Electronic Journal of Differential Equations, Vol. 2005(2005), No. 44, pp. 1–16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS TO NONLINEAR ELLIPTIC PROBLEM IN THE HALF SPACE

IMED BACHAR, HABIB MÂAGLI, MALEK ZRIBI

ABSTRACT. This paper concerns nonlinear elliptic equations in the half space $\mathbb{R}^n_+ := \{x = (x', x_n) \in \mathbb{R}^n : x_n > 0\}, n \geq 2$, with a nonlinear term satisfying some conditions related to a certain Kato class of functions. We prove some existence results and asymptotic behaviour for positive solutions using a potential theory approach.

1. INTRODUCTION

In the present paper, we study the nonlinear elliptic equation

$$\Delta u + f(., u) = 0, \text{ in } \mathbb{R}^n_+ \tag{1.1}$$

in the sense of distributions, with some boundary values determined below (see problems (1.6), (1.11) and (1.12)). Here $\mathbb{R}^n_+ := \{x = (x', x_n) \in \mathbb{R}^n : x_n > 0\}, (n \ge 2).$

Several results have been obtained for (1.1), in both bounded and unbounded domain $D \subset \mathbb{R}^n$ with different boundary conditions; see for example [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 17] and the references therein. Our goal of this paper is to undertake a study of (1.1) when the nonlinear term f(x, t) satisfies some conditions related to a certain Kato class $K^{\infty}(\mathbb{R}^n_+)$, and to answer the questions of existence and asymptotic behaviour of positive solutions.

Our tools are based essentially on some inequalities satisfied by the Green function G(x, y) of $(-\Delta)$ in \mathbb{R}^n_+ . This allows us to state some properties of functions in the class $K^{\infty}(\mathbb{R}^n_+)$ which was introduced in [2] for $n \geq 3$, and in [3] for n = 2.

Definition 1.1. A Borel measurable function q in \mathbb{R}^n_+ belongs to the class $K^{\infty}(\mathbb{R}^n_+)$ if q satisfies the following two conditions

$$\lim_{\alpha \to 0} \left(\sup_{x \in \mathbb{R}^n_+} \int_{\mathbb{R}^n_+ \cap B(x,\alpha)} \frac{y_n}{x_n} G(x,y) |q(y)| dy \right) = 0, \qquad (1.2)$$

$$\lim_{M \to \infty} (\sup_{x \in \mathbb{R}^n_+} \int_{\mathbb{R}^n_+ \cap (|y| \ge M)} \frac{y_n}{x_n} G(x, y) |q(y)| dy) = 0.$$
(1.3)

The class $K^{\infty}(\mathbb{R}^n_+)$ is sufficiently rich. It contains properly the classical Kato class $K_n^{\infty}(\mathbb{R}^n_+)$, defined by Zhao [21], for $n \geq 3$ in unbounded domains D as follows:

Key words and phrases. Green function; elliptic equation; positive solution.

©2005 Texas State University - San Marcos.

²⁰⁰⁰ Mathematics Subject Classification. 34B27, 34J65.

Submitted December 20, 2004. Published April 14, 2005.

Definition 1.2. A Borel measurable function q on D belongs to the Kato class $K_n^{\infty}(D)$ if q satisfies the following two conditions

$$\begin{split} &\lim_{\alpha \to 0} \sup_{x \in D} \int_{D \cap (|x-y| \leq \alpha)} \frac{|\psi(y)|}{|x-y|^{d-2}} dy) = 0 \,, \\ &\lim_{M \to \infty} \sup_{x \in D} \int_{D \cap (|y| \geq M)} \frac{|\psi(y)|}{|x-y|^{d-2}} dy) = 0. \end{split}$$

Typical examples of functions q in the class $K^{\infty}(\mathbb{R}^n_+)$ are: $q \in L^p(\mathbb{R}^n_+) \cap L^1(\mathbb{R}^n_+)$, where $p > \frac{n}{2}$ and $n \ge 3$; and

$$q(x) = \frac{1}{(|x|+1)^{\mu-\lambda} x_n^{\lambda}}$$

where $\lambda < 2 < \mu$ and $n \ge 2$ (see [2, 3]).

We shall refer in this paper to the bounded continuous solution Hg of the Dirichlet problem

$$\Delta u = 0, \quad \text{in } \mathbb{R}^n_+$$
$$\lim_{x_n \to 0} u(x) = g(x'), \tag{1.4}$$

where g is a nonnegative bounded continuous function in \mathbb{R}^{n-1} (see [1, p. 418]). We also refer to the potential of a measurable nonnegative function f, defined on \mathbb{R}^n_+ by

$$Vf(x) = \int_{\mathbb{R}^n_+} G(x, y) f(y) dy.$$

Our paper is organized as follows. Existence results are proved in sections 3, 4, and 5. In section 2, we collect some preliminary results about the Green function G and the class $K^{\infty}(\mathbb{R}^{n}_{+})$. We prove further that if p > n/2 and $a \in L^{p}(\mathbb{R}^{n}_{+})$, then for $\lambda < 2 - \frac{n}{p} < \mu$, the function

$$x \mapsto \frac{a(x)}{(|x|+1)^{\mu-\lambda}x_n^{\lambda}},$$

is in $K^{\infty}(\mathbb{R}^{n}_{+})$. In section 3, we establish an existence result for equation (1.1) where a singular term and a sublinear term are combined in the nonlinearity f(x, t).

The pure singular elliptic equation

$$\Delta u + p(x)u^{-\gamma} = 0, \quad \gamma > 0, \ x \in D \subseteq \mathbb{R}^n$$

has been extensively studied for both bounded and unbounded domains. We refer to [7, 8, 10, 12, 13, 14] and references therein, for various existence and uniqueness results related to solutions for above equation.

For more general situations Mâagli and Zribi showed in [17] that the problem

$$\Delta u + \varphi(., u) = 0, \quad x \in D$$
$$u|_{\partial D} = 0$$
(1.5)
$$\lim_{|x| \to \infty} u(x) = 0, \quad \text{if } D \text{ is unbounded}$$

admits a unique positive solution if φ is a nonnegative measurable function on $(0, \infty)$, which is non-increasing and continuous with respect to the second variable and satisfies

(H0) For all c > 0, $\varphi(., c) \in K_n^{\infty}(D)$.

(H0') For all c > 0, $\varphi(., c) \in K^{\infty}(\mathbb{R}^n_+)$.

On the other hand, (1.1) with a sublinear term f(., u) have been studied in \mathbb{R}^n by Brezis and Kamin in [5]. Indeed, the authors proved the existence and the uniqueness of a positive solution for the problem

$$\begin{split} \Delta u + \rho(x) u^{\alpha} &= 0 \quad \text{in } \mathbb{R}^n, \\ \liminf_{|x| \to \infty} u(x) &= 0, \end{split}$$

with $0<\alpha<1$ and ρ is a nonnegative measurable function satisfying some appropriate conditions.

