvRTI ]

− A2

2
[(ε2 − 2ε)u2

PI + ε2v2
PI + 2ε(1− ε)uPIvPI ].

(1− ε)J(t,T,u) + εJ(t,T,v)

= (1− ε)[T − (
A1

2
u2

RTI +
A2

2
u2

PI)] + ε[T − (
A1

2
v2

RTI +
A2

2
v2

PI)]

= T − (
A1

2
u2

RTI +
A2

2
u2

PI)− ε[T − (
A1

2
u2

RTI +
A2

2
u2

PI)]

+ ε[T − (
A1

2
v2

RTI +
A2

2
v2

PI)]

= T − (
A1

2
u2

RTI +
A2

2
u2

PI)−
ε

2
(−A1u

2
RTI −A2u

2
PI + A1v

2
RTI + A2v

2
PI).

(3.2)

Thus to show that J(t,T, .) is concave in U , we note that the following inequality
holds

A1

2
[(ε2 − 2ε)u2

RTI + ε2v2
RTI + 2ε(1− ε)uRTIvRTI ]

+
A2

2
[(ε2 − 2ε)u2

PI + ε2v2
PI + 2ε(1− ε)uPIvPI ]

≤ ε

2
(−A1u

2
RTI −A2u

2
PI + A1v

2
RTI + A2v

2
PI).

(3.3)
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This implies

A1

2
ε2u2

RTI −A1εu
2
RTI +

A1

2
ε2v2

RTI + A1ε(1− ε)uRTIvPI +
A2

2
ε2u2

PI −A2εu
2
PI

+
A1

2
ε2v2

PI + A2ε(1− ε)uPIvPI +
A1

2
εu2

RTI +
A2

2
εu2

PI −
A1

2
εv2

RTI −
A2

2
εv2

PI ≤ 0.

Finally this gives

A1

2
(ε2 − ε)(u2

RTI + v2
RTI) +

A2

2
(ε2 − ε)(u2

PI + v2
PI)

+ ε(1− ε)(A1uRTIvRTI + A2uPIvPI) ≤ 0,

which is equivalent to

A1

2
(ε2 − ε)(u2

RTI + v2
RTI) + (ε− ε2)A1uRTIvRTI

+
A2

2
(ε2 − ε)(u2

PI + v2
PI) + (ε− ε2)A2uPIvPI ≤ 0

which can be written as

− A1

2

(√
ε(1− ε)uRTI −

√
ε(1− ε)vRTI

)2

− A2

2

(√
ε(1− ε)uPI −

√
ε(1− ε)vPI

)2

≤ 0.

(3.4)

This holds since A1, A2 > 0, hence equation 3.1 holds. Finally we need to show
that J(t,T,u) ≤ C2 − C1|u|β , where C1 > 0 and β > 1. For our case

J(t,T,u) = T −
(A1

2
u2

RTI +
A2

2
u2

PI

)
≤ C2 − C1|u|2

where C2 depends on the upper bound on CD4+ T cells, T , and C1 > 0 since A1,
A2 > 0. We conclude that there exists an optimal control pair. �

4. Characterization

Since there exists an optimal control pair for maximizing the functional, equation
(2.6), subject to system (2.5) we derive necessary conditions on the optimal control
pair [6]. We discuss the theorem that relates to the characterization of the optimal
control. In order to derive the necessary conditions for this optimal control pair,
we use Pontryagin’s Maximum Principle [13]. The Lagrangian is defined as

L =T (t)−
(

A1

2
u2

RTI(t) +
A2

2
u2

PI(t)
)

+ λ1

[
s1 +

rT (t)V (t)
BV + V (t)

− (1− 1
2
uRTI(t))βe−a0C(t)V (t)T (t)− µT T (t)− kV (t)T (t)

BT + T (t)

]
+ λ2

[
(1− 1

2
uRTI(t))βe−a0C(t)V (t)T (t)− αT ∗(t)− hT ∗(t)C(t)

]
+ λ3

[
(1− 1

2
uPI(t))Ne−a1C(t)αT ∗(t)− µV V (t)

]
+ λ4 [s2 + p0T (t)V (t)C(t)− µCC(t)]

+ w11(t)(b11 − uRTI(t)) + w12(t)(uRTI(t)− a11)

+ w21(t)(b22 − uPI(t)) + w22(t)(uPI(t)− a22) ,
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where w11(t) ≥ 0, w12(t) ≥ 0, w21(t) ≥ 0, w22(t) ≥ 0 are penalty multipliers
satisfying w11(t)(b11 − uRTI(t)) = 0, w12(t)(uRTI(t) − a11) = 0 at the optimal
u∗RTI , and w21(t)(b22 − uPI(t)) = 0, w22(t)(uPI(t)− a22) = 0 at the optimal u∗PI .

