Electronic Journal of Differential Equations, Vol. 2005(2005), No. 44, pp. 1-16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS TO NONLINEAR ELLIPTIC PROBLEM IN THE HALF SPACE

IMED BACHAR, HABIB MÂAGLI, MALEK ZRIBI

Abstract

This paper concerns nonlinear elliptic equations in the half space $\mathbb{R}_{+}^{n}:=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}, n \geq 2$, with a nonlinear term satisfying some conditions related to a certain Kato class of functions. We prove some existence results and asymptotic behaviour for positive solutions using a potential theory approach.

1. Introduction

In the present paper, we study the nonlinear elliptic equation

$$
\begin{equation*}
\Delta u+f(., u)=0, \text { in } \mathbb{R}_{+}^{n} \tag{1.1}
\end{equation*}
$$

in the sense of distributions, with some boundary values determined below (see problems (1.6), (1.11) and (1.12). Here $\mathbb{R}_{+}^{n}:=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$, ($n \geq 2$).

Several results have been obtained for (1.1), in both bounded and unbounded domain $D \subset \mathbb{R}^{n}$ with different boundary conditions; see for example [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 17] and the references therein. Our goal of this paper is to undertake a study of (1.1) when the nonlinear term $f(x, t)$ satisfies some conditions related to a certain Kato class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, and to answer the questions of existence and asymptotic behaviour of positive solutions.

Our tools are based essentially on some inequalities satisfied by the Green function $G(x, y)$ of $(-\Delta)$ in \mathbb{R}_{+}^{n}. This allows us to state some properties of functions in the class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ which was introduced in [2] for $n \geq 3$, and in [3] for $n=2$.
Definition 1.1. A Borel measurable function q in \mathbb{R}_{+}^{n} belongs to the class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ if q satisfies the following two conditions

$$
\begin{align*}
& \lim _{\alpha \rightarrow 0}\left(\sup _{x \in \mathbb{R}_{+}^{n}} \int_{\mathbb{R}_{+}^{n} \cap B(x, \alpha)} \frac{y_{n}}{x_{n}} G(x, y)|q(y)| d y\right)=0 \tag{1.2}\\
& \lim _{M \rightarrow \infty}\left(\sup _{x \in \mathbb{R}_{+}^{n}} \int_{\mathbb{R}_{+}^{n} \cap(|y| \geq M)} \frac{y_{n}}{x_{n}} G(x, y)|q(y)| d y\right)=0 \tag{1.3}
\end{align*}
$$

The class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ is sufficiently rich. It contains properly the classical Kato class $K_{n}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, defined by Zhao [21], for $n \geq 3$ in unbounded domains D as follows:

[^0]Definition 1.2. A Borel measurable function q on D belongs to the Kato class $K_{n}^{\infty}(D)$ if q satisfies the following two conditions

$$
\begin{aligned}
& \left.\lim _{\alpha \rightarrow 0} \sup _{x \in D} \int_{D \cap(|x-y| \leq \alpha)} \frac{|\psi(y)|}{|x-y|^{d-2}} d y\right)=0 \\
& \left.\lim _{M \rightarrow \infty} \sup _{x \in D} \int_{D \cap(|y| \geq M)} \frac{|\psi(y)|}{|x-y|^{d-2}} d y\right)=0
\end{aligned}
$$

Typical examples of functions q in the class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ are: $q \in L^{p}\left(\mathbb{R}_{+}^{n}\right) \cap L^{1}\left(\mathbb{R}_{+}^{n}\right)$, where $p>\frac{n}{2}$ and $n \geq 3$; and

$$
q(x)=\frac{1}{(|x|+1)^{\mu-\lambda} x_{n}^{\lambda}},
$$

where $\lambda<2<\mu$ and $n \geq 2$ (see [2, 3]).
We shall refer in this paper to the bounded continuous solution $H g$ of the Dirichlet problem