In this section, we combine a singular term and a sublinear term in the nonlinearity. Indeed, we consider the boundary value problem

$$\Delta u + \varphi(., u) + \psi(., u) = 0, \quad \text{in } \mathbb{R}^n_+$$

$$u > 0, \quad \text{in } \mathbb{R}^n_+$$

$$\lim_{x_n \to 0} u(x) = 0,$$

$$\lim_{|x| \to +\infty} u(x) = 0,$$
(1.6)

in the sense of distributions, where φ and ψ are required to satisfy the following hypotheses:

- (H1) φ is a nonnegative Borel measurable function on $\mathbb{R}^n_+ \times (0, \infty)$, continuous and non-increasing with respect to the second variable.
- (H2) For all $c > 0, x \mapsto \varphi(x, c\theta(x))$ belongs to $K^{\infty}(\mathbb{R}^{n}_{+})$, where

$$\theta(x) = \frac{x_n}{(1+|x|)^n}$$

(H3) ψ is a nonnegative Borel measurable function on $\mathbb{R}^n_+ \times (0, \infty)$, continuous with respect to the second variable such that there exist a nontrivial nonnegative function p and a nonnegative function $q \in K^{\infty}(\mathbb{R}^n_+)$ satisfying for $x \in \mathbb{R}^n_+$ and t > 0,

$$p(x)h(t) \le \psi(x,t) \le q(x)f(t), \tag{1.7}$$

where h is a measurable nondecreasing function on $[0,\infty)$ satisfying

$$\lim_{t \to 0^+} \frac{h(t)}{t} = +\infty \tag{1.8}$$

and f is a nonnegative measurable function locally bounded on $[0, \infty)$ satisfying

$$\limsup_{t \to \infty} \frac{f(t)}{t} < \|Vq\|_{\infty}.$$
(1.9)

Using a fixed point argument, we shall state the following existence result.

Theorem 1.3. Assume (H1)–(H3). Then the problem (1.6) has a positive solution $u \in C_0(\mathbb{R}^n_+)$ satisfying for each $x \in \mathbb{R}^n_+$

$$a\theta(x) \le u(x) \le V(\varphi(.,a\theta))(x) + bVq(x),$$

where a, b are positive constants.

Note that Mâagli and Masmoudi studied in [16, 18] the case $\varphi \equiv 0$, under similar conditions to those in (H3). Indeed the authors gave an existence result for

$$\Delta u + \psi(., u) = 0 \text{ in } D, \tag{1.10}$$

with some boundary conditions, where D is an unbounded domain in \mathbb{R}^n $(n \ge 2)$ with compact nonempty boundary.

Typical examples of nonlinearities satisfying (H1)–(H3) are:

$$\varphi(x,t) = p(x)(\theta(x))^{\gamma} t^{-\gamma},$$

for $\gamma \geq 0$, and

$$\psi(x,t) = p(x)t^{\alpha}\log(1+t^{\beta}),$$

for $\alpha, \beta \ge 0$ such that $\alpha + \beta < 1$, where p is a nonnegative function in $K^{\infty}(\mathbb{R}^n_+)$.

In section 4, we consider the nonlinearity $f(x,t) = -t\varphi(x,t)$ and we use a potential theory approach to investigate an existence result for (1.1). Let $\alpha \in [0,1]$ and ω be the function defined on \mathbb{R}^n_+ by $\omega(x) = \alpha x_n + (1 - \alpha)$. We shall prove in this section the existence of positive continuous solutions for the following nonlinear problem

$$\Delta u - u\varphi(., u) = 0, \quad \text{in } \mathbb{R}^n_+$$

$$u > 0, \quad \text{in } \mathbb{R}^n_+$$

$$\lim_{x_n \to 0} u(x) = (1 - \alpha)g(x'), \quad (1.11)$$

$$\lim_{x_n \to +\infty} \frac{u(x)}{x_n} = \alpha\lambda,$$

in the sense of distributions, where λ is a positive constant, g is a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} and φ satisfies the following hypotheses:

- (H4) φ is a nonnegative measurable function on $\mathbb{R}^n_+ \times [0, \infty)$.
- (H5) For all c > 0, there exists a positive function $q_c \in K^{\infty}(\mathbb{R}^n_+)$ such that the map $t \mapsto t(q_c(x) \varphi(x, t\omega(x)))$ is continuous and nondecreasing on [0, c] for every $x \in \mathbb{R}^n_+$.

Theorem 1.4. Under assumptions (H4) and (H5), problem (1.11) has a positive continuous solution u such that for each $x \in \mathbb{R}^n_+$,

$$c(\alpha\lambda x_n + (1-\alpha)Hg(x)) \le u(x) \le \alpha\lambda x_n + (1-\alpha)Hg(x),$$

where $c \in (0, 1)$.

Note that if $\alpha = 0$, then the solution u satisfies $cHg(x) \leq u(x) \leq Hg(x)$, $c \in (0, 1)$. In particular, u is bounded on \mathbb{R}^n_+ . Our techniques are similar to those used by Mâagli and Masmoudi in [16, 18].

Section 5 deals with the question of existence of continuous bounded solutions for the problem

$$\Delta u - \varphi(., u) = 0, \quad \text{in } \mathbb{R}^n_+$$

$$u > 0, \quad \text{in } \mathbb{R}^n_+$$

$$\lim_{x_n \to 0} u(x) = g(x'),$$
(1.12)

where g is a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} . We also establish an uniqueness result for such solutions. Here the nonlinearity φ satisfies the following conditions:

(H6) φ is a nonnegative measurable function on $\mathbb{R}^n_+ \times [0, \infty)$, continuous and nondecreasing with respect to the second variable.

- (H7) $\varphi(.,0) = 0.$
- (H8) For all c > 0, $\varphi(., c) \in K^{\infty}(\mathbb{R}^{n}_{+})$.

Theorem 1.5. Under assumptions (H6)–(H8), problem (1.12) has a unique positive solution u such that for each $x \in \mathbb{R}^n_+$,

$$0 < u(x) \le Hg(x).$$

Note that if $q \in K^{\infty}(\mathbb{R}^n_+)$ and $\varphi(x,t) \leq q(x)t$ locally on t, then the solution u satisfies in particular $cHg(x) \leq u(x) \leq Hg(x), c \in (0,1)$. This result follows the result in [4], where we studied the following polyharmonic problem, for every integer m,

$$(-\Delta)^{m}u + \varphi(., u) = 0, \quad \text{in } \mathbb{R}^{n}_{+}$$

$$u > 0, \quad \text{in } \mathbb{R}^{n}_{+}$$

$$\lim_{x_{n} \to 0} \frac{u(x)}{x_{n}^{m-1}} = g(x')$$

$$(1.13)$$

(in the sense of distributions). Here φ is a nonnegative measurable function on $\mathbb{R}^n_+ \times (0, \infty)$, continuous and non-increasing with respect to the second variable and satisfies some conditions related to a certain Kato class appropriate to the *m*-polyharmonic case. In fact in [4], we proved that for a fixed positive harmonic function h_0 in \mathbb{R}^n_+ , if $g \geq (1+c)h_0$, for c > 0, then the problem (1.13) has a positive continuous solution *u* satisfying $u(x) \geq x_n^{m-1}h_0(x)$ for every $x \in \mathbb{R}^n_+$. Thus a natural question to ask is for $t \to \varphi(x, t)$ nondecreasing, whether or not (1.13) has a solution, which we aim to study in the case m = 1.

