Electronic Journal of Differential Equations, Vol. 2005(2005), No. 50, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF VIABLE SOLUTIONS FOR NONCONVEX DIFFERENTIAL INCLUSIONS

MESSAOUD BOUNKHEL, TAHAR HADDAD

Abstract. We show the existence result of viable solutions to the differential inclusion

$$
\begin{gathered}
\dot{x}(t) \in G(x(t))+F(t, x(t)) \\
x(t) \in S \quad \text { on }[0, T],
\end{gathered}
$$

where $F:[0, T] \times H \rightarrow H(T>0)$ is a continuous set-valued mapping, $G: H \rightarrow H$ is a Hausdorff upper semi-continuous set-valued mapping such that $G(x) \subset \partial g(x)$, where $g: H \rightarrow \mathbb{R}$ is a regular and locally Lipschitz function and S is a ball, compact subset in a separable Hilbert space H.

1. Introduction

Let $T>0$. It is well known that the solution set of the differential inclusion

$$
\begin{gathered}
\dot{x}(t) \in G(x(t)) \quad \text { a.e. } \quad[0, T] \\
x(0)=x_{0} \in \mathbb{R}^{d}
\end{gathered}
$$

can be empty when the set-valued mapping G is upper semicontinuous with nonempty nonconvex values. Bressan, Cellina and Colombo [8, proved an existence result fo the above equation by assuming that the set-valued mapping G is included in the subdifferential of a convex lower semicontinuous (l.s.c.) function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$. This result has been extended in many ways by many authors; see for example [1, 2, 3, 4, 11, 12, 13. The recent extension of the above equation was studied by Bounkhel [4], in which the author proved an existence result of viable solutions in the finite dimensional case for the differential inclusion

$$
\begin{gather*}
\dot{x}(t) \in G(x(t))+F(t, x(t)) \quad \text { a.e. }[0, T] \tag{1.1}\\
x(t) \in S, \quad \text { on }[0, T] .
\end{gather*}
$$

This extension covers all the other extensions given in the finite dimensional case. In the present paper we extend this result to the infinite dimensional setting. A function $x(\cdot)$ is called a viable solution if it satisfies the differential inclusion and $x(t) \in S$ for all $t \in[0, T]$ and for some closed set S.

[^0]
2. Uniformly Regular functions

Let H be a real separable Hilbert space. Let us recall the concept of regularity that will be used in the sequel [4].
Definition $2.1(\boxed{4})$. Let $f: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be a l.s.c. function and let $O \subset \operatorname{dom} f$ be a nonempty open subset. We will say that f is uniformly regular over O if there exists a positive number $\beta \geq 0$ such that for all $x \in O$ and for all $\xi \in \partial^{P} f(x)$ one has

$$
\begin{equation*}
\left\langle\xi, x^{\prime}-x\right\rangle \leq f\left(x^{\prime}\right)-f(x)+\beta\left\|x^{\prime}-x\right\|^{2} \quad \text { for all } x^{\prime} \in O . \tag{2.1}
\end{equation*}
$$

Here $\partial^{P} f(x)$ denotes the proximal subdifferential of f at x (for its definition the reader is refereed for instance to [6]). We will say that f is uniformly regular over closed set S if there exists an open set O containing S such that f is uniformly regular over O. The class of functions that are uniformly regular over sets is so large. For more details and examples we refer the reader to [4]. The following proposition summarizes some important properties for uniformly regular locally Lipschitz functions over sets needed in the sequel. For the proof of these results we refer the reader to [4, 5].
Porposition 2.2. Let $f: H \rightarrow \mathbb{R}$ be a locally Lipschitz function and S a nonempty closed set. If f is uniformly regular over S, then the following hold:
(i) The proximal subdifferential of f is closed over S, that is, for every $x_{n} \rightarrow$ $x \in S$ with $x_{n} \in S$ and every $\xi_{n} \rightarrow \xi$ with $\xi_{n} \in \partial^{P} f\left(x_{n}\right)$ one has $\xi \in \partial^{P} f(x)$
(ii) The proximal subdifferential of f coincides with $\partial^{C} f(x)$ the Clarke subdifferential for any point x (see for instance [6] for the definition of $\partial^{C} f$)
(iii) The proximal subdifferential of f is upper hemicontinuous over S, that is, the support function $x \mapsto\left\langle v, \partial^{P} f(x)\right\rangle$ is u.s.c. over S for every $v \in H$
(iv) For any absolutely continuous map $x:[0, T] \rightarrow S$ one has

$$
\frac{d}{d t}(f \circ x)(t)=\left\langle\partial^{C} f(x(t)) ; \dot{x}(t)\right\rangle
$$