$$
\begin{gather*}
\Delta u=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
\lim _{x_{n} \rightarrow 0} u(x)=g\left(x^{\prime}\right) \tag{1.4}
\end{gather*}
$$

where g is a nonnegative bounded continuous function in \mathbb{R}^{n-1} (see [1, p. 418]). We also refer to the potential of a measurable nonnegative function f, defined on \mathbb{R}_{+}^{n} by

$$
V f(x)=\int_{\mathbb{R}_{+}^{n}} G(x, y) f(y) d y
$$

Our paper is organized as follows. Existence results are proved in sections 3, 4, and 5 . In section 2 , we collect some preliminary results about the Green function G and the class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. We prove further that if $p>n / 2$ and $a \in L^{p}\left(\mathbb{R}_{+}^{n}\right)$, then for $\lambda<2-\frac{n}{p}<\mu$, the function

$$
x \mapsto \frac{a(x)}{(|x|+1)^{\mu-\lambda} x_{n}^{\lambda}},
$$

is in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. In section 3, we establish an existence result for equation (1.1) where a singular term and a sublinear term are combined in the nonlinearity $\overline{f(x, t)}$.

The pure singular elliptic equation

$$
\Delta u+p(x) u^{-\gamma}=0, \quad \gamma>0, x \in D \subseteq \mathbb{R}^{n}
$$

has been extensively studied for both bounded and unbounded domains. We refer to [7, 8, 10, 12, 13, 14] and references therein, for various existence and uniqueness results related to solutions for above equation.

For more general situations Mâagli and Zribi showed in [17] that the problem

$$
\begin{gather*}
\Delta u+\varphi(., u)=0, \quad x \in D \\
\left.u\right|_{\partial D}=0 \tag{1.5}\\
\lim _{|x| \rightarrow \infty} u(x)=0, \quad \text { if } D \text { is unbounded }
\end{gather*}
$$

admits a unique positive solution if φ is a nonnegative measurable function on $(0, \infty)$, which is non-increasing and continuous with respect to the second variable and satisfies
(H0) For all $c>0, \varphi(., c) \in K_{n}^{\infty}(D)$.

If $D=\mathbb{R}_{+}^{n}$, the result of Mâagli and Zribi [17] has been improved later by Bachar and Mâagli in [2], where they gave an existence and an uniqueness result for (1.5), with the more restrictive condition
$\left(\mathrm{H} 0^{\prime}\right)$ For all $c>0, \varphi(., c) \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$.
On the other hand, 1.1) with a sublinear term $f(., u)$ have been studied in \mathbb{R}^{n} by Brezis and Kamin in [5]. Indeed, the authors proved the existence and the uniqueness of a positive solution for the problem

$$
\begin{gathered}
\Delta u+\rho(x) u^{\alpha}=0 \quad \text { in } \mathbb{R}^{n} \\
\liminf _{|x| \rightarrow \infty} u(x)=0
\end{gathered}
$$

with $0<\alpha<1$ and ρ is a nonnegative measurable function satisfying some appropriate conditions.

In this section, we combine a singular term and a sublinear term in the nonlinearity. Indeed, we consider the boundary value problem

$$
\begin{gather*}
\Delta u+\varphi(., u)+\psi(., u)=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
u>0, \quad \text { in } \mathbb{R}_{+}^{n} \\
\lim _{x_{n} \rightarrow 0} u(x)=0, \tag{1.6}\\
\lim _{|x| \rightarrow+\infty} u(x)=0,
\end{gather*}
$$

in the sense of distributions, where φ and ψ are required to satisfy the following hypotheses:
(H1) φ is a nonnegative Borel measurable function on $\mathbb{R}_{+}^{n} \times(0, \infty)$, continuous and non-increasing with respect to the second variable.
(H2) For all $c>0, x \mapsto \varphi(x, c \theta(x))$ belongs to $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, where