Theorem 4.1. Given a pair of optimal controls u∗RTI , u∗PI and solutions T, T ∗, V, C
of the corresponding state system (2.5), there exists adjoint variables λi for i =
1, 2, 3, 4 satisfying the following canonical equations

dλ1

dt
= −∂L

∂T

= −
[
1 + λ1

( rV (t)
BV + V (t)

− (1− 1
2
uRTI(t))βe−a0C(t)V (t)− µT −

kV (t)BT

(BT + T (t))2
)]

−
[
λ2((1−

1
2
uRTI(t))βe−a0C(t)V (t)) + λ4p0V (t)C(t)

]
dλ2

dt
= − ∂L

∂T ∗
= −

[
λ2(−α− hC(t)) + λ3((1−

1
2
uPI(t))Ne−a1C(t)α)

]
dλ3

dt
= − ∂L

∂V

= −
[
λ1

(
rT (t)BV

(BV + V (t))2
− (1− 1

2
uRTI(t))βe−a0C(t)T (t)− kT (t)

BT + T (t)

)]
−
[
λ2((1−

1
2
uRTI(t))βe−a0C(t)T (t))− λ3µV

]
dλ4

dt
= − ∂L

∂C

= −
[
λ1(a0(1−

1
2
uRTI(t))βe−a0C(t)V (t)T (t))

]
+
[
λ2(a0(1−

1
2
uRTI(t))βe−a0C(t)V (t)T (t) + hT ∗(t))

]
+
[
λ3(a1(1−

1
2
uPI(t))Ne−a1C(t)αT ∗(t))− λ4(p0T (t)V (t)− µC)

]
with transversality conditions λi(Tf ) = 0 for i = 1, 2, 3, 4. Further, the following
characterization holds:

u∗RTI(t) = min
{

max
{
a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)
}
, b11

}
,

u∗PI(t) = min
{

max
{
a22,

−λ3

2A2
Ne−a1C(t)αT ∗(t)

}
, b22

}
.

Proof. The form of the adjoint equations and transversality conditions are stan-
dard results from Pontryagin’s Maximum Principle [8]; therefore, solutions to the
adjoint system exists and are bounded. To determine the interior maximum of our
Lagrangian, we take the partial derivatives of L with respect to uRTI and uPI and
set it equal to zero. Thus

∂L

∂uRTI
= −A1u

∗
RTI(t) +

λ1

2
βe−a0C(t)V (t)T (t)− λ2

2
βe−a0C(t)V (t)T (t)

− w11(t) + w12(t) = 0 at u∗RTI .

∂L

∂uPI
= −A2u

∗
PI(t)−

λ3

2
Ne−a1C(t)αT ∗(t)− w21(t) + w22(t) = 0 at u∗PI .
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Hence upon simplification, we obtain

u∗RTI(t) =
(λ1−λ2)

2 βe−a0C(t)V (t)T (t)− w11(t) + w12(t)
A1

(4.1)

u∗PI(t) =
−λ3

2 Ne−a1C(t)αT ∗(t)− w21(t) + w22(t)
A2

(4.2)

4.1. Case u∗RTI .
(1) On the set {t|a11 < u∗RTI(t) < b11}, w11(t) = w12(t) = 0. From (4.1) we

have

u∗RTI(t) =
(λ1 − λ2)βe−a0C(t)V (t)T (t)

2A1

(2) On the set {t|u∗RTI(t) = a11}, w11(t) = 0. Consequently,

u∗RTI(t) = a11 =
(λ1 − λ2)βe−a0C(t)V (t)T (t)

2A1
+

w12(t)
A1

or
(λ1 − λ2)βe−a0C(t)V (t)T (t)

2A1
≤ a11, since w12(t) ≥ 0.