Now we are in position to state and prove our main result in this paper.
Theorem 2.3. Let $g: H \rightarrow \mathbb{R}$ be a locally Lipschitz function and β-uniformly regular over $S \subset H$. Assume that
(i) S is nonempty ball compact subset in H, that is, the set $S \cap r \mathbb{B}$ is compact for any $r>0$;
(ii) $G: H \rightarrow H$ is a Hausdorff u.s.c set valued map with compact values satisfying $G(x) \subset \partial^{C} g(x)$ for all $x \in S$;
(iii) $F:[0, T] \times H \rightarrow H$ is a continuous set valued map with compact values;
(iv) For any $(t, x) \in I \times S$, the following tangential condition holds

$$
\begin{equation*}
\liminf _{h \rightarrow 0} \frac{1}{h} e(x+h[G(x)+F(t, x)] ; S)=0 \tag{2.2}
\end{equation*}
$$

where $e(A ; S):=\sup _{a \in A} d_{S}(a)$.
Then, for any $x_{0} \in S$ there exists $\left.a \in\right] 0, T[$ such that the differential inclusion 2.26) has a viable solution on $[0, a]$.
Proof. Let $\rho>0$ such that $K_{0}:=S \cap\left(x_{0}+\rho B\right)$ is compact and g is L-Lipschitz on $x_{0}+\rho B$. Since F and G are continuous and the set $I \times K_{0}$ is compact, there exists a positive scalar M such that

$$
\begin{equation*}
\|G(x)\|+\|F(t, x)\| \leq M \tag{2.3}
\end{equation*}
$$

for all $(t, x) \in I \times K_{0}$. Since $\left(t_{0}, x_{0}\right) \in I \times K_{0}$, then (by 2.2))

$$
\liminf _{h \rightarrow 0} \frac{1}{h} e\left(x_{0}+h\left[G\left(x_{0}\right)+F\left(t_{0}, x_{0}\right)\right] ; S\right)=0
$$

Put $\alpha:=\min \left\{T, \frac{\rho}{M+1}, 1\right\}$. Hence for every $m \geq 1$ there exists $0<\xi<\frac{\alpha}{2}$ such that

$$
\begin{equation*}
e\left(x_{0}+\xi\left[G\left(x_{0}\right)+F\left(t_{0}, x_{0}\right)\right] ; S\right)<\frac{\xi}{m} \tag{2.4}
\end{equation*}
$$

Let $b_{0} \in G\left(x_{0}\right)+F\left(t_{0}, x_{0}\right)$ and put

$$
\lambda_{0}^{m}:=\max \left\{\xi \in\left(0, \frac{\alpha}{2}\right]: \xi \leq T-t_{0} \text { and } d_{S}\left(x_{0}+\xi b_{0}\right)<\frac{\xi}{m}\right\}
$$

Since $x_{0} \in S$, we have

$$
d_{S}\left(x_{0}+\lambda_{0}^{m} b_{0}\right) \leq \lambda_{0}^{m}\left\|b_{0}\right\| \leq \lambda_{0}^{m} M<M .
$$

So, there exists $\Psi_{0}^{m} \in S \cap \mathbb{B}\left(x_{0}+\lambda_{0}^{m} b_{0}, M+1\right)$ such that

$$
\left\|\Psi_{0}^{m}-x_{0}-\lambda_{0}^{m} b_{0}\right\|=d_{S}\left(x_{0}+\lambda_{0}^{m} b_{0}\right)
$$

and so

$$
\left\|\frac{1}{\lambda_{0}^{m}}\left[\Psi_{0}^{m}-x_{0}\right]-b_{0}\right\|=\frac{1}{\lambda_{0}^{m}} d_{S}\left(x_{0}+\lambda_{0}^{m} b_{0}\right)<\frac{1}{m}
$$

by 2.4 and the definition of λ_{0}^{m}. Let $w_{0}^{m}:=\frac{\Psi_{0}^{m}-x_{0}}{\lambda_{0}^{m}}$ and $x_{1}^{m}:=x_{0}+\lambda_{0}^{m} w_{0}^{m} \in S$. Thus, we obtain

$$
\begin{gather*}
w_{0}^{m} \in G\left(x_{0}\right)+F\left(t_{0}, x_{0}\right)+\frac{1}{m} B \\
\left\|x_{1}^{m}-x_{0}\right\|=\lambda_{0}^{m}\left\|w_{0}^{m}\right\|<\lambda_{0}^{m}\left(M+\frac{1}{m}\right)<\lambda_{0}^{m}(M+1) \tag{2.5}
\end{gather*}
$$

We can choose, a priori, $a<\alpha$ and find $\lambda_{0}^{m}<a$ such that $0<\lambda_{0}^{m}<a<T$. Then $\left\|x_{1}^{m}-x_{0}\right\|<\rho$, that is, $x_{1}^{m} \in\left(x_{0}+\rho B\right)$ and so 2.5) ensures $x_{1}^{m} \in S \cap\left(x_{0}+\rho B\right)=K_{0}$. We reiterate this process for constructing sequences $\left\{w_{i}^{m}\right\}_{i},\left\{t_{i}^{m}\right\}_{i},\left\{\lambda_{i}^{m}\right\}_{i}$, and $\left\{x_{i}^{m}\right\}_{i}$ satisfying for some rank $\nu_{m} \geq 1$ the following assertions:
(a) $0=t_{0}^{m}, t_{\nu_{m}}^{m} \leq a<T$ with $t_{i}^{m}=\sum_{k=0}^{i-1} \lambda_{k}^{m}$ for all $i \in\left\{1, \ldots, \nu_{m}\right\}$;
(b) $x_{i}^{m}=x_{0}+\sum_{k=0}^{i-1} \lambda_{k}^{m} w_{k}^{m}$ and $\left(t_{i}^{m}, x_{i}^{m}\right) \in[0, T] \times K_{0}$ for all $i \in\left\{0, \ldots, \nu_{m}\right\}$;
(c) $w_{i}^{m} \in G\left(x_{i}^{m}\right)+F\left(t_{i}^{m}, x_{i}^{m}\right)+\frac{1}{m} B$ with $w_{i}^{m}=\frac{\Psi_{i}^{m}-x_{i}^{m}}{\lambda_{i}^{m}}$ and $\Psi_{i}^{m} \in S \cap \mathbb{B}\left(x_{i}^{m}+\right.$ $\left.\lambda_{i}^{m} b_{i}^{m}, M+1\right)$ for all $i \in\left\{0, \ldots, \nu_{m}-1\right\}$, where
$\lambda_{i}^{m}:=\max \left\{\xi \in\left(0, \frac{\alpha}{2}\right]: \xi \leq T-t_{i}^{m}\right.$ and $\left.d_{S}\left(x_{i}^{m}+\xi b_{i}\right)<\frac{1}{m} \xi\right\}\left(\forall i=1, \ldots, \nu_{m}-1\right)$.
It is easy to see that for $i=1$ the assertions (a), (b), and (c) are fulfilled. Let now $i \geq 2$. Assume that (a), (b), and (c) are satisfied for any $j=1, \ldots, i$. If, $a<t_{i+1}^{m}$, then we take $\nu_{m}=i$ and so the process of iterations is stopped and we get (a), (b), and (c) satisfied with