$$
\theta(x)=\frac{x_{n}}{(1+|x|)^{n}}
$$

(H3) ψ is a nonnegative Borel measurable function on $\mathbb{R}_{+}^{n} \times(0, \infty)$, continuous with respect to the second variable such that there exist a nontrivial nonnegative function p and a nonnegative function $q \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ satisfying for $x \in \mathbb{R}_{+}^{n}$ and $t>0$,

$$
\begin{equation*}
p(x) h(t) \leq \psi(x, t) \leq q(x) f(t) \tag{1.7}
\end{equation*}
$$

where h is a measurable nondecreasing function on $[0, \infty)$ satisfying

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{h(t)}{t}=+\infty \tag{1.8}
\end{equation*}
$$

and f is a nonnegative measurable function locally bounded on $[0, \infty)$ satisfying

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{f(t)}{t}<\|V q\|_{\infty} \tag{1.9}
\end{equation*}
$$

Using a fixed point argument, we shall state the following existence result.
Theorem 1.3. Assume (H1)-(H3). Then the problem (1.6) has a positive solution $u \in C_{0}\left(\mathbb{R}_{+}^{n}\right)$ satisfying for each $x \in \mathbb{R}_{+}^{n}$

$$
a \theta(x) \leq u(x) \leq V(\varphi(., a \theta))(x)+b V q(x)
$$

where a, b are positive constants.

Note that Mâagli and Masmoudi studied in [16, 18] the case $\varphi \equiv 0$, under similar conditions to those in (H3). Indeed the authors gave an existence result for

$$
\begin{equation*}
\Delta u+\psi(., u)=0 \text { in } D \tag{1.10}
\end{equation*}
$$

with some boundary conditions, where D is an unbounded domain in $\mathbb{R}^{n}(n \geq 2)$ with compact nonempty boundary.

Typical examples of nonlinearities satisfying (H1)-(H3) are:

$$
\varphi(x, t)=p(x)(\theta(x))^{\gamma} t^{-\gamma}
$$

for $\gamma \geq 0$, and

$$
\psi(x, t)=p(x) t^{\alpha} \log \left(1+t^{\beta}\right)
$$

for $\alpha, \beta \geq 0$ such that $\alpha+\beta<1$, where p is a nonnegative function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$.
In section 4 , we consider the nonlinearity $f(x, t)=-t \varphi(x, t)$ and we use a potential theory approach to investigate an existence result for 1.1. Let $\alpha \in[0,1]$ and ω be the function defined on \mathbb{R}_{+}^{n} by $\omega(x)=\alpha x_{n}+(1-\alpha)$. We shall prove in this section the existence of positive continuous solutions for the following nonlinear problem

$$
\begin{gather*}
\Delta u-u \varphi(., u)=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
u>0, \quad \text { in } \mathbb{R}_{+}^{n} \\
\lim _{x_{n} \rightarrow 0} u(x)=(1-\alpha) g\left(x^{\prime}\right), \tag{1.11}\\
\lim _{x_{n} \rightarrow+\infty} \frac{u(x)}{x_{n}}=\alpha \lambda,
\end{gather*}
$$

in the sense of distributions, where λ is a positive constant, g is a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} and φ satisfies the following hypotheses:
(H4) φ is a nonnegative measurable function on $\mathbb{R}_{+}^{n} \times[0, \infty)$.
(H5) For all $c>0$, there exists a positive function $q_{c} \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ such that the $\operatorname{map} t \mapsto t\left(q_{c}(x)-\varphi(x, t \omega(x))\right)$ is continuous and nondecreasing on $[0, c]$ for every $x \in \mathbb{R}_{+}^{n}$.
Theorem 1.4. Under assumptions (H4) and (H5), problem 1.11) has a positive continuous solution u such that for each $x \in \mathbb{R}_{+}^{n}$,

$$
c\left(\alpha \lambda x_{n}+(1-\alpha) H g(x)\right) \leq u(x) \leq \alpha \lambda x_{n}+(1-\alpha) H g(x),
$$

where $c \in(0,1)$.
Note that if $\alpha=0$, then the solution u satisfies $c H g(x) \leq u(x) \leq H g(x)$, $c \in(0,1)$. In particular, u is bounded on \mathbb{R}_{+}^{n}. Our techniques are similar to those used by Mâagli and Masmoudi in [16, 18].