Notation. To simplify our statements, we define the following symbols. $\mathbb{R}^n_+ := \{x = (x_1, ..., x_n) = (x', x_n) \in \mathbb{R}^n : x_n > 0\}, n \ge 2.$ $\overline{x} = (x', -x_n), \text{ for } x \in \mathbb{R}^n_+.$

Let $\mathcal{B}(\mathbb{R}^n_+)$ denote the set of Borel measurable functions in \mathbb{R}^n_+ and $\mathcal{B}^+(\mathbb{R}^n_+)$ the set of nonnegative functions in this space.

 $C_b(\mathbb{R}^n_+) = \{ w \in C(\mathbb{R}^n_+) : w \text{ is bounded in } \mathbb{R}^n_+ \}$

$$\begin{split} C_0(\mathbb{R}^n_+) &= \{ w \in C(\mathbb{R}^n_+) : \lim_{x_n \to 0} w(x) = 0 \text{ and } \lim_{|x| \to \infty} w(x) = 0 \} \\ C_0(\overline{\mathbb{R}^n_+}) &= \{ w \in C(\overline{\mathbb{R}^n_+}) : \lim_{|x| \to \infty} w(x) = 0 \}. \end{split}$$

Note that $C_b(\mathbb{R}^n_+)$, $C_0(\mathbb{R}^n_+)$ and $C_0(\overline{\mathbb{R}^n_+})$ are three Banach spaces with the uniform norm $||w||_{\infty} = \sup_{x \in \mathbb{R}^n_+} |w(x)|$.

For any $q \in \mathcal{B}(\mathbb{R}^n_+)$, we put

$$\|q\|:=\sup_{x\in\mathbb{R}^n_+}\int_{\mathbb{R}^n_+}\frac{y_n}{x_n}G(x,y)|q(y)|dy$$

Recall that the potential Vf of a function $f \in \mathcal{B}^+(\mathbb{R}^n_+)$, is lower semi-continuous in \mathbb{R}^n_+ . Furthermore, for each function $q \in \mathcal{B}^+(\mathbb{R}^n_+)$ such that $Vq < \infty$, we denote by V_q the unique kernel which satisfies the following resolvent equation (see [15, 19]):

$$V = V_q + V_q(qV) = V_q + V(qV_q).$$
(1.14)

For each $u \in \mathcal{B}(\mathbb{R}^n_+)$ such that $V(q|u|) < \infty$, we have

$$(I - V_q(q.))(I + V(q.))u = (I + V(q.))(I - V_q(q.))u = u.$$
(1.15)

Let f and g be two positive functions on a set S. We call $f \sim g$, if there is c > 0 such that

$$\frac{1}{c}g(x) \le f(x) \le cg(x) \quad \text{for all } x \in S.$$

We call $f \leq g$, if there is c > 0 such that

$$f(x) \le cg(x)$$
 for all $x \in S$.

The following properties will be used in this article: For $x, y \in \mathbb{R}^n_+$, note that $|x - \overline{y}|^2 - |x - y|^2 = 4x_n y_n$. So we have

$$|x - \overline{y}|^2 \sim |x - y|^2 + x_n y_n \tag{1.16}$$

$$x_n + y_n \le |x - \overline{y}|. \tag{1.17}$$

Let $\lambda, \mu > 0$ and $0 < \gamma \leq 1$, then for $t \geq 0$ we have

$$\log(1 + \lambda t) \sim \log(1 + \mu t), \tag{1.18}$$

$$\log(1+t) \preceq t^{\gamma}. \tag{1.19}$$

2. Properties of the Green function and the Kato class $K^{\infty}(\mathbb{R}^n_+)$

In this section, we briefly recall some estimates on the Green function G and we collect some properties of functions belonging to the Kato class $K^{\infty}(\mathbb{R}^{n}_{+})$, which are useful at stating our existence results. For $x, y \in \mathbb{R}^{n}_{+}$, we set

$$G(x,y) = \begin{cases} \frac{\Gamma(\frac{n}{2}-1)}{4\pi^{n/2}} \left[\frac{1}{|x-y|^{n-2}} - \frac{1}{|x-\overline{y}|^{n-2}} \right], & \text{if } n \ge 3\\ \frac{1}{4\pi} \log\left(1 + \frac{4x_2y_2}{|x-y|^2}\right), & \text{if } n = 2, \end{cases}$$

the Green function of $(-\Delta)$ in \mathbb{R}^n_+ (see [1, p. 92]). Then we have the following estimates and inequalities whose proofs can be found in [2] for $n \ge 3$ and in [3] for n = 2.

Proposition 2.1. For $x, y \in \mathbb{R}^n_+$, we have

$$G(x,y) \sim \begin{cases} \frac{x_n y_n}{|x-y|^{n-2}|x-\overline{y}|^2} & \text{if } n \ge 3, \\ \frac{x_2 y_2}{|x-\overline{y}|^2} \log(1 + \frac{|x-\overline{y}|^2}{|x-y|^2}) & \text{if } n = 2. \end{cases}$$
(2.1)

Corollary 2.2. For $x, y \in \mathbb{R}^n_+$, we have

$$\frac{x_n y_n}{(|x|+1)^n (|y|+1)^n} \preceq G(x,y).$$
(2.2)

Theorem 2.3 (3G-Theorem). There exists $C_0 > 0$ such that for each $x, y, z \in \mathbb{R}^n_+$, we have

$$\frac{G(x,z)G(z,y)}{G(x,y)} \le C_0 \Big[\frac{z_n}{x_n} G(x,z) + \frac{z_n}{y_n} G(y,z) \Big].$$
(2.3)

Let us recall in the following properties of functions in the class $K^{\infty}(\mathbb{R}^{n}_{+})$. The proofs of these propositions can be found in [2, 3].

Proposition 2.4. Let q be a nonnegative function in $K^{\infty}(\mathbb{R}^n_+)$. Then we have: (i) $||q|| < \infty$; (ii) The function $x \mapsto \frac{x_n}{(|x|+1)^n}q(x)$ is in $L^1(\mathbb{R}^n_+)$. and (iii)

$$\frac{x_n}{(|x|+1)^n} \preceq Vq(x). \tag{2.4}$$

For a fixed nonnegative function q in $K^{\infty}(\mathbb{R}^n_+)$, we put

$$\mathcal{M}_q := \{ \varphi \in B(\mathbb{R}^n_+), \ |\varphi| \leq q \}.$$

Proposition 2.5. Let q be a nonnegative function in $K^{\infty}(\mathbb{R}^{n}_{+})$, then the family of functions

$$V(\mathcal{M}_q) = \{ V\varphi : \varphi \in \mathcal{M}_q \}$$

is relatively compact in $C_0(\mathbb{R}^n_{\perp})$.