$$
t_{\nu_{m}}^{m} \leq a<t_{\nu_{m}+1}^{m}<T
$$

In the other case, i.e., $t_{i+1}^{m} \leq a$, we define x_{i+1}^{m} as follows

$$
x_{i+1}^{m}:=x_{i}^{m}+\lambda_{i}^{m} w_{i}^{m}=x_{0}+\sum_{k=0}^{i} \lambda_{k}^{m} w_{k}^{m}
$$

and so

$$
\left\|x_{i+1}^{m}-x_{0}\right\| \leq \sum_{k=0}^{i} \lambda_{k}^{m}\left\|w_{k}^{m}\right\| \leq(M+1) \sum_{k=0}^{i} \lambda_{k}^{m} \leq t_{i+1}^{m}(M+1) \leq a(M+1)<\rho
$$

which ensures that $x_{i+1}^{m} \in K_{0}$. Thus the conditions (a), (b), and (c) are satisfied for $i+1$. Now we have to prove that this iterative process is finite, i.e., there exists a positive integer ν_{m} such that

$$
t_{\nu_{m}}^{m} \leq a<t_{\nu_{m}+1}^{m} .
$$

Suppose the contrary that is,

$$
t_{i}^{m} \leq a, \quad \text { for all } i \geq 1
$$

Then the bounded increasing sequence $\left\{t_{i}^{m}\right\}_{i}$ converges to some \bar{t} such that $\bar{t} \leq a<$ T. Hence

$$
\left\|x_{i}^{m}-x_{j}^{m}\right\| \leq(M+1)\left|t_{i}^{m}-t_{j}^{m}\right| \rightarrow 0 \quad \text { as } i, j \rightarrow \infty
$$

Therefore, the sequence $\left\{x_{i}\right\}_{i}$ is a Cauchy sequence and hence, it converges to some $\bar{x} \in K_{0}$. As $(\bar{t}, \bar{x}) \in[0, T] \times K_{0}$, by 2.2 and the Hausdorff upper semi-continuity of $G+F$, there exist $\lambda \in(0, T-\bar{t})$, and an integer $i_{0} \geq 1$ such that for all $i \geq i_{0}$,

$$
\begin{gather*}
e(\bar{x}+\lambda[G(\bar{x})+F(\bar{t}, \bar{x})] ; S) \leq \frac{\lambda}{6 m} \tag{2.6}\\
e\left(G\left(x_{i}^{m}\right)+F\left(t_{i}^{m}, x_{i}^{m}\right) ; G(\bar{x})+F(\bar{t}, \bar{x})\right) \leq \frac{1}{12 m} \tag{2.7}\\
\left\|x_{i}^{m}-\bar{x}\right\| \leq \frac{\lambda}{6 m} \tag{2.8}\\
\bar{t}-t_{i}^{m} \leq \frac{\lambda}{2} \tag{2.9}
\end{gather*}
$$

Therefore, for any $b_{i} \in G\left(x_{i}^{m}\right)+F\left(t_{i}^{m}, x_{i}^{m}\right)$, there exists (by the definition of the distance function) an element \bar{b} in $G(\bar{x})+F(\bar{t}, \bar{x})$ such that

$$
\left\|b_{i}-\bar{b}\right\| \leq d\left(b_{i}, G(\bar{x})+F(\bar{t}, \bar{x})\right)+\frac{1}{12 m}
$$

Hence this inequality and 2.7 yield

$$
\left\|b_{i}-\bar{b}\right\| \leq e\left(G\left(x_{i}^{m}\right)+F\left(t_{i}^{m}, x_{i}^{m}\right) ; G(\bar{x})+F(\bar{t}, \bar{x})\right)+\frac{1}{12 m} \leq \frac{1}{6 m}
$$