Section 5 deals with the question of existence of continuous bounded solutions for the problem

$$
\begin{gather*}
\Delta u-\varphi(., u)=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
u>0, \quad \text { in } \mathbb{R}_{+}^{n} \tag{1.12}\\
\lim _{x_{n} \rightarrow 0} u(x)=g\left(x^{\prime}\right),
\end{gather*}
$$

where g is a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1}. We also establish an uniqueness result for such solutions. Here the nonlinearity φ satisfies the following conditions:
(H6) φ is a nonnegative measurable function on $\mathbb{R}_{+}^{n} \times[0, \infty)$, continuous and nondecreasing with respect to the second variable.
$(\mathrm{H} 7) \varphi(., 0)=0$.
(H8) For all $c>0, \varphi(., c) \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$.
Theorem 1.5. Under assumptions (H6)-(H8), problem 1.12 has a unique positive solution u such that for each $x \in \mathbb{R}_{+}^{n}$,

$$
0<u(x) \leq H g(x)
$$

Note that if $q \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ and $\varphi(x, t) \leq q(x) t$ locally on t, then the solution u satisfies in particular $c H g(x) \leq u(x) \leq H g(x), c \in(0,1)$. This result follows the result in 4, where we studied the following polyharmonic problem, for every integer m,

$$
\begin{gather*}
(-\Delta)^{m} u+\varphi(., u)=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
u>0, \quad \text { in } \mathbb{R}_{+}^{n} \tag{1.13}\\
\lim _{x_{n} \rightarrow 0} \frac{u(x)}{x_{n}^{m-1}}=g\left(x^{\prime}\right)
\end{gather*}
$$

(in the sense of distributions). Here φ is a nonnegative measurable function on $\mathbb{R}_{+}^{n} \times(0, \infty)$, continuous and non-increasing with respect to the second variable and satisfies some conditions related to a certain Kato class appropriate to the m-polyharmonic case. In fact in [4, we proved that for a fixed positive harmonic function h_{0} in \mathbb{R}_{+}^{n}, if $g \geq(1+c) h_{0}$, for $c>0$, then the problem 1.13 has a positive continuous solution u satisfying $u(x) \geq x_{n}^{m-1} h_{0}(x)$ for every $x \in \mathbb{R}_{+}^{n}$. Thus a natural question to ask is for $t \rightarrow \varphi(x, t)$ nondecreasing, whether or not 1.13) has a solution, which we aim to study in the case $m=1$.

Notation. To simplify our statements, we define the following symbols.
$\mathbb{R}_{+}^{n}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right)=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}, n \geq 2$.
$\bar{x}=\left(x^{\prime},-x_{n}\right)$, for $x \in \mathbb{R}_{+}^{n}$.
Let $\mathcal{B}\left(\mathbb{R}_{+}^{n}\right)$ denote the set of Borel measurable functions in \mathbb{R}_{+}^{n} and $\mathcal{B}^{+}\left(\mathbb{R}_{+}^{n}\right)$ the set of nonnegative functions in this space.
$C_{b}\left(\mathbb{R}_{+}^{n}\right)=\left\{w \in C\left(\mathbb{R}_{+}^{n}\right): w\right.$ is bounded in $\left.\mathbb{R}_{+}^{n}\right\}$
$C_{0}\left(\mathbb{R}_{+}^{n}\right)=\left\{w \in C\left(\mathbb{R}_{+}^{n}\right): \lim _{x_{n} \rightarrow 0} w(x)=0\right.$ and $\left.\lim _{|x| \rightarrow \infty} w(x)=0\right\}$
$C_{0}\left(\overline{\mathbb{R}_{+}^{n}}\right)=\left\{w \in C\left(\overline{\mathbb{R}_{+}^{n}}\right): \quad \lim _{|x| \rightarrow \infty} w(x)=0\right\}$.
Note that $C_{b}\left(\mathbb{R}_{+}^{n}\right), C_{0}\left(\mathbb{R}_{+}^{n}\right)$ and $C_{0}\left(\overline{\mathbb{R}_{+}^{n}}\right)$ are three Banach spaces with the uniform norm $\|w\|_{\infty}=\sup _{x \in \mathbb{R}_{+}^{n}}|w(x)|$.