Proposition 2.6. Let q be a nonnegative function in $K^{\infty}(\mathbb{R}^n_{\perp})$, then the family of functions

$$\mathcal{N}_q = \left\{ \int_{\mathbb{R}^n_+} \frac{y_n}{x_n} G(x, y) |\varphi(y)| dy : \varphi \in \mathcal{M}_q \right\}$$

is relatively compact in $C_0(\overline{\mathbb{R}^n_+})$.

In the sequel, we use the following notation

$$\alpha_q := \sup_{x,y \in \mathbb{R}^n_+} \int_{\mathbb{R}^n_+} \frac{G(x,z)G(z,y)}{G(x,y)} |q(z)| dz.$$

Lemma 2.7. Let q be a function in $K^{\infty}(\mathbb{R}^n_+)$. Then we have

$$\|q\| \le \alpha_q \le 2C_0 \|q\|,$$

where C_0 is the constant given in (2.3).

Proof. By (2.3), we obtain easily that $\alpha_q \leq 2C_0 ||q||$. On the other hand, we have by Fatou lemma that for each $x \in \mathbb{R}^n_+$

$$\int_{\mathbb{R}^n_+} \frac{z_n}{x_n} G(x,z) |q(z)| dz \leq \liminf_{|\zeta| \to \infty} \int_{\mathbb{R}^n_+} \frac{z_n}{x_n} \frac{|x-\zeta|^n}{|z-\zeta|^n} G(x,z) |q(z)| dz.$$

Now since for each $x, z \in \mathbb{R}^n_+$ and $\zeta \in \partial \mathbb{R}^n_+$, we have

$$\lim_{y \to \zeta} \frac{G(z,y)}{G(x,y)} = \frac{z_n}{x_n} \frac{|x - \zeta|^n}{|z - \zeta|^n}.$$

Then by Fatou lemma we deduce that

$$\int_{\mathbb{R}^n_+} \frac{z_n}{x_n} \frac{|x-\zeta|^n}{|z-\zeta|^n} G(x,z) |q(z)| dz \le \liminf_{y \to \zeta} \int_{\mathbb{R}^n_+} G(x,z) \frac{G(z,y)}{G(x,y)} |q(z)| dz \le \alpha_q.$$
derive obviously that $||q|| < \alpha_q.$

We derive obviously that $||q|| \leq \alpha_q$.

Proposition 2.8. Let q be a function in $K^{\infty}(\mathbb{R}^n_+)$ and v be a nonnegative superharmonic function in \mathbb{R}^n_+ . Then for each $x \in \mathbb{R}^n_+$, we have

$$\int_{\mathbb{R}^n_+} G(x,y)v(y)|q(y)|dy \le \alpha_q v(x).$$
(2.5)

Proof. Let v be a nonnegative superharmonic function in \mathbb{R}^n_+ , then there exists (see [20, Theorem 2.1]) a sequence $(f_k)_k$ of nonnegative measurable functions in \mathbb{R}^n_+ such that the sequence $(v_k)_K$ defined on \mathbb{R}^n_+ by $v_k := V f_k$ increases to v. Since for each $x, z \in \mathbb{R}^n_+$, we have

$$\int_{\mathbb{R}^n_+} G(x,y)G(y,z)|q(y)|\,dy \le \alpha_q G(x,z),$$

it follows that

$$\int_{\mathbb{R}^n_+} G(x,y)v_k(y)|q(y)|\,dy \le \alpha_q v_k(x).$$

Hence, the result holds from the monotone convergence theorem.

Corollary 2.9. Let q be a nonnegative function in $K^{\infty}(\mathbb{R}^n_+)$ and v be a nonnegative superharmonic function in \mathbb{R}^n_+ , then for each $x \in \mathbb{R}^n_+$ such that $0 < v(x) < \infty$, we have

$$\exp(-\alpha_q)v(x) \le (v - V_q(qv))(x) \le v(x).$$

Proof. The upper inequality is trivial. For the lower one, we consider the function $\gamma(\lambda) = v(x) - \lambda V_{\lambda q}(qv)(x)$ for $\lambda \geq 0$. The function γ is completely monotone on $[0, \infty)$ and so $\log \gamma$ is convex in $[0, \infty)$. This implies that

$$\gamma(0) \le \gamma(1) \exp(-\frac{\gamma'(0)}{\gamma(0)}).$$

That is

$$v(x) \le (v - V_q(qv))(x) \exp(\frac{V(qv)(x)}{v(x)}).$$

So, the result holds by (2.5).

We close this section by giving a class of functions included in $K^{\infty}(\mathbb{R}^{n}_{+})$. We need the following key Lemma. For the proof we can see [4].

Lemma 2.10. For x, y in \mathbb{R}^n_+ , we have the following properties:

(1) If $x_n y_n \le |x - y|^2$ then $(x_n \lor y_n) \le \frac{\sqrt{5} + 1}{2} |x - y|$. (2) If $|x - y|^2 \le x_n y_n$ then $\frac{3 - \sqrt{5}}{2} x_n \le y_n \le \frac{3 + \sqrt{5}}{2} x_n$ and $\frac{3 - \sqrt{5}}{2} |x| \le |y| \le \frac{3 + \sqrt{5}}{2} |x|$.

In what follows we will use the following notation

$$D_1 := \{ y \in \mathbb{R}^n_+ : x_n y_n \le |x - y|^2 \},\$$

$$D_2 := \{ y \in \mathbb{R}^n_+ : |x - y|^2 \le x_n y_n \}.$$

We point out that $D_2 = \overline{B}(\tilde{x}, \frac{\sqrt{5}}{2}x_n)$, where $\tilde{x} = (x_1, \dots, x_{n-1}, \frac{3}{2}x_n)$ and consequently $D_1 = B^c(\tilde{x}, \frac{\sqrt{5}}{2}x_n)$

Proposition 2.11. Let p > n/2 and a be a function in $L^p(\mathbb{R}^n_+)$. Then for $\lambda < 2 - \frac{n}{p} < \mu$, the function $\varphi(x) = \frac{a(x)}{(|x|+1)^{\mu-\lambda}x_n^{\lambda}}$ is in $K^{\infty}(\mathbb{R}^n_+)$.