(3) On the set {t|u∗RTI(t) = b11}, w12(t) = 0. Consequently,

u∗RTI(t) = b11 =
(λ1 − λ2)βe−a0C(t)V (t)T (t)

2A1
− w11(t)

A1

or
(λ1 − λ2)βe−a0C(t)V (t)T (t)

2A1
≥ b11, since w11(t) ≥ 0.

Combining all the three cases in a compact form gives

u∗RTI(t) = min
{

max
{
a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)
}
, b11

}
.

4.2. Case u∗PI .
(1) On the set {t|a22 < u∗PI(t) < b22}, w21(t) = w22(t) = 0. From (4.2) we

have

u∗PI(t) = −λ3Ne−a1C(t)αT ∗(t)
2A2

.

(2) On the set {t|u∗PI(t) = a22}, w21(t) = 0. Consequently,

u∗PI(t) = a22 = −λ3Ne−a1C(t)αT ∗(t)
2A2

+
w22(t)

A2

or

−λ3Ne−a1C(t)αT ∗(t)
2A2

≤ a22, since w22(t) ≥ 0.

(3) On the set {t|u∗PI(t) = b22}, w22(t) = 0. Consequently,

u∗PI(t) = b22 = −λ3Ne−a1C(t)αT ∗(t)
2A2

− w21(t)
A2

or

−λ3Ne−a1C(t)αT ∗(t)
2A2

≥ b22, since w21(t) ≥ 0.
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Combining all the three cases in compact form gives

u∗PI(t) = min
{

max
{

a22,
−λ3

2A2
Ne−a1C(t)αT ∗(t)

}
, b22

}
.

�

5. Optimality System

Incorporating the presentation of the optimal treatment controls, we have the
state system coupled with the adjoint system.

dT (t)
dt

= s1 +
rT (t)V (t)

(BV + V (t))
− µT T (t)− kV (t)T (t)

(BT + T (t))

−
(
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)V (t)T (t)

dT ∗(t)
dt

=
(
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)V (t)T (t)− αT ∗(t)− hT (t)C(t)

dV (t)
dt

=
(
1− 1

2
min{max{a22,

−λ3

2A2
Ne−a1C(t)αT ∗(t)}, b22}

)
×Ne−a1C(t)αT ∗(t)− µV V (t)

dC(t)
dt

= s2 + p0T (t)V (t)C(t)− µCC(t)

dλ1

dt
= −1− λ1

(
rV (t)

(BV + V (t))
− µT −

kV (t)BT

(BT + T (t))2

)
− λ4p0C(t)V (t)

+ λ1

(
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)V (t)

− λ2

((
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)V (t)
)

dλ2

dt
= λ2(α + hC(t))

− λ3

(
1− 1

2
min{max{a22,

−λ3

2A2
Ne−a1C(t)αT ∗(t)}, b22}

)
Ne−a1C(t)α

dλ3

dt
= −λ1

( rT (t)BV

(BV + V (t))2
− kT (t)

BT + T (t)

)
+ λ3µV

+ λ1

(
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)

× βe−a0C(t)V (t)T (t)}, b11}βe−a0C(t)T (t)
)

− λ2

((
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)T (t)
)
− λ4p0T (t)C(t)
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dλ4

dt
= −λ1

(
a0

(
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)V (t)T (t)
)

+ λ2

(
a0

(
1− 1

2
min{max{a11,

1
2A1

(λ1 − λ2)βe−a0C(t)V (t)T (t)}, b11}
)

× βe−a0C(t)V (t)T (t)
)

+ λ3

(
a1

(
1− 1

2
min{max{a22,

−λ3

2A2
Ne−a1C(t)αT ∗(t)}, b22}

)
×Ne−a1C(t)αT ∗(t)

)
− λ4(p0T (t)V (t)− µC) + λ2hT ∗(t)

(5.1)
with T (0) = T0, T ∗(0) = T ∗0 , V (0) = V0, C(0) = C0, λi(Tf ) = 0 for i = 1, 2, 3, 4.

6. Uniqueness of the Optimality System

Since the state system moves forward in time and the adjoint system moves
backward in time, we have a challenge with uniqueness. To prove uniqueness of
solutions of the optimality system for the small time interval, we use the following
theorems [8].

Theorem 6.1. The function u∗(c) = min(max(c, a), b) is Lipschitz continuous in
c, where a < b are some fixed positive constants.