For any $q \in \mathcal{B}\left(\mathbb{R}_{+}^{n}\right)$, we put

$$
\|q\|:=\sup _{x \in \mathbb{R}_{+}^{n}} \int_{\mathbb{R}_{+}^{n}} \frac{y_{n}}{x_{n}} G(x, y)|q(y)| d y
$$

Recall that the potential $V f$ of a function $f \in \mathcal{B}^{+}\left(\mathbb{R}_{+}^{n}\right)$, is lower semi-continuous in \mathbb{R}_{+}^{n}. Furthermore, for each function $q \in \mathcal{B}^{+}\left(\mathbb{R}_{+}^{n}\right)$ such that $V q<\infty$, we denote by V_{q} the unique kernel which satisfies the following resolvent equation (see [15, 19]):

$$
\begin{equation*}
V=V_{q}+V_{q}(q V)=V_{q}+V\left(q V_{q}\right) \tag{1.14}
\end{equation*}
$$

For each $u \in \mathcal{B}\left(\mathbb{R}_{+}^{n}\right)$ such that $V(q|u|)<\infty$, we have

$$
\begin{equation*}
\left(I-V_{q}(q \cdot)\right)(I+V(q \cdot)) u=(I+V(q \cdot))\left(I-V_{q}(q \cdot)\right) u=u \tag{1.15}
\end{equation*}
$$

Let f and g be two positive functions on a set S. We call $f \sim g$, if there is $c>0$ such that

$$
\frac{1}{c} g(x) \leq f(x) \leq c g(x) \quad \text { for all } x \in S
$$

We call $f \preceq g$, if there is $c>0$ such that

$$
f(x) \leq c g(x) \quad \text { for all } x \in S .
$$

The following properties will be used in this article: For $x, y \in \mathbb{R}_{+}^{n}$, note that $|x-\bar{y}|^{2}-|x-y|^{2}=4 x_{n} y_{n}$. So we have

$$
\begin{gather*}
|x-\bar{y}|^{2} \sim|x-y|^{2}+x_{n} y_{n} \tag{1.16}\\
x_{n}+y_{n} \leq|x-\bar{y}| . \tag{1.17}
\end{gather*}
$$

Let $\lambda, \mu>0$ and $0<\gamma \leq 1$, then for $t \geq 0$ we have

$$
\begin{gather*}
\log (1+\lambda t) \sim \log (1+\mu t), \tag{1.18}\\
\log (1+t) \preceq t^{\gamma} . \tag{1.19}
\end{gather*}
$$

2. Properties of the Green function and the Kato class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$

In this section, we briefly recall some estimates on the Green function G and we collect some properties of functions belonging to the Kato class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, which are useful at stating our existence results. For $x, y \in \mathbb{R}_{+}^{n}$, we set

$$
G(x, y)= \begin{cases}\frac{\Gamma\left(\frac{n}{2}-1\right)}{4 \pi^{n n 2}}\left[\frac{1}{|x-y|^{n-2}}-\frac{1}{|x-\bar{y}|^{n-2}}\right], & \text { if } n \geq 3 \\ \frac{1}{4 \pi} \log \left(1+\frac{4 x-y^{2}}{|x-y|^{2}}\right), & \text { if } n=2,\end{cases}
$$

the Green function of $(-\Delta)$ in \mathbb{R}_{+}^{n} (see [1, p. 92]). Then we have the following estimates and inequalities whose proofs can be found in [2] for $n \geq 3$ and in [3] for $n=2$.