This last inequality and the relations (2.6) and 2.8 ensure

$$
\begin{aligned}
& d_{S}\left(x_{i}^{m}+\lambda b_{i}\right) \leq\left\|x_{i}^{m}-\bar{x}\right\|+d_{S}(\bar{x}+\lambda \bar{b})+\lambda\left\|b_{i}-\bar{b}\right\| \\
& \leq \frac{\lambda}{6 m}+e(\bar{x}+\lambda[G(\bar{x})+F(\bar{t}, \bar{x})] ; S)+\frac{\lambda}{6 m} \leq \frac{\lambda}{2 m} .
\end{aligned}
$$

On the other hand, by construction and by 2.9 , we obtain

$$
t_{i+1}^{m} \leq \bar{t}<t_{i}^{m}+\lambda \leq T, \text { and hence } \lambda>t_{i+1}^{m}-t_{i}^{m}=\lambda_{i}^{m}
$$

Thus, there exists some $\lambda>\lambda_{i}^{m}$ such that $0<\lambda<T-\bar{t} \leq T-t_{i}^{m}$ (for all $i \geq i_{0}$) and $d_{S}\left(x_{i}^{m}+\lambda b_{i}\right) \leq \frac{\lambda}{2 m}<\frac{\lambda}{m}$. This contradicts the definition of λ_{i}^{m}. Therefore, there is an integer $\nu_{m} \geq 1$ such that $t_{\nu_{m}} \leq a<t_{\nu_{m}+1}$ and for which the assertions (a), (b), and (c) are fulfilled.

According to what precedes, we have (by (c))

$$
\begin{aligned}
\left\|\Psi_{i}^{m}\right\| & \leq\left\|\Psi_{i}^{m}-\left(x_{i}^{m}+\lambda_{i}^{m} b_{i}^{m}\right)\right\|+\left\|x_{i}^{m}+\lambda_{i}^{m} b_{i}^{m}\right\| \\
& \leq(M+1)+\left\|x_{0}-\left(x_{0}-x_{i}^{m}\right)+\lambda_{i}^{m} b_{i}^{m}\right\| \\
& \leq\left\|x_{0}\right\|+\left\|x_{0}-x_{i}^{m}\right\|+\lambda_{i}^{m}\left\|b_{i}^{m}\right\|+(M+1) \\
& \leq\left\|x_{0}\right\|+\rho+2 M+1
\end{aligned}
$$

This implies $\Psi_{i}^{m} \in K_{1}:=S \cap \mathbb{B}(0, R)$, with $R:=\left\|x_{0}\right\|+\rho+2 M+1$. Note that the ball-compactness of S ensures the compactness of K_{1}.

On the other hand, it follows from the assertion (c) that

$$
\begin{equation*}
w_{i}^{m}-f_{i}^{m}-c_{i}^{m} \in G\left(x_{i}^{m}\right), \text { where } c_{i}^{m} \in \frac{1}{m} B \quad \text { and } \quad f_{i}^{m} \in F\left(t_{i}^{m}, x_{i}^{m}\right) \tag{2.10}
\end{equation*}
$$

for all $i \in\left\{0, \ldots, \nu_{m}\right\}$.
Approximate Solutions. Using the sequences $\left\{x_{i}^{m}\right\}_{i},\left\{t_{i}^{m}\right\}_{i},\left\{f_{i}^{m}\right\}_{i}$, and $\left\{c_{i}^{m}\right\}_{i}$ constructed previously to construct the step functions $x_{m}(\cdot), f_{m}(\cdot), c_{m}(\cdot)$, and $\theta_{m}(\cdot)$ with the following properties:
(1) $x_{m}(t)=x_{i}^{m}+\left(t-t_{i}^{m}\right) w_{i}^{m}$ on $\left[t_{i}^{m}, t_{i+1}^{m}\right]$ for all $i \in\left\{0, \ldots, \nu_{m}\right\}$;
(2) $f_{m}(t)=f_{m}\left(\theta_{m}(t)\right) \in F\left(\theta_{m}(t), x_{m}\left(\theta_{m}(t)\right)\right)$ on $[0, a]$ with

$$
\theta_{m}(t)=t_{i}^{m} \text { if } t \in\left[t_{i}^{m}, t_{i+1}^{m}\left[, \quad \text { for all } i \in\left\{0, \ldots, \nu_{m}\right\}, \theta_{m}(a)=a ;\right.\right.
$$

(3) $c_{m}(t)=c_{i}^{m} \in \frac{1}{m} B$ if $t \in\left[t_{i}^{m}, t_{i+1}^{m}\right]$, for all $i \in\left\{0, \ldots, \nu_{m}\right\}$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{t \in[0, a]}\left\|c_{m}(t)\right\|=0 \tag{2.11}
\end{equation*}
$$

Then

$$
\left\|x_{m}\left(t_{i+1}^{m}\right)-x_{m}\left(t_{i}^{m}\right)\right\|=\left(t_{i+1}^{m}-t_{i}^{m}\right)\left\|w_{i}^{m}\right\| \leq(1+M)\left(t_{i+1}^{m}-t_{i}^{m}\right)
$$

and so, for all $i, j \in\left\{0, \ldots, \nu_{m}-1\right\}(i>j)$, we have

$$
\begin{aligned}
\left\|x_{m}\left(t_{i}^{m}\right)-x_{m}\left(t_{j}^{m}\right)\right\| & \leq \sum_{k=j+1}^{i}\left\|x_{m}\left(t_{k}^{m}\right)-x_{m}\left(t_{k-1}^{m}\right)\right\| \\
& \leq(M+1) \sum_{k=j+1}^{i}\left(t_{k}^{m}-t_{k-1}^{m}\right)=(M+1)\left|t_{i}^{m}-t_{j}^{m}\right|
\end{aligned}
$$