Proof. Let p > n/2 and $q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Let a be a function in $L^p(\mathbb{R}^n_+)$ and $\lambda < 2 - \frac{n}{p} < \mu$. First, we claim that the function φ satisfies (1.2). Let $0 < \alpha < 1$. Since $x_n \le (1 + |x|)$ and $y_n \le (1 + |y|)$, then we remark that if $|x - y| \le \alpha$, then $(|x| + 1) \sim (|y| + 1)$ and consequently

$$|x - \overline{y}| \leq (|y| + 1), \quad \text{for } y \in B(x, \alpha).$$
 (2.6)

Put $\lambda^+ = \max(\lambda, 0)$. So to show the claim, we use the Hölder inequality and we distinguish the following two cases:

Case 1. $n \ge 3$. Using (2.1), (1.17) and the fact that $|x - y| \le |x - \overline{y}|$ and $y_n \le (1 + |y|)$, we deduce that

$$\begin{split} &\int_{B(x,\alpha)\cap\mathbb{R}^n_+} \frac{y_n}{x_n} G(x,y)\varphi(y)dy\\ &\leq \|a\|_p (\int_{B(x,\alpha)\cap\mathbb{R}^n_+} \frac{y_n^{2q}}{|x-y|^{(n-2)q}|x-\overline{y}|^{2q}y_n^{\lambda q}(|y|+1)^{(\mu-\lambda)q}}dy)^{\frac{1}{q}}\\ &\leq \|a\|_p (\int_{B(x,\alpha)\cap\mathbb{R}^n_+} \frac{dy}{|x-y|^{(n-2+\lambda+)q}})^{\frac{1}{q}}\\ &\prec \alpha^{2-\frac{n}{p}-\lambda^+}, \end{split}$$

which tends to zero as $\alpha \to 0$.

Case 2. n = 2. Using (2.1), (2.6), (1.17) and taking $\gamma \in (\frac{\lambda^+}{2}, \frac{1}{q})$ in (1.19), we obtain that

$$\begin{split} &\int_{B(x,\alpha)\cap\mathbb{R}^{2}_{+}}\frac{y_{2}}{x_{2}}G(x,y)\varphi(y)dy\\ &\leq \|a\|_{p}(\int_{B(x,\alpha)\cap\mathbb{R}^{2}_{+}}\frac{y_{2}^{(2-\lambda)q}}{|x-\overline{y}|^{2q}(|y|+1)^{(\mu-\lambda)q}}(\log(1+\frac{|x-\overline{y}|^{2}}{|x-y|^{2}}))^{q}dy)^{\frac{1}{q}}\\ &\leq \|a\|_{p}(\int_{B(x,\alpha)\cap\mathbb{R}^{2}_{+}}\frac{|x-\overline{y}|^{(2\gamma-\lambda^{+})q}}{(|y|+1)^{(\mu-\lambda^{+})q}|x-y|^{2\gamma q}}dy)^{\frac{1}{q}}\\ &\leq \|a\|_{p}(\int_{B(x,\alpha)\cap\mathbb{R}^{2}_{+}}\frac{1}{|x-y|^{2\gamma q}}dy)^{\frac{1}{q}}\\ &\preceq \alpha^{2-2\gamma q} \end{split}$$

which tends to zero as $\alpha \to 0$.

Now, we claim that the function φ satisfies (1.3). Let M > 1 and put $\Omega := \{y \in \mathbb{R}^n_+ : (|y| \ge M) \cap (|x - y| \ge \alpha)\}$ and

$$I(x,M) := \int_\Omega \frac{y_n}{x_n} G(x,y) \varphi(y) dy.$$

By the above argument, to show the claim we need only to prove that $I(x, M) \longrightarrow 0$, as $M \longrightarrow \infty$, uniformly on $x \in \mathbb{R}^n_+$. So we use the Hölder inequality and we distinguish the following two cases:

Case 1. $y \in D_1$. From (2.1), it is clear that $G(x,y) \preceq \frac{x_n y_n}{|x-y|^n}$. Then we have

$$\int_{\Omega\cap D_1} \frac{y_n}{x_n} G(x,y)\varphi(y)dy \leq \|a\|_p (\int_{\Omega\cap D_1} \frac{y_n^{(2-\lambda)q}}{|y|^{(\mu-\lambda)q}|x-y|^{nq}}dy)^{1/q}.$$

Now we write that $2 - \lambda = (2 - \lambda - \frac{n}{p}) + \frac{n}{p}$ and we put $\gamma = \mu - 2 + \frac{n}{p}$. Hence, using the fact that $y_n \leq \max(|y|, |x - y|)$, we deduce that

$$\int_{\Omega \cap D_1} \frac{y_n}{x_n} G(x, y) \varphi(y) dy \leq \|a\|_p (\int_{\Omega \cap D_1} \frac{dy}{|x - y|^n |y|^{\gamma q}})^{1/q}$$

On the other hand

Case 2. $y \in D_2$. From Lemma 2.10, we have that $|y| \sim |x|$, $y_n \sim x_n \sim |x - \overline{y}|$. This implies:

If $n \geq 3$, then by (2.1), we deduce that

$$\begin{split} \int_{\Omega \cap D_2} \frac{y_n}{x_n} G(x, y) \varphi(y) dy &\preceq \|a\|_p \frac{1}{x_n^{\lambda} |x|^{\mu - \lambda}} \left(\int_{\Omega \cap B(x, cx_n)} \frac{dy}{|x - y|^{(n-2)q}} \right)^{\frac{1}{q}} \\ & \preceq \|a\|_p \frac{x_n^{2 - \lambda - \frac{n}{p}}}{|x|^{\mu - \lambda}} \\ & \preceq \|a\|_p \frac{1}{M^{\mu - 2 + \frac{n}{p}}}. \end{split}$$

If n = 2, then from (2.1) and (1.18) it follows that

$$\begin{split} \int_{\Omega \cap D_2} \frac{y_2}{x_2} G(x,y) \varphi(y) dy &\preceq \|a\|_p \frac{1}{x_2^{\lambda} |x|^{\mu-\lambda}} \left(\int_{\Omega \cap B(x,cx_n)} (\log(1 + \frac{x_2^2}{|x-y|^2}))^q dy \right)^{\frac{1}{q}} \\ & \preceq \|a\|_p \frac{x_n^{\frac{2}{q}-\lambda}}{|x|^{\mu-\lambda}} \\ & \preceq \|a\|_p \frac{1}{M^{\mu-2+\frac{2}{p}}}. \end{split}$$

Hence we conclude that I(x, M) converges to zero as $M \to \infty$ uniformly on $x \in \mathbb{R}^n_+$. This completes the proof.

3. Proof of Theorem 1.3

Recall that $\theta(x) = \frac{x_n}{(|x|+1)^n}$ on \mathbb{R}^n_+ .

Proof of Theorem 1.3. Assuming (H1)–(H3), we shall use the Schauder fixed point theorem. Let K be a compact of \mathbb{R}^n_+ such that, using (H3), we have

$$0 < \alpha := \int_{K} \theta(y) p(y) dy < \infty.$$

10

$$\alpha_1 \theta(x) \theta(y) \le G(x, y). \tag{3.1}$$

Then from (1.8), we deduce that there exists a > 0 such that

 α

$$\alpha_1 \alpha h(a\beta) \ge a. \tag{3.2}$$

On the other hand, since $q \in K^{\infty}(\mathbb{R}^n_+)$, then by Proposition 2.5 we have that $\|Vq\|_{\infty} < \infty$. So taking $0 < \delta < \frac{1}{\|Vq\|_{\infty}}$ we deduce by (1.9) that there exists $\rho > 0$ such that for $t \ge \rho$ we have $f(t) \le \delta t$. Put $\gamma = \sup_{0 \le t \le \rho} f(t)$. So we have that

$$0 \le f(t) \le \delta t + \gamma, \quad t \ge 0.$$
 (3.3)