Proposition 2.1. For $x, y \in \mathbb{R}_{+}^{n}$, we have

$$
G(x, y) \sim \begin{cases}\frac{x_{n} y_{n}}{|x-y|^{-2}|x-\bar{y}|^{2}} & \text { if } n \geq 3, \tag{2.1}\\ \frac{x_{2} y_{2}}{|x-\bar{y}|^{2}} \log \left(1+\frac{|x-\bar{y}|^{2}}{|x-y|^{2}}\right) & \text { if } n=2 .\end{cases}
$$

Corollary 2.2. For $x, y \in \mathbb{R}_{+}^{n}$, we have

$$
\begin{equation*}
\frac{x_{n} y_{n}}{(|x|+1)^{n}(|y|+1)^{n}} \preceq G(x, y) . \tag{2.2}
\end{equation*}
$$

Theorem 2.3 (3G-Theorem). There exists $C_{0}>0$ such that for each $x, y, z \in \mathbb{R}_{+}^{n}$, we have

$$
\begin{equation*}
\frac{G(x, z) G(z, y)}{G(x, y)} \leq C_{0}\left[\frac{z_{n}}{x_{n}} G(x, z)+\frac{z_{n}}{y_{n}} G(y, z)\right] . \tag{2.3}
\end{equation*}
$$

Let us recall in the following properties of functions in the class $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. The proofs of these propositions can be found in [2, 3].
Proposition 2.4. Let q be a nonnegative function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. Then we have: (i) $\|q\|<\infty$; (ii) The function $x \mapsto \frac{x_{n}}{(|x|+1)^{n}} q(x)$ is in $L^{1}\left(\mathbb{R}_{+}^{n}\right)$. and (iii)

$$
\begin{equation*}
\frac{x_{n}}{(|x|+1)^{n}} \preceq V q(x) . \tag{2.4}
\end{equation*}
$$

For a fixed nonnegative function q in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, we put

$$
\mathcal{M}_{q}:=\left\{\varphi \in B\left(\mathbb{R}_{+}^{n}\right), \quad|\varphi| \preceq q\right\} .
$$

Proposition 2.5. Let q be a nonnegative function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, then the family of functions

$$
V\left(\mathcal{M}_{q}\right)=\left\{V \varphi: \varphi \in \mathcal{M}_{q}\right\}
$$

is relatively compact in $C_{0}\left(\mathbb{R}_{+}^{n}\right)$.
Proposition 2.6. Let q be a nonnegative function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, then the family of functions

$$
\mathcal{N}_{q}=\left\{\int_{\mathbb{R}_{+}^{n}} \frac{y_{n}}{x_{n}} G(x, y)|\varphi(y)| d y: \varphi \in \mathcal{M}_{q}\right\}
$$

is relatively compact in $C_{0}\left(\overline{\mathbb{R}_{+}^{n}}\right)$.
In the sequel, we use the following notation

$$
\alpha_{q}:=\sup _{x, y \in \mathbb{R}_{+}^{n}} \int_{\mathbb{R}_{+}^{n}} \frac{G(x, z) G(z, y)}{G(x, y)}|q(z)| d z
$$

Lemma 2.7. Let q be a function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. Then we have

$$
\|q\| \leq \alpha_{q} \leq 2 C_{0}\|q\|
$$

where C_{0} is the constant given in 2.3.
Proof. By 2.3), we obtain easily that $\alpha_{q} \leq 2 C_{0}\|q\|$. On the other hand, we have by Fatou lemma that for each $x \in \mathbb{R}_{+}^{n}$

$$
\int_{\mathbb{R}_{+}^{n}} \frac{z_{n}}{x_{n}} G(x, z)|q(z)| d z \leq \liminf _{|\zeta| \rightarrow \infty} \int_{\mathbb{R}_{+}^{n}} \frac{z_{n}}{x_{n}} \frac{|x-\zeta|^{n}}{|z-\zeta|^{n}} G(x, z)|q(z)| d z
$$