Also, we have by construction for a.e. $t \in\left[t_{i}^{m}, t_{i+1}^{m}\right]$ and for all $i \in\left\{0, \ldots, \nu_{m}\right\}$

$$
\begin{equation*}
\left\|\dot{x}_{m}(t)\right\|=\left\|w_{i}^{m}\right\| \leq M+1 \tag{2.12}
\end{equation*}
$$

Convergence of approximate solutions. We note that the sequence f_{m} can be constructed with the relative compactness property in the space of bounded functions (see [13). Therefore, without loss of generality we can suppose that there is a bounded function f such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{t \in[0, a]}\left\|f_{m}(t)-f(t)\right\|=0 \tag{2.13}
\end{equation*}
$$

Now, we prove that the approximate solutions $x_{m}($.$) converge to a viable solution$ of 1.1.

It is clear by construction that $\left\{x_{m}\right\}_{m}$ are Lipschitz continuous with constant $M+1$ and

$$
x_{m}(t)=x_{i}^{m}+\left(t-t_{i}^{m}\right) w_{i}^{m}=x_{i}^{m}+\left(\frac{t-t_{i}^{m}}{\lambda_{i}^{m}}\right)\left(\Psi_{i}^{m}-x_{i}^{m}\right) .
$$

On the other hand, we have $0 \leq t-t_{i}^{m} \leq t_{i+1}^{m}-t_{i}^{m}=\lambda_{i}^{m}$ and so $0 \leq \frac{t-t_{i}^{m}}{\lambda_{i}^{m}} \leq 1$, and hence we get

$$
\begin{equation*}
\left(\frac{t-t_{i}^{m}}{\lambda_{i}^{m}}\right)\left(\Psi_{i}^{m}-x_{i}^{m}\right) \in \overline{c o}\left[\{0\} \cup\left(K_{1}-K_{0}\right)\right] . \tag{2.14}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
x_{m}(t) \in K:=K_{0}+\overline{c o}\left[\{0\} \cup\left(K_{1}-K_{0}\right)\right] . \tag{2.15}
\end{equation*}
$$

Therefore, since the set K is compact (because K_{0} and K_{1} are compact), then the assumptions of the Arzela-Ascoli theorem are satisfied. Hence a subsequence of x_{m} my be extracted (still denoted x_{m}) that converges to an absolutely continuous mapping $x:[0, a] \rightarrow H$ such that

$$
\begin{gather*}
\lim _{m \rightarrow \infty} \max _{t \in[0, a]}\left\|x_{m}(t)-x(t)\right\|=0 \tag{2.16}\\
\dot{x}_{m}(.) \rightharpoonup \dot{x}(.) \text { in the weak topology of } L^{2}([0, a], H)
\end{gather*}
$$

Recall now that f_{m} converges pointwise a.e. on $[0, a]$ to f. Then the continuity of the set-valued mapping F and the closedness of the set $F(t, x(t))$ entail $f(t) \in$ $F(t, x(t))$. Now, it remains to prove that

$$
\begin{gather*}
x(t) \in S \tag{2.17}\\
-f(t)+x^{\prime}(t) \in G(x(t)) \quad \text { a.e. on } \quad[0, a]
\end{gather*}
$$

By construction we have $x_{i}^{m} \in K_{0}$ (for all $i \in\left\{0, \ldots, \nu_{m}-1\right\}$). This ensures

$$
d_{K_{0}}(x(t)) \leq\left\|x_{m}(t)-x_{i}^{m}\right\|+\left\|x_{m}(t)-x(t)\right\| \leq \frac{1+M}{m}+\left\|x_{m}(t)-x(t)\right\|
$$

which approaches 0 as m approaches ∞. The closedness of K_{0} yields $d_{K_{0}}(x(t))=0$ and so $x(t) \in K_{0} \subset S$.

By construction, we have for a.e. $t \in[0, a]$

$$
\begin{equation*}
\dot{x}_{m}(t)-f_{m}(t)-c_{m}(t) \in G\left(x_{m}\left(\theta_{m}(t)\right)\right) \subset \partial^{C} g\left(x_{m}\left(\theta_{m}(t)\right)\right)=\partial^{P} g\left(x_{m}\left(\theta_{m}(t)\right)\right) \tag{2.18}
\end{equation*}
$$

where the above equality follows from the uniform regularity of g over C and the part (ii) in Proposition 2.2. We can thus apply Castaing techniques (see for example [9]). The weak convergence (by 2.16) in $L^{2}([0, a], H)$ of $\dot{x}_{m}(\cdot)$ to $\dot{x}(\cdot)$ and Mazur's Lemma entail

$$
\dot{x}(t) \in \bigcap_{m} \overline{c o}\left\{\dot{x}_{k}(t): k \geq m\right\}, \quad \text { for a.e. on }[0, a] .
$$