Proof. Consider c1, c2 real numbers and a, b as fixed positive constants. We will
show that the Lipschitz continuity holds in all possible cases for max(c, a). Similar
arguments hold for min(max(c, a), b) as well.

(1) c1 ≥ a, c2 ≥ a: |max(c1, a)−max(c2, a)| = |c1 − c2|.
(2) c1 ≥ a, c2 ≤ a: |max(c1, a)−max(c2, a)| = |c1 − a| ≤ |c1 − c2|
(3) c1 ≤ a, c2 ≥ a: |max(c1, a)−max(c2, a)| = |a− c2| ≤ |c1 − c2|
(4) c1 ≤ a, c2 ≤ a: |max(c1, a)−max(c2, a)| = |a− a| = 0 ≤ |c1 − c2|

Hence |max(c1, a)−max(c2, a)| ≤ |c1 − c2| and we have Lipschitz continuity of u∗

in c. �

Theorem 6.2. For sufficiently small final time (Tf ), bounded solutions to the
optimality system, 5.1, are unique.

Proof. Suppose (T, T ∗, V, C, λ1, λ2, λ3, λ4) and (T̄ , T̄ ∗, V̄ , C̄, λ̄1, λ̄2, λ̄3, λ̄4) are two
different solutions of our optimality system (5.1). Let T = emtp, T ∗ = emtp∗,
V = emtq, C = emtx, λ1 = e−mtw, λ2 = e−mtz, λ3 = e−mtv, λ4 = e−mty
and T̄ = emtp̄, T̄ ∗ = emtp̄∗, V̄ = emtq̄, C̄ = emtx̄, λ̄1 = e−mtw̄, λ̄2 = e−mtz̄,
λ̄3 = e−mtv̄, λ̄4 = e−mtȳ, where m > 0 is chosen. Further we let

u∗RTI(t) = min{max{a11,
1

2A1
(w − z)βe−a0emtxpq}, b11},

u∗PI(t) = min{max{a22,
−αN

2A2
e−a1e−mtxvp∗}, b22}

and

ū∗RTI(t) = min{max{a11,
1

2A1
(w̄ − z̄)βe−a0emtx̄p̄q̄}, b11},
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ū∗PI(t) = min{max{a22,
−αN

2A2
e−a1e−mtx̄v̄p̄∗}, b22}.

For the first equation of system (5.1) we substitute T = emtp and get

emt(ṗ + mp) = s1 +
re2mtpq

BV + emtq
− βe−aemtxe2mtpq +

1
2
βe−a0emtxe2mtpqu∗RTI

− µT emtp− ke2mtpq

BT + emtp

and for T̄ = emtp̄ we have

emt( ˙̄p + mp̄) = s1 +
re2mtp̄q̄

BV + emtq̄
− βe−a0emtx̄e2mtp̄q̄ +

1
2
βe−a0emtx̄e2mtp̄q̄ū∗RTI

− µT emtp̄− ke2mtp̄q̄

BT + emtp̄
.

Subtracting the expression for T̄ from the expression for T we have

(ṗ− ˙̄p) + m(p− p̄)

= remt
( pq

BV + emtq
− p̄q̄

BV + emtq̄

)
− βemt

(
e−a0emtxpq − e−a0emtx̄p̄q̄

)
+

1
2
βemt

(
e−a0emtxu∗RTIpq − e−a0emtx̄ū∗RTI p̄q̄

)
− µT (p− p̄)− kemt

( pq

BT + emtp
− p̄q̄

BT + emtp̄

)
.

Multiplying by (p− p̄) and integrating from t = 0 to t = Tf we have

1
2
(p− p̄)2(Tf ) + m

∫ Tf

0

(p− p̄)2dt

= r

∫ Tf

0

emt
( pq

BV + emtq
− p̄q̄

BV + emtq̄

)
(p− p̄)dt− µT

∫ Tf

0

(p− p̄)2dt

− β

∫ Tf

0

emt
(
e−a0emtxpq − e−a0emtx̄p̄q̄

)
(p− p̄)dt

− k

∫ Tf

0

emt

(
pq

BT + emtp
− p̄q̄

BT + emtp̄

)
(p− p̄)dt

+
β

2

∫ Tf

0

emt
(
e−a0emtxpqu∗RTI − e−a0emtx̄p̄q̄ū∗RTI

)
(p− p̄)dt.