Furthermore by (2.4), we note that there exists a constant $\alpha_2 > 0$ such that

$$_{2}\theta(x) \le Vq(x), \quad \forall x \in \mathbb{R}^{n}_{+},$$
(3.4)

and from (H2) and Proposition 2.5, we have that $\|V\varphi(.,a\theta)\|_{\infty} < \infty$. Let

$$b = \max\left\{\frac{a}{\alpha_2}, \frac{\delta \|V\varphi(., a\theta)\|_{\infty} + \gamma}{1 - \delta \|Vq\|_{\infty}}\right\}$$

and consider the closed convex set

$$\Lambda = \{ u \in C_0(\mathbb{R}^n_+) : a\theta(x) \le u(x) \le V\varphi(.,a\theta)(x) + bVq(x), \forall x \in \mathbb{R}^n_+ \}.$$

Obviously, by (3.4) we have that the set Λ is nonempty. Define the integral operator T on Λ by

$$Tu(x) = \int_{\mathbb{R}^n_+} G(x, y)[\varphi(y, u(y)) + \psi(y, u(y))]dy, \quad \forall x \in \mathbb{R}^n_+.$$

Let us prove that $T\Lambda \subset \Lambda$. Let $u \in \Lambda$ and $x \in \mathbb{R}^n_+$, then by (3.3) we have

$$\begin{split} Tu(x) &\leq V\varphi(.,a\theta)(x) + \int_{\mathbb{R}^n_+} G(x,y)q(y)f(u(y))dy \\ &\leq V\varphi(.,a\theta)(x) + \int_{\mathbb{R}^n_+} G(x,y)q(y)[\delta u(y) + \gamma]dy \\ &\leq V\varphi(.,a\theta)(x) + \int_{\mathbb{R}^n_+} G(x,y)q(y)[\delta(\|V\varphi(.,a\theta)\|_{\infty} + b\|Vq\|_{\infty}) + \gamma]dy \\ &\leq V\varphi(.,a\theta)(x) + bVq(x). \end{split}$$

Moreover from the monotonicity of h, (3.1) and (3.2), we have

$$Tu(x) \ge \int_{\mathbb{R}^n_+} G(x, y)\psi(y, u(y))dy$$

$$\ge \alpha_1 \theta(x) \int_{\mathbb{R}^n_+} \theta(y)p(y)h(a\theta(y))dy$$

$$\ge \alpha_1 \theta(x)h(a\beta) \int_K \theta(y)p(y)dy$$

$$\ge \alpha_1 \alpha h(a\beta)\theta(x)$$

$$\ge a\theta(x).$$

On the other hand, we have that for each $u \in \Lambda$,

$$\varphi(.,u) \le \varphi(.,a\theta) \quad \text{and} \quad \psi(.,u) \le [\delta(\|V\varphi(.,a\theta)\| + b\|Vq\|_{\infty}) + \gamma]q.$$
 (3.5)

This implies by Proposition (2.5) that $T\Lambda$ is relatively compact in $C_0(\mathbb{R}^n_+)$. In particular, we deduce that $T\Lambda \subset \Lambda$.

Next, we prove the continuity of T in Λ . Let $(u_k)_k$ be a sequence in Λ which converges uniformly to a function u in Λ . Then since φ and ψ are continuous with respect to the second variable, we deduce by the dominated convergence theorem that

$$\forall x \in \mathbb{R}^n_+, \ Tu_k(x) \to Tu(x) \quad \text{as } k \to \infty.$$

Now, since $T\Lambda$ is relatively compact in $C_0(\mathbb{R}^n_+)$, then we have the uniform convergence. Hence T is a compact operator mapping from Λ to itself. So the Schauder fixed point theorem leads to the existence of a function $u \in \Lambda$ such that

$$u(x) = \int_{\mathbb{R}^n_+} G(x, y) [\varphi(y, u(y)) + \psi(y, u(y))] dy, \quad \forall x \in \mathbb{R}^n_+.$$
(3.6)

Finally, since q and $\varphi(., a\theta)$ are in $K^{\infty}(\mathbb{R}^n_+)$, we deduce by (3.5) and Proposition (2.4), that $y \mapsto \varphi(y, u(y)) + \psi(y, u(y)) \in L^1_{loc}(\mathbb{R}^n_+)$. Moreover, since $u \in C_0(\mathbb{R}^n_+)$, we deduce from (3.6), that $V(\varphi(., u) + \psi(., u)) \in L^1_{loc}(\mathbb{R}^n_+)$. Hence u satisfies in the sense of distributions the elliptic equation

$$\Delta u + \varphi(., u) + \psi(., u) = 0, \text{ in } \mathbb{R}^n_+$$

and so it is a solution of the problem (1.6).

Example 3.1. Let $\alpha, \beta \ge 0$ such that $0 \le \alpha + \beta < 1$ and $p \in K^{\infty}(\mathbb{R}^n_+)$. Then the problem

$$\Delta u + p(x)[(u(x))^{-\gamma}(\theta(x))^{\gamma} + (u(x))^{\alpha}\log(1 + (u(x))^{\beta})] = 0, \quad \text{in } \mathbb{R}^{n}_{+}$$

$$u > 0, \quad \text{in } \mathbb{R}^{n}_{+}$$
(3.7)

has a solution $u \in C_0(\mathbb{R}^n_+)$ satisfying $a\theta(x) \le u(x) \le bVp(x)$, where a, b > 0.

Remark 3.2. Taking in Example 3.1 the function $p(x) = \frac{1}{x_n^{\lambda}(1+|x|)^{\mu-\lambda}}$, for $\lambda < 2 < \mu$, we deduce from [2, 3] that the solution of (3.7) has the following behaviour

(i) $u(x) \preceq \frac{x_n^{2-\lambda}}{(1+|x|)^{n+2-2\lambda}}$, if $1 < \lambda < 2$ and $\mu \ge n+2-\lambda$ (ii) $u(x) \preceq \theta(x) \log(\frac{2(1+|x|)^2}{x_n})$, if $\lambda = 1$ and $\mu \ge n+1$ or $\lambda < 1$ and $\mu = n+1$. (iii) $u(x) \preceq \theta(x)$, if $\lambda < 1$ and $\mu > n+1$ (iv) $u(x) \preceq \frac{x_n^{\mu-n}}{(1+|x|)^{2\mu-n-2}}$, if $n < \mu < \min(n+1, n+2-\lambda)$.

4. Proof of Theorem 1.4

In this section, we are interested in the existence of continuous solutions for the problem (1.11). We recall that $\omega(x) = \alpha x_n + (1 - \alpha), x \in \mathbb{R}^n_+$, where $\alpha \in [0, 1]$. We aim to prove Theorem 1.4. So we need the following lemma

Lemma 4.1. Let q be a nonnegative function in $K^{\infty}(\mathbb{R}^{n}_{+})$, then the family of functions

$$\left\{\int_{\mathbb{R}^n_+} \frac{\omega(y)}{\omega(x)} G(x,y) |\varphi(y)| dy : \varphi \in \mathcal{M}_q\right\}$$

is relatively compact in $C_0(\overline{\mathbb{R}^n_+})$.