Fix any such t and consider any $\xi \in H$. Then, the last relation above yields

$$
\langle\xi, \dot{x}(t)\rangle \leq \inf _{m} \sup _{k \geq m}\left\langle\xi, \dot{x}_{m}(t)\right\rangle
$$

and hence Proposition 2.2 part (iii) and 2.18 yield

$$
\begin{aligned}
\langle\xi, \dot{x}(t)\rangle & \leq \lim _{m} \sup \sigma\left(\xi, \partial^{P} g\left(x_{m}\left(\theta_{m}(t)\right)\right)+f_{m}(t)+c_{m}(t)\right) \\
& \leq \sigma\left(\xi, \partial^{P} g(x(t))+f(t)\right) \quad \text { for any } \xi \in H
\end{aligned}
$$

So, the convexity and the closedness of the set $\partial^{P} g(x(t))$ ensure

$$
\begin{equation*}
-f(t)+\dot{x}(t) \in \partial^{P} g(x(t)) \tag{2.19}
\end{equation*}
$$

Now, since g is uniformly regular over C and $x:[0, a] \rightarrow C$ we have

$$
\begin{aligned}
\frac{d}{d t}(g \circ x)(t) & =\left\langle\partial^{P} g(x(t)), \dot{x}(t)\right\rangle \\
& =\langle-f(t)+\dot{x}(t), \dot{x}(t)\rangle \\
& =\|\dot{x}(t)\|^{2}-\langle f(t), \dot{x}(t)\rangle
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
g(x(a))-g\left(x_{0}\right)=\int_{0}^{a}\|\dot{x}(s)\|^{2} d s-\int_{0}^{a}\langle f(s), \dot{x}(s)\rangle d s \tag{2.20}
\end{equation*}
$$

On the other hand, by 2.18 and Definition 2.1 we have for all $i \in\left\{0, \ldots \nu_{m}-1\right\}$

$$
\begin{aligned}
g\left(x_{i+1}^{m}\right)-g\left(x_{i}^{m}\right) \geq & \left\langle\dot{x}_{m}(t)-f_{i}^{m}-c_{i}^{m}, x_{i+1}^{m}-x_{i}^{m}\right\rangle-\beta\left\|x_{i+1}^{m}-x_{i}^{m}\right\|^{2} \\
= & \left\langle\dot{x}_{m}(t)-f_{m}(t)-c_{i}^{m}, \int_{t_{i}^{m}}^{t_{i+1}^{m}} \dot{x}_{m}(s) d s\right\rangle-\beta\left\|x_{i+1}^{m}-x_{i}^{m}\right\|^{2} \\
\geq & \int_{t_{i}^{m}}^{t_{i+1}^{m}}\left\|\dot{x}_{m}(s)\right\|^{2} d s-\int_{t_{i}^{m}}^{t_{i+1}^{m}}\left\langle\dot{x}_{m}(s), f_{m}(s)\right\rangle d s \\
& -\left\langle c_{i}^{m}, \int_{t_{i}^{m}}^{t_{i+1}^{m}} \dot{x}_{m}(s) d s\right\rangle-\beta(M+1)^{2}\left(t_{i+1}^{m}-t_{i}^{m}\right)^{2} \\
\geq & \int_{t_{i}^{m}}^{t_{i+1}^{m}}\left\|\dot{x}_{m}(s)\right\|^{2} d s-\int_{t_{i}^{m}}^{t_{i+1}^{m}}\left\langle\dot{x}_{m}(s), f_{m}(s)\right\rangle d s \\
& -\left\langle c_{i}^{m}, \int_{t_{i}^{m}}^{t_{i+1}^{m}} \dot{x}_{m}(s) d s\right\rangle-\frac{\beta(M+1)^{2}}{m}\left(t_{i+1}^{m}-t_{i}^{m}\right) .
\end{aligned}
$$

By adding, we obtain

$$
\begin{equation*}
g\left(x_{m}\left(t_{\nu_{m}}^{m}\right)\right)-g\left(x_{0}\right) \geq \int_{0}^{t_{\nu_{m}}^{m}}\left\|\dot{x}_{m}(s)\right\|^{2} d s-\int_{0}^{t_{\nu_{m}}^{m}}\left\langle f_{m}(s), \dot{x}_{m}(s)\right\rangle d s-\varepsilon_{1, m} \tag{2.21}
\end{equation*}
$$

with

$$
\varepsilon_{1, m}=\sum_{i=0}^{\nu_{m}-1}\left\langle c_{i}^{m}, \int_{t_{i}^{m}}^{t_{i+1}^{m}} \dot{x}_{m}(s) d s\right\rangle+\frac{\beta(M+1)^{2} t_{\nu_{m}}^{m}}{m}
$$

and

$$
\begin{equation*}
g\left(x_{m}(a)\right)-g\left(\left(t_{\nu_{m}}^{m}\right)\right) \geq \int_{t_{\nu_{m}}^{m}}^{a}\left\|\dot{x}_{m}(s)\right\|^{2} d s-\int_{t_{\nu_{m}}^{m}}^{a}\left\langle\dot{x}_{m}(s), f_{m}(s)\right\rangle d s-\varepsilon_{2, m} \tag{2.22}
\end{equation*}
$$

with

$$
\varepsilon_{2, m}=\left\langle c_{\nu_{m}}^{m}, \int_{t_{\nu_{m}}^{m}}^{a} \dot{x}(s) d s\right\rangle+\frac{\beta(M+1)^{2}\left(a-t_{\nu_{m}}^{m}\right)}{m} .
$$