(6.1)

Similarly for λ1 = e−mtw and λ̄1 = e−mtw̄ we have

−ẇ + mw = emt +
rwqemt

BV + emtq
− wβqe−a0emtxemt +

1
2
βwe−a0emtxemtqu∗RTI

− µT w − kwqBT emt

(BT + emtp)2

+ βzqe−a0emtxemt − 1
2
βze−a0emtxemtquRTI − yp0x

2emtq

and

− ˙̄w + mw̄
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= emt +
rw̄q̄emt

BV + emtq̄
− βw̄q̄e−a0emtx̄emt +

1
2
βw̄e−a0emtx̄emtq̄ū∗RTI − µT w̄

− kBT emtw̄q̄

(BT + emtp̄)2
+ βz̄q̄e−a0emtx̄emt − 1

2
βz̄e−a0emtx̄emtq̄ūRTI − p0ȳx̄2emtq̄

respectively. Subtracting the expression for λ̄1 from the expression for λ1 and
multiplying by (w − w̄) and integrating from t = 0 to t = Tf we have

1
2
(w − w̄)2(0) + m

∫ Tf

0

(w − w̄)2dt

= r

∫ Tf

0

emt

(
wq

BV + emtq
− w̄q̄

BV + emtq̄

)
(w − w̄)dt

− β

∫ Tf

0

emt
(
e−a0emtxwq − e−a0emtx̄w̄q̄

)
(w − w̄)dt

+
β

2

∫ Tf

0

emt
(
e−a0emtxwqu∗RTI − e−a0emtx̄w̄q̄ū∗RTI

)
(w − w̄)dt

+ β

∫ Tf

0

emt
(
e−a0emtxzq − e−a0emtx̄z̄q̄

)
(w − w̄)dt− µT

∫ Tf

0

(w − w̄)2dt

− β

2

∫ Tf

0

emt
(
e−a0emtxzqu∗RTI − e−a0emtx̄z̄q̄ū∗RTI

)
(w − w̄)dt

− p0

∫ Tf

0

emt(yxq − ȳx̄q̄)(w − w̄)dt

− kBT

∫ Tf

0

emt
( wq

(BT + emtp)2
− w̄q̄

(BT + emtp̄)2
)
(w − w̄)2dt.

Similarly, the equations for T ∗ and T̄ ∗, V and V̄ , C and C̄, λ2 and λ̄2, λ3 and
λ̄3, λ4 and λ̄4 are subtracted, then each expression is multiplied by an appropriate
function and integrated from t = 0 to t = Tf . We obtain eight integral equations
and we use estimates to obtain the result. Several terms are estimated in these
eight equations. For example the third term on the right-hand side of equation 6.1,

k

∫ Tf

0

emt
( pq

BT + emtp
− p̄q̄

BT + emtp̄

)
(p− p̄)dt

≤ C1e
mt

∫ Tf

0

((p− p̄)2 + (q − q̄)2)dt,

utilizes upper bounds on the solutions. Other estimates can be presented by utiliz-
ing upper bounds on solutions. They involve separating terms that involve squares,
powers, several multiplied terms, and quotients. Also using Theorem 6.1 we have

|u∗RTI(t)− ū∗RTI(t)|

≤ β

2A1

∣∣∣e−a0emtxpq(w − z)− e−a0emtx̄p̄q̄(w̄ − z̄)
∣∣∣

≤ β

2A1

∣∣∣(e−a0emtxpqw − e−a0emtx̄p̄q̄w̄
)
−
(
e−a0emtxpqz − e−a0emtx̄p̄q̄z̄

)∣∣∣
and

|u∗PI(t)− ū∗PI(t)| ≤
αN

2A2

∣∣∣e−a1emtxvp∗ − e−a1emtx̄v̄p̄∗
∣∣∣ .
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To show uniqueness, the integral equations are combined. Adding all the eight
estimates gives

1
2
(p− p̄)2(Tf ) +

1
2
(p∗ − p̄∗)2(Tf ) +

1
2
(q − q̄)2(Tf ) +

1
2
(x− x̄)2(Tf )

+
1
2
(w − w̄)2(0) +

1
2
(z − z̄)2(0) +

1
2
(v − v̄)2(0) +

1
2
(y − ȳ)2(0)

+ m

∫ Tf

0

[(p− p̄)2 + (p∗ − p̄∗)2 + (q − q̄)2 + (x− x̄)2 + (w − w̄)2

+ (z − z̄)2 + (v − v̄)2 + (y − ȳ)2]dt

≤ (C̃1 + C̃2e
3mTf )

∫ Tf

0

[(p− p̄)2 + (p∗ − p̄∗)2 + (q − q̄)2 + (x− x̄)2]dt

+
∫ Tf

0

[(w − w̄)2 + (z − z̄)2 + (v − v̄)2 + (y − ȳ)2]dt.