 $\mathrm{EJDE}\text{-}2005/44$

Proof. We remark that

$$\frac{\omega(y)}{\omega(x)} = \frac{\alpha y_n + (1 - \alpha)}{\alpha x_n + (1 - \alpha)} \le \max(1, \frac{y_n}{x_n}) \le 1 + \frac{y_n}{x_n}.$$

So the result holds from Propositions 2.5 and 2.6.

Proof of Theorem 1.4. Let $\lambda > 0$ and $c := \sup\{\lambda, \|g\|_{\infty}\}$. Then by (H5), there exists a nonnegative function $q := q_c \in K^{\infty}(\mathbb{R}^n_+)$, such that the map

$$t \mapsto t(q(x) - \varphi(x, t\omega(x))) \tag{4.1}$$

is continuous and nondecreasing on [0, c]. We denote by $h(x) = \alpha \lambda x_n + (1-\alpha) Hg(x)$. Let

$$\Lambda := \left\{ u \in \mathcal{B}^+(\mathbb{R}^n_+) : \exp(-\alpha_q)h \le u \le h \right\}.$$

Note that since for $u \in \Lambda$, we have $u \leq h \leq c \omega$, then (4.1) implies in particular that for $u \in \Lambda$

$$0 \le \varphi(., u) \le q. \tag{4.2}$$

We define the operator T on Λ by

$$Tu(x) := h(x) - V_q(qh)(x) + V_q[(q - \varphi(., u))u](x).$$

First, we claim that Λ is invariant under T. Indeed, for each $u \in \Lambda$ we have

$$Tu(x) \le h(x) - V_q(qh)(x) + V_q(qu)(x) \le h(x).$$

Moreover, by (4.2) and Corollary 2.9, we obtain

$$Tu(x) \ge h(x) - V_q(qh)(x) \ge \exp(-\alpha_q)h(x).$$

Next, we prove that the operator T is nondecreasing on Λ . Let $u, v \in \Lambda$ such that $u \leq v$, then from (4.1) we have

$$Tv - Tu = V_q[(q - \varphi(., v))v - (q - \varphi(., u))u] \ge 0.$$

Now, we consider the sequence (u_j) defined by $u_0 = h - V_q(qh)$ and $u_{j+1} = Tu_j$ for $j \in \mathbb{N}$. Then since Λ is invariant under T, we obtain obviously that $u_1 = Tu_0 \ge u_0$ and so from the monotonicity of T, we deduce that

$$u_0 \le u_1 \le \dots \le u_j \le h.$$

Hence by (4.1) and the dominated convergence theorem, we deduce that the sequence (u_j) converges to a function $u \in \Lambda$, which satisfies

$$u(x) = h(x) - V_q(qh)(x) + V_q[(q - \varphi(., u))u](x).$$

Or, equivalently

$$u - V_q(qu) = (h - V_q(qh)) - V_q(u\varphi(.,u)).$$

Applying the operator (I + V(q.)) on both sides of the above equality and using (1.14), we deduce that u satisfies

$$u = h - V(u\varphi(., u)). \tag{4.3}$$

Finally, we need to verify that u is a positive continuous solution for the problem (1.11). Indeed, from (4.2), we have

$$u\varphi(.,u) \le qh \le cq\omega. \tag{4.4}$$

This implies by Proposition 2.4 that either u and $u\varphi(., u)$ are in $L^1_{\text{loc}}(\mathbb{R}^n_+)$. Furthermore, from (4.4), we have that $\frac{1}{\omega}u\varphi(., u) \in \mathcal{M}_q$. Which implies by Lemma 4.1 that $\frac{1}{\omega}V(u\varphi(., u)) \in C_0(\mathbb{R}^n_+)$. In particular, we have $V(u\varphi(., u)) \in L^1_{\text{loc}}(\mathbb{R}^n_+)$.

Hence, by (4.3), we obtain that u is continuous on \mathbb{R}^n_+ and satisfies (in the sense of distributions) the elliptic differential equation

$$\Delta u - u\varphi(., u) = 0 \text{ in } \mathbb{R}^n_+.$$

On the other hand, since $\frac{1}{\omega}V(u\varphi(.,u)) \in C_0(\mathbb{R}^n_+)$ and Hg(x) is bounded on \mathbb{R}^n_+ and satisfies $\lim_{x_n\to 0} Hg(x) = g(x')$, we deduce easily that $\lim_{x_n\to 0} u(x) = (1-\alpha)g(x')$ and $\lim_{x_n\to+\infty} \frac{u(x)}{x_n} = \alpha\lambda$. This completes the proof. \Box

Example 4.2. Let $\gamma > 1$, $\alpha \in [0, 1]$, $\beta > 0$ and $\lambda < 2 < \mu$. Let g be a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} and $p \in B^+(\mathbb{R}^n_+)$ satisfying

$$p(x) \preceq \frac{1}{(|x|+1)^{\mu-\lambda} x_n^{\lambda} (x_n+1)^{\gamma-1}}$$

Then the problem

$$\Delta u - p(x)u^{\gamma}(x) = 0, \quad \text{in } \mathbb{R}^{n}_{+}$$
$$\lim_{x_{n} \to 0} u(x) = (1 - \alpha)g(x'),$$
$$\lim_{x_{n} \to +\infty} \frac{u(x)}{x_{n}} = \alpha\beta,$$

(in the sense of distributions) has a continuous positive solution u satisfying

$$u(x) \sim \alpha \beta x_n + (1 - \alpha) Hg(x).$$

In this section, we need the following standard Lemma. For $u \in B(\mathbb{R}^n_+)$, put $u^+ = \max(u, 0)$.

Lemma 5.1. Let φ and ψ satisfy (H6)–(H8). Assume that $\varphi \leq \psi$ on $\mathbb{R}^n_+ \times \mathbb{R}_+$ and there exist continuous functions u, v on \mathbb{R}^n_+ satisfying

(a) $\Delta u - \varphi(., u^+) = 0 = \Delta v - \psi(., v^+)$ in \mathbb{R}^n_+

(b)
$$u, v \in C_b(\mathbb{R}^n_+)$$

(c)
$$u \geq v$$
 on $\partial \mathbb{R}^n_+$

Then $u \geq v$ in \mathbb{R}^n_+ .