Now since for each $x, z \in \mathbb{R}_{+}^{n}$ and $\zeta \in \partial \mathbb{R}_{+}^{n}$, we have

$$
\lim _{y \rightarrow \zeta} \frac{G(z, y)}{G(x, y)}=\frac{z_{n}}{x_{n}} \frac{|x-\zeta|^{n}}{|z-\zeta|^{n}}
$$

Then by Fatou lemma we deduce that

$$
\int_{\mathbb{R}_{+}^{n}} \frac{z_{n}}{x_{n}} \frac{|x-\zeta|^{n}}{|z-\zeta|^{n}} G(x, z)|q(z)| d z \leq \liminf _{y \rightarrow \zeta} \int_{\mathbb{R}_{+}^{n}} G(x, z) \frac{G(z, y)}{G(x, y)}|q(z)| d z \leq \alpha_{q}
$$

We derive obviously that $\|q\| \leq \alpha_{q}$.
Proposition 2.8. Let q be a function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ and v be a nonnegative superharmonic function in \mathbb{R}_{+}^{n}. Then for each $x \in \mathbb{R}_{+}^{n}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}} G(x, y) v(y)|q(y)| d y \leq \alpha_{q} v(x) \tag{2.5}
\end{equation*}
$$

Proof. Let v be a nonnegative superharmonic function in \mathbb{R}_{+}^{n}, then there exists (see [20, Theorem 2.1]) a sequence $\left(f_{k}\right)_{k}$ of nonnegative measurable functions in \mathbb{R}_{+}^{n} such that the sequence $\left(v_{k}\right)_{K}$ defined on \mathbb{R}_{+}^{n} by $v_{k}:=V f_{k}$ increases to v. Since for each $x, z \in \mathbb{R}_{+}^{n}$, we have

$$
\int_{\mathbb{R}_{+}^{n}} G(x, y) G(y, z)|q(y)| d y \leq \alpha_{q} G(x, z)
$$

it follows that

$$
\int_{\mathbb{R}_{+}^{n}} G(x, y) v_{k}(y)|q(y)| d y \leq \alpha_{q} v_{k}(x)
$$

Hence, the result holds from the monotone convergence theorem.

Corollary 2.9. Let q be a nonnegative function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ and v be a nonnegative superharmonic function in \mathbb{R}_{+}^{n}, then for each $x \in \mathbb{R}_{+}^{n}$ such that $0<v(x)<\infty$, we have

$$
\exp \left(-\alpha_{q}\right) v(x) \leq\left(v-V_{q}(q v)\right)(x) \leq v(x)
$$

Proof. The upper inequality is trivial. For the lower one, we consider the function $\gamma(\lambda)=v(x)-\lambda V_{\lambda q}(q v)(x)$ for $\lambda \geq 0$. The function γ is completely monotone on $[0, \infty)$ and so $\log \gamma$ is convex in $[0, \infty)$. This implies that

$$
\gamma(0) \leq \gamma(1) \exp \left(-\frac{\gamma^{\prime}(0)}{\gamma(0)}\right)
$$

That is

$$
v(x) \leq\left(v-V_{q}(q v)\right)(x) \exp \left(\frac{V(q v)(x)}{v(x)}\right)
$$

So, the result holds by (2.5).

We close this section by giving a class of functions included in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. We need the following key Lemma. For the proof we can see [4].