Thus from the above expression, using the non-negativity of the variable expressions
evaluated at the initial and the final time and simplifying, the inequality is reduced
to

(m− C̃1 − C̃2e
3mTf )

∫ Tf

0

[(p− p̄)2 + (p∗ − p̄∗)2 + (q − q̄)2 + (x− x̄)2 + (w − w̄)2

+ (z − z̄)2 + (v − v̄)2 + (y − ȳ)2]dt ≤ 0

where C̃1 and C̃2 depend on the coefficients [6]; [8] and the bounds on all solution
variables p, p∗, q, x, w, z, v, y. If we choose m such that m − C̃1 − C̃2e

3mTf > 0,
the above inequality holds if the integrand is identically zero. Since the natural
logarithm is an increasing function, then ln

(
m−C̃1

C̃2

)
> 3mTf if m > C̃1 + C̃2. This

gives that Tf < 1
3m ln

(
m−C̃1

C̃2

)
, then p = p̄, p∗ = p̄∗, q = q̄, x = x̄, w = w̄, z = z̄,

v = v̄, y = ȳ. Hence the solution is unique for small time. �

7. Numerical Simulations

The optimality system in section 5 is solved using an iterative method with
Runge-Kutta of order four scheme. The optimality system is a two-point bound-
ary value problem, where initial conditions are specified for the state system and
terminal conditions are specified for the adjoint system. The method of obtaining
the optimal control is as follows [8]:

(1) Take a guess for the two controls.
(2) Solve the state system forward using those controls and using a Runge-kutta

method of order four algorithm. Use state variables initial conditions.
(3) Using the new state values, solve the adjoint system backwards using the

final time zero boundary conditions and Runge-Kutta of order four scheme.
(4) Calculate the new control values from the characterization.
(5) Go to steps 2, 3 again with new control from step 4.
(6) Calculate other new control values from step 5. Compare controls from last

iteration to new iteration and compare states also. Keep repeating control
updates and forward and backward solving until the iterates converge.

In the virtual simulations in this section we chose a set of parameters and initial
values yielding approximately realistic population numbers. Our initial conditions
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resemble clinical data for HIV infected individuals during symptomatic phase. Since
therapy is initiated when patients are symptomatic, we consider cases when CD4+
T cell count is less than or equal 250 cells µl−1. The following parameter values
have been used to generate the solutions in this section: s1 = 20, µT = 0.02,
r = 0.01, N = 1000 [9], s2 = 10, β = 2× 10−4, BT = 350, BV = 400, h = 2× 10−3,
µC = 1.5, µV = 0.95 [3], k = 2 × 10−3, a0 = 0.01, a1 = 0.075, p0 = 1 × 10−5 and
α = 0.25 [16]. The bounds for controls are a11 = 0.0, a22 = 0.0, b11 = 0.002 and
b22 = 0.9.