Therefore, we get

$$
\begin{equation*}
g\left(x_{m}(a)\right)-g\left(\left(x_{0}\right)\right) \geq \int_{0}^{a}\left\|\dot{x}_{m}(s)\right\|^{2} d s-\int_{0}^{a}\left\langle f_{m}(s), \dot{x}_{m}(s)\right\rangle d s-\varepsilon_{m} \tag{2.23}
\end{equation*}
$$

where

$$
\varepsilon_{m}=\varepsilon_{1, m}+\varepsilon_{2, m}=\sum_{i=0}^{\nu_{m}-1}\left\langle c_{i}^{m}, \int_{t_{i}^{m}}^{t_{i+1}^{m}} \dot{x}(s) d s\right\rangle+\left\langle c_{\nu_{m}}^{m}, \int_{t_{\nu_{m}}^{m}}^{a} \dot{x}(s) d s\right\rangle+\frac{\beta a(M+1)^{2}}{m} .
$$

Using our construction we get

$$
\begin{aligned}
\left|\varepsilon_{m}\right| & \leq \sum_{i=0}^{\nu_{m}-1}\left\|c_{i}^{m}\right\| \int_{t_{i}^{m}}^{t_{i+1}^{m}}\|\dot{x}(s)\| d s+\left\|c_{\nu_{m}}^{m}\right\| \int_{t_{\nu_{m}}^{m}}^{a}\|\dot{x}(s)\| d s+\frac{\beta(M+1)^{2} a}{m} \\
& \leq \sum_{i=0}^{\nu_{m}-1} \frac{1}{m}\left(t_{i+1}^{m}-t_{i}^{m}\right)(M+1)+\frac{1}{m}\left(a-t_{\nu_{m}}^{m}\right)(M+1)+\frac{\beta(M+1)^{2} a}{m} \\
& =\frac{(M+1)}{m}\left[\sum_{i=0}^{\nu_{m}-1}\left(t_{i+1}^{m}-t_{i}^{m}\right)+\left(a-t_{\nu_{m}}^{m}\right)\right]+\frac{\beta(M+1)^{2} a}{m} \\
& =\frac{(M+1) a}{m}+\frac{\beta(M+1)^{2} a}{m} \rightarrow 0 \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

We have also

$$
\lim _{m \rightarrow \infty} \int_{0}^{a}\left\langle f_{m}(s), \dot{x}_{m}(s)\right\rangle d s=\int_{0}^{a}\langle f(s), \dot{x}(s)\rangle d s
$$

Taking the limit superior in 2.23 when $m \rightarrow \infty$ we obtain

$$
\begin{equation*}
g(x(a))-g\left(x_{0}\right) \geq \limsup _{m} \int_{0}^{a}\left\|\dot{x}_{m}(s)\right\|^{2} d s-\int_{0}^{a}\langle f(s), \dot{x}(s)\rangle d s \tag{2.24}
\end{equation*}
$$

This inequality compared with 2.20 yields

$$
\int_{0}^{a}\|\dot{x}(s)\|^{2} d s \geq \limsup _{m} \int_{0}^{a}\left\|\dot{x}_{m}(s)\right\|^{2} d s
$$

that is,

$$
\begin{equation*}
\|\dot{x}\|_{L^{2}([0, a], H)}^{2} \geq \limsup _{m}\left\|\dot{x}_{m}\right\|_{L^{2}([0, a], H)}^{2} \tag{2.25}
\end{equation*}
$$

On the other hand the weak l.s.c of the norm ensures

$$
\|\dot{x}\|_{L^{2}([0, a], H)}^{2} \leq \liminf _{m}\left\|\dot{x}_{m}\right\|_{L^{2}([0, a], H)}^{2}
$$

Consequently, we get

$$
\|\dot{x}\|_{L^{2}([0, a], H)}=\lim _{m}\left\|\dot{x}_{m}\right\|_{L^{2}([0, a], H)} .
$$

Hence there exists a subsequence of $\left\{\dot{x}_{m}\right\}_{m}$ (still denoted $\left\{\dot{x}_{m}\right\}_{m}$) converges poitwisely a.e on [0.a] to \dot{x}.
Since

$$
\left(x_{m}(t), \dot{x}_{m}(t)-f_{m}(t)-c_{m}(t)\right) \in g p h G, \quad \text { a.e. on }[0 . a],
$$

and as G has a closed graph, we obtain

$$
(x(t), \dot{x}(t)-f(t)) \in g p h G \quad \text { a.e. on }[0 . a]
$$

and so

$$
\dot{x}(t) \in G(x(t))+F(t, x(t)) \quad \text { a.e. on }[0 . a]
$$

The proof is complete.

Remark 2.4. An inspection of the proof of Theorem 2.3 shows that the uniformity of the constant β was needed only over the set K_{0} and so it was not necessary over all the set S. Indeed, it suffices to take the uniform regularity of g locally over S, that is, for every point $\bar{x} \in S$ there exist $\beta \geq 0$ and a neighborhood V of x_{0} such that g is uniformly regular over $S \cap V$.