Proof of Theorem 1.5. An immediate consequence of the comparison principle in Lemma 5.1 is that problem (1.12) has at most one solution in \mathbb{R}^n_+ . The existence of a such solution is assured by the Schauder fixed point Theorem. Indeed, to construct the solution, we consider the convex set

$$\Lambda = \{ u \in C_b(\mathbb{R}^n_+) : u \le ||g||_\infty \}.$$

We define the integral operator T on Λ by

$$Tu(x) = Hg(x) - V(\varphi(., u^+))(x)$$

Since $Hg(x) \leq ||g||_{\infty}$, for $x \in \mathbb{R}^n_+$, we deduce that for each $u \in \Lambda$,

$$Tu \leq ||g||_{\infty}, \text{ in } \mathbb{R}^n_+.$$

Furthermore, putting $q = \varphi(., ||g||_{\infty})$, we have by (H8) that $q \in K^{\infty}(\mathbb{R}^{n}_{+})$. So by (H6), we deduce that $V(\varphi(., u^{+})) \in V(\mathcal{M}_{q})$. This together with the fact that $Hg \in C_{b}(\mathbb{R}^{n}_{+})$ imply by Proposition 2.5 that $T\Lambda$ is relatively compact in $C_{b}(\mathbb{R}^{n}_{+})$ and in particular $T\Lambda \subset \Lambda$.

From the continuity of φ with respect to the second variable, we deduce that T is continuous in Λ and so it is a compact operator from Λ to itself. Then by the Schauder fixed point Theorem, we deduce that there exists a function $u \in \Lambda$ satisfying

$$u(x) = Hg(x) - V(\varphi(., u^+))(x).$$

This implies, using Proposition 2.4 and the fact that $V(\varphi(., u^+)) \in C_0(\mathbb{R}^n_+)$, that u satisfies in the sense of distributions

$$\Delta u - \varphi(., u^+) = 0$$
$$\lim_{x_n \to 0} u(x) = g(x').$$

Hence by (H7) and Lemma 5.1, we conclude that $u \ge 0$ in \mathbb{R}^n_+ . This completes the proof.

Corollary 5.2. Let φ satisfying (H6)–(H8) and g be a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} . Suppose that there exists a function $q \in K^{\infty}(\mathbb{R}^{n}_{+})$ such that

$$0 \le \varphi(x,t) \le q(x)t \quad on \ \mathbb{R}^n_+ \times [0, \|g\|_\infty].$$

$$(5.1)$$

Then the solution u of (1.12) given by Theorem 1.5 satisfies

$$e^{-\alpha_q}Hg(x) \le u(x) \le Hg(x).$$

Proof. Since u satisfies the integral equation

$$u(x) = Hg(x) - V(\varphi(., u))(x),$$

using (1.15), we obtain

$$\begin{split} u-V_q(qu) &= (Hg-V_q(qHg)) - (V(\varphi(.,u)) - V_q(qV(\varphi(.,u))) \\ &= (Hg-V_q(qHg)) - V_q(\varphi(.,u)). \end{split}$$

That is,

$$u = (Hg - V_q(qHg)) + V_q(qu - \varphi(., u)).$$

Now since $0 < u \leq ||g||_{\infty}$ then by (5.1), the result follows from Corollary 2.9.

Example 5.3. Let g be a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} . Let $\sigma > 0$ and $q \in K^{\infty}(\mathbb{R}^n_+)$. Put $\varphi(x,t) = q(x)t^{\sigma}$. Then the problem

$$\Delta u - q(x)u^{\sigma} = 0, \quad \text{in } \mathbb{R}^{r}_{\underline{x}_{n} \to 0}$$
$$\lim_{x_{n} \to 0} u(x) = g(x')$$

(in the sense of distributions) has a positive bounded continuous solution u in \mathbb{R}^n_+ satisfying

$$0 \le Hg(x) - u(x) \le \|g\|_{\infty}^{\sigma} Vq(x).$$

Furthermore, if $\sigma \geq 1$, we have by Corollary 5.2 that for each $x \in \mathbb{R}^n_+$

$$e^{-\alpha_q}Hg(x) \le u(x) \le Hg(x).$$

Acknowledgement. The authors want to thank the referee for his/her useful suggestions.

References

- [1] Armitage, D. H., Gardiner, S. J.; Classical potentiel theory, Springer Verlag, 2001.
- [2] Bachar, I., Mâagli, H.; Estimates on the Green's function and existence of positive solutions of nonlinear singular elliptic equations in the half space, to appear in Positivity (Articles in advance).
- [3] Bachar, I., Mâagli, H., Mâatoug, L.; Positive solutions of nonlinear elliptic equations in a half space in R², Electronic. J. Differential Equations. 2002(2002) No. 41, 1-24 (2002).
- [4] Bachar, I., Mâagli, H., Zribi, M.; Estimates on the Green function and existence of positive solutions for some polyharmonic nonlinear equations in the half space, Manuscripta math. 113, 269-291 (2004).
- [5] Brezis, H., Kamin, S.; Sublinear elliptic equations in \mathbb{R}^n , Manus. Math. 74, 87-106 (1992).
- [6] Chung, K.L., Zhao, Z.; From Brownian motion to Schrödinger's equation, Springer Verlag (1995).
- [7] Crandall, M. G., Rabinowitz, P. H., Tartar, L.,; On a Dirichlet problem with a singular nonlinearity. Comm. Partial Differential Equations 2 193-222 (1977).
- [8] Diaz, J. I., Morel, J. M., Oswald, L.; An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12, 1333-1344 (1987).
- [9] Dautray, R., Lions, J.L. et al.; Analyse mathématique et calcul numérique pour les sciences et les techniques, Coll.C.E.A Vol 2, L'opérateur de Laplace, Masson (1987).
- [10] Edelson, A.; Entire solutions of singular elliptic equations, J. Math. Anal. appl. 139, 523-532 (1989).
- [11] Helms, L. L.; Introduction to Potential Theory. Wiley-Interscience, New york (1969).
- [12] Kusano, T., Swanson, C.A.; Entire positive solutions of singular semilinear elliptic equations, Japan J. Math. 11 145-155 (1985).
- [13] Lair, A.V., Shaker, A.W.; Classical and weak solutions of a singular semilinear ellptic problem, J. Math. Anal. Appl. 211 371-385 (1997).
- [14] Lazer, A. C., Mckenna, P. J.; On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 721-730 (1991).
- [15] Mâagli, H.; Perturbation semi-linéaire des résolvantes et des semi-groupes, Potential Ana. 3, 61-87 (1994).
- [16] Mâagli, H., Masmoudi, S.; Positive solutions of some nonlinear elliptic problems in unbounded domain, Ann. Aca. Sci. Fen. Math. 29, 151-166 (2004).
- [17] Mâagli, H., Zribi, M., Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. 263 522-542 (2001).
- [18] Masmoudi, S.; On the existence of positive solutions for some nonlinear elliptic problems in unbounded domain in \mathbb{R}^2 to appear in Nonlinear.Anal.
- [19] Neveu, J.; Potentiel markovian reccurent des chaînes de Harris, Ann. Int. Fourier 22 (2), 85-130 (1972).
- [20] Port, S. C., Stone, C. J.; Brownian motion and classical Potential theory, Academic Press (1978).
- [21] Z. Zhao; On the existence of positive solutions of nonlinear elliptic equations. A probabilistic potential theory approach, Duke Math. J. 69 (1993) 247-258.

Imed Bachar

Département de mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: Imed.Bachar@ipeit.rnu.tn

Habib Mâagli

Département de mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: habib.maagli@fst.rnu.tn

Malek Zribi

Département de mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: Malek.Zribi@insat.rnu.tn