Figure 1 shows the graph of the solution to the optimality system, showing
propagation of CD4+ T cells, infected CD4+ T cells, reverse transcriptase inhibitor
and a protease inhibitor when treatment is administered for 50 days. Here we
initiate treatment when CD4+ T cell count, T(0) is 250 cells µl−1, viral load, V(0)
is 4000 copies ml−1, infected CD4+ T cells, T ∗(0) of 200 cells µl−1 and a CTL count,
C(0) of 100 µl−1. The value for the first weight factor is given by A1 = 250000
and the second weight factor A2 = 250 [8]. Figure 1(a) shows the propagation
of uninfected CD4+ T cells after initiation of therapy. Initial decline of CD4+ T
cells for a day is due to pharmacokinetics and pharmacology delay, and thereafter
T cell count start to increase for about 25 days, nearly an increase of 100% and
thereafter CD4+ T cells start to gradually decline. Within the first week of drug
administration, viral load drops to zero, figure 1(c), followed by a sudden increase
and oscillation at around 400 for another week and then stabilizes for the next 25
days and starts to slowly increase at day 40. The CD4+ T cell and viral kinetics
are produced if the nucleoside RTI (figure 1(b)) is administered in full scale for one
day (normalised dosage size of 0.002) after 4 days, and the drug is stopped for 2-3
days. Drug administration resume with almost 10% of the initial dosage size and
gradually increased up to day 30 and then tapered off up to day 50. Therapy start
with high doses (normalised dosage size of 0.9) of a protease inhibitor (figure 1(d))
for the first day, then stopped for 5 days. The drug is administered at full scale
(dosage size of 0.9) for a day and then stopped for one day or two days. Finally,
40% of the initial dosage is administered for 1-2 days and stopped for 30-35 days
and resumed with 2%-5% of the initial therapy for the last 3 days. The effect of
the regimen, in a short term, managed to increase the CD4+ T cells to nearly 450
cells in 25 days and level of viremia is suppressed to low levels (below 500 copies of
RNA ml−1) which is beneficial to the infected individual’s health.

Figure 2 shows the graph of the solution to the optimality system, showing prop-
agation of CD4+ T cells, infected CD4+ T cells, reverse transcriptase inhibitor and
a protease inhibitor where CTL activity is decreased. Here we initiate treatment
when CD4+ T cell count, T(0) is 250 cells µl−1, viral load, V(0) is 4000 copies
ml−1, infected CD4+ T cells, T ∗(0) of 200 cells µl−1 and a CTL count, C(0) of
100 µl−1, and treatment is administered for 50 days. The value for the first weight
factor is given by A1 = 250000 and the second weight factor A2 = 250. A decrease
in the effect of CTL activity, that is decrease in a0 = 0.001 and a1 = 0.075 with the
same initial conditions leads to CD4+ T cells decline for 1-2 days due to pharma-
cology and pharmacokinetics (similar to Dixit and Perelson [5] results) just after
initiation of therapy (figure 2(a)) and build up for nearly 10 days before a decreas-
ing tendency up to day 50. Viral load sharply decreases to very low levels (figure
2(c)) during the first 5 days of therapy initiation, sharply increase and sharply
decrease before it starts to gradually increase. The kinetics of the CD4+ T cells
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Figure 1. Graph of the numerical solution to the optimality sys-
tem, showing propagation of CD4+ T cells, infected CD4+ T cells,
reverse transcriptase inhibitor and a protease inhibitor when treat-
ment is administered for 50 days. Here we initiate treatment when
CD4+ T cell count, T(0) is 250 cells µl−1, viral load, V(0) is 4000
copies ml−1, infected CD4+ T cells, T ∗(0) of 200 cells µl−1 and a
CTL count, C(0) of 100 µl−1. The value for the first weight factor is
given by A1 = 250000 and the second weight factor A2 = 250. (a)
CD4+ T cell kinetics (b) Reverse Transcriptase Inhibitor dosage
sizes (c) Viral Load (d) Protease Inhibitor dosage sizes.

and viral load are given if the nucleoside reverse transcriptase inhibitor (normalised
dosage size of 0.002) is administered for 1 day and then stopped for 4 days (figure
2(b)). The drug is given in small dosage sizes, increased daily to almost 100% of
initial dosage at day 10 for 2 days. The dosage size is decreased to nearly 40%,
then increased at day 15 and then tapered off up to day 50. Protease inhibitor
drug schedule is started at day 6 (figure 2(d)), increased to nearly 0.9 at day 9
and lowered to nearly zero at day 12. Small quantities are given, nearly 10% of
the initial dosage size and maintained up to day 50. The scheme is effective during
the first 10 days and thereafter the immune system is heavily compromised due to
little activity of CTLs. Figure 3 shows the graph of the solution to the optimal-
ity system, showing propagation of CD4+ T cells, infected CD4+ T cells, reverse
transcriptase inhibitor and a protease inhibitor when treatment is administered for
50 days. Here we initiate treatment when CD4+ T cell count T(0) is 250 cells
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Figure 2. Graph of the numerical solution to the optimality sys-
tem, showing propagation of CD4+ T cells, infected CD4+ T cells,
reverse transcriptase inhibitor and a protease inhibitor when treat-
ment is administered for 50 days. Here we initiate treatment when
CD4+ T cell count, T(0) is 250 cells µl−1, viral load, V(0) is 4000
copies ml−1, infected CD4+ T cells, T ∗(0) of 200 cells µl−1 and a
CTL count, C(0) of 100 µl−1. The value for the first weight factor
is given by A1 = 250000 and the second weight factor A2 = 250.
The activity CTL in reducing burst size and reducing infection has
been decreased to a1 = 0.075 and a0 = 0.001 respectively. Here
a0 and a1 are different from figure 1. (a) CD4+ T cell kinetics
(b) Reverse Transcriptase Inhibitor dosage sizes (c) Viral Load (d)
Protease Inhibitor dosage sizes.