We conclude the paper with two corollaries of our main result in Theorem 2.3.
Corolloray 2.5. Let $K \subset H$ be a nonempty uniformly prox-regular closed subset of a finite dimensional space H and $F:[0, T] \times H \rightarrow H$ be a continuous set-valued mapping with compact values. Then, for any $x_{0} \in K$ there exists a $\left.\in\right] 0, T[$ such that the following differential inclusion

$$
\begin{gathered}
\dot{x}(t) \in-\partial^{C} d_{K}(x(t))+F(t, x(t)) \quad \text { a.e. on }[0, a] \\
x(0)=x_{0} \in K,
\end{gathered}
$$

has at least one absolutely continuous solution on $[0, a]$.
Proof. In [7, Theorem 3.4] (see also [4, theorem 4.1]) it is shown that the function $g:=d_{K}$ is uniformly regular over K and so it is uniformly regular over some neighborhood V of $x_{0} \in K$. Thus, by Remark 2.4 , we apply Theorem 2.3 with $S=H$ (hence the tangential condition (2.2) is satisfied), $K_{0}:=V \cap S=V$, and the set-valued mapping $G:=\partial^{C} d_{K}$ which satisfies the hypothesis of Theorem 2.3

Our second corollary concerns the following differential inclusion

$$
\begin{align*}
& \dot{x}(t) \in-N^{C}(S ; x(t))+F(t, x(t)) \quad \text { a.e. } \tag{2.26}\\
& x(t) \in S, \quad \text { for all } t \text { and } x(0)=x_{0} \in S .
\end{align*}
$$

This type of differential inclusion has been introduced in [10] for studying some economic problems.

Corolloray 2.6. Let H be a separable Hilbert space. Assume that
(1) $F:[0, T] \times H \rightarrow H$ is a continuous set-valued mapping with compact values;
(2) S is a nonempty uniformly prox-regular closed subset in H;
(3) For any $(t, x) \in I \times S$ the tangential condition

$$
\underset{h \downarrow 0}{\liminf } h^{-1} e\left(x+h\left(\partial^{C} d_{S}(x)+F(t, x)\right) ; S\right)=0,
$$

for any $(t, x) \in I \times S$ holds.
Then, for any $x_{0} \in S$, there exists $\left.a \in\right] 0, T[$ such that the differential inclusion (2.26) has at lease one absolutely continuous solution on $[0, a]$.

Acknowledgement. The authors would like to thank the anonymous referee for his careful reading of the paper and for his pertinent suggestions and remarks.

References

[1] F. Ancona and G. Colombo; Existence of solutions for a class of non convex differential inclusions, Rend. Sem. Mat. Univ. Padova, Vol. 83 (1990), pp. 71-76.
[2] H. Benabdellah; Sur une Classe d'equations differentielles multivoques semi continues superieurement a valeurs non convexes, Sém. d'Anal. convexe, exposé No. 6, 1991.
[3] H. Benabdellah, C. Castaing and A. Salvadori; Compactness and discretization methods for differential inclusions and evolution problems, Atti. Semi. Mat. Fis. Modena, Vol. XLV, (1997), pp. 9-51.
[4] M. Bounkhel; Existence Results of Nonconvex Differential Inclusions, J. Portugaliae Mathematica, Vol. 59 (2002), No. 3, pp. 283-310.
[5] M. Bounkhel; On arc-wise essentially smooth mappings between Banach spaces, J. Optimization, Vol. 51 (2002), No. 1, pp. 11-29.
[6] M. Bounkhel and L. Thibault; On various notions of regularity of sets, Nonlinear Anal.: Theory, Methods and Applications, Vol. 48 (2002), No. 2, 223-246.
[7] M. Bounkhel and L. Thibault; Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process, Preprint, Centro de Modelamiento Màtematico (CMM), Universidad de chile, (2000).
[8] A. Bressan, A. Cellina, and G. Colombo; Upper semicontinuous differential inclusions without convexity, Proc. Amer. Math. Soc. Vol. 106, (1989), pp. 771-775.
[9] C. Castaing, T.X. DucHa, and M. Valadier; Evolution equations governed by the sweeping process, Set-valued Analysis, Vol. 1 (1993), pp.109-139.
[10] C. Henry; An existence theorem for a class of differential equations with multivalued righthand side, J. Math. Anal. Appl. Vol. 41, (1973), pp. 179-186.
[11] R. Morchadi and S. Gautier; A viability result for a first order differential inclusion without convexity, Preprint, University Pau (1995).
[12] P. Rossi; Viability for upper semicontinuous differential inclusions without convexity, Diff. and Integr. Equations, Vol. 5, (1992), No. 2, pp. 455-459.
[13] X. D. H. Truong; Existence of Viable solutions of nonconvex differential inclusions, Atti. Semi. Mat. Fis. Modena, Vol. XLVII, (1999), pp. 457-471.

Messaoud Bounkhel
King Saud University, College of Science, Department of Mathematics, Riyadh 11451, Saudi Arabia

E-mail address: bounkhel@ksu.edu.sa
Tahar Haddad
University of Jijel, Department of Mathematics, B.P. 98, Ouled Aissa, Jijel, Algeria
E-mail address: haddadtr2000@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 34A60, 34G25, 49J52, 49J53.
 Key words and phrases. Uniformly regular functions; normal cone;
 nonconvex differential inclusions.
 © 2005 Texas State University - San Marcos.
 Submitted December 26, 2004. Published May 11, 2005.