µl−1, viral load V(0) is 4000 copies ml−1, infected CD4+ T cells, T ∗(0) is 200 cells
µl−1 and a CTL count, C(0) of 100 µl−1. The value for the first weight factor is
given by A1 = 250 and the second weight factor A2 = 100. Exploring the effects
of drug toxicity, that is reducing the weight factors A1 = 250 and A2 = 100 and
all the other parameters remain as in figure (2). We have the following numerical
results, given by figure (3): Effect of reducing the weight factors simulate the effect
of a decrease in drug toxicity, and therefore we observe that dosage sizes for both
drug types are increased. Since the efficacy of drugs is not changed, CD4+ T cells
and viral kinetics (figure 3(a) and (c)) respectively) do not change. The nucleoside
reverse transcriptase inhibitor (figure 3(b)) is administered at full scale for 2 days
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and stopped for 1 to 2 days. Therapy is given again at full scale up to day 50.
Protease inhibitor schedule (figure 3(d)) is given at day 7, increased to full scale
for 4-5 days and decreased to nearly 11% up to day 50.
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Figure 3. Graph of the numerical solution to the optimality sys-
tem, showing propagation of CD4+ T cells, infected CD4+ T cells,
reverse transcriptase inhibitor and a protease inhibitor when treat-
ment is administered for 50 days. Here we initiate treatment when
CD4+ T cell count, T(0) is 250 cells µl−1, viral load, V (0) is 4000
copies ml−1, infected CD4+ T cells, T ∗(0) of 200 cells µl−1 and a
CTL count, C(0) of 100 µl−1. The value for the first weight factor
is given by A1 = 250 and the second weight factor A2 = 100. (a)
CD4+ T cell kinetics (b) Reverse Transcriptase Inhibitor dosage
sizes (c) Viral Load (d) Protease Inhibitor dosage sizes.

8. Discussion

The virtual combined therapy simulations in this paper are designed to provide
insights of drug scheduling in short term therapy performance. Similar to Bajaria
et al. [3], reduced dosage sizes and drug holidays can achieve goals of antiretroviral
therapy (increase of CD4+ T cells and suppression of viral load). In poor resourced
settings, an effective schedule should improve the patient’s life, be affordable (small
dosages sizes) and allowing drug holidays should relax the concept of strict patient
adherence to treatment and compliance. The scheme should increase or restore the
immunological function (CD4+ T cell increases) through less exposure to drugs. We
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also observe that the weight factors in the objective functional model drug toxicity,
therefore the more toxic the drugs are the less dosage sizes to be administered
to reduce systemic costs. Figure 1 shows that if an individual’s immune response
is strong, virus can be effectively controlled during therapy whilst weak immune
responses, figure 2 and figure 3, lead to a short term control of the virus. We
can conclude that effectiveness of therapy largely depends on the immune response
of an individual, that is if the immune response is better, virus can be controlled
effectively. Also an effective immune response leads to administration of small
dosage sizes which are cost effective. We observe from numerical illustrations that
if therapy can induce CTL activity, control of viremia is feasible and this can
facilitate the implementation of drug holidays. During drug holiday periods, CTLs
will be controlling viremia. Due to drug toxicity, allowing drug holidays can be
beneficial in the short term implementation of HAART. If therapy has less toxic
effects, continuous therapy is beneficial as there will be less harmful side effects. Our
dynamical model did not take into account the effects of viral population mutation
over time in response to drug therapy. These effects can become significant in the
case of long term anti-HIV therapy.
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