Lemma 2.10. For x, y in \mathbb{R}_{+}^{n}, we have the following properties:
(1) If $x_{n} y_{n} \leq|x-y|^{2}$ then $\left(x_{n} \vee y_{n}\right) \leq \frac{\sqrt{5}+1}{2}|x-y|$.
(2) If $|x-y|^{2} \leq x_{n} y_{n}$ then $\frac{3-\sqrt{5}}{2} x_{n} \leq y_{n} \leq \frac{3+\sqrt{5}}{2} x_{n} \quad$ and $\quad \frac{3-\sqrt{5}}{2}|x| \leq|y| \leq$ $\frac{3+\sqrt{5}}{2}|x|$.

In what follows we will use the following notation

$$
\begin{aligned}
D_{1} & :=\left\{y \in \mathbb{R}_{+}^{n}: x_{n} y_{n} \leq|x-y|^{2}\right\} \\
D_{2} & :=\left\{y \in \mathbb{R}_{+}^{n}:|x-y|^{2} \leq x_{n} y_{n}\right\}
\end{aligned}
$$

We point out that $D_{2}=\bar{B}\left(\widetilde{x}, \frac{\sqrt{5}}{2} x_{n}\right)$, where $\widetilde{x}=\left(x_{1}, \ldots, x_{n-1}, \frac{3}{2} x_{n}\right)$ and consequently $D_{1}=B^{c}\left(\widetilde{x}, \frac{\sqrt{5}}{2} x_{n}\right)$

Proposition 2.11. Let $p>n / 2$ and a be a function in $L^{p}\left(\mathbb{R}_{+}^{n}\right)$. Then for $\lambda<$ $2-\frac{n}{p}<\mu$, the function $\varphi(x)=\frac{a(x)}{(|x|+1)^{\mu-\lambda} x_{n}^{\lambda}}$ is in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$.

Proof. Let $p>n / 2$ and $q \geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Let a be a function in $L^{p}\left(\mathbb{R}_{+}^{n}\right)$ and $\lambda<2-\frac{n}{p}<\mu$. First, we claim that the function φ satisfies (1.2). Let $0<\alpha<1$. Since $x_{n} \leq(1+|x|)$ and $y_{n} \leq(1+|y|)$, then we remark that if $|x-y| \leq \alpha$, then $(|x|+1) \sim(|y|+1)$ and consequently

$$
\begin{equation*}
|x-\bar{y}| \preceq(|y|+1), \quad \text { for } y \in B(x, \alpha) . \tag{2.6}
\end{equation*}
$$

Put $\lambda^{+}=\max (\lambda, 0)$. So to show the claim, we use the Hölder inequality and we distinguish the following two cases:

Case 1. $n \geq 3$. Using 2.1, (1.17) and the fact that $|x-y| \leq|x-\bar{y}|$ and $y_{n} \leq(1+|y|)$, we deduce that

$$
\begin{aligned}
& \int_{B(x, \alpha) \cap \mathbb{R}_{+}^{n}} \frac{y_{n}}{x_{n}} G(x, y) \varphi(y) d y \\
& \leq\|a\|_{p}\left(\int_{B(x, \alpha) \cap \mathbb{R}_{+}^{n}} \frac{y_{n}^{2 q}}{|x-y|^{(n-2) q}|x-\bar{y}|^{2 q} y_{n}^{\lambda q}(|y|+1)^{(\mu-\lambda) q}} d y\right)^{\frac{1}{q}} \\
& \leq\|a\|_{p}\left(\int_{B(x, \alpha) \cap \mathbb{R}_{+}^{n}} \frac{d y}{|x-y|^{\left(n-2+\lambda^{+}\right) q}}\right)^{\frac{1}{q}} \\
& \preceq \alpha^{2-\frac{n}{p}-\lambda^{+}},
\end{aligned}
$$

which tends to zero as $\alpha \rightarrow 0$.
Case 2. $n=2$. Using (2.1), 2.6), 1.17) and taking $\gamma \in\left(\frac{\lambda^{+}}{2}, \frac{1}{q}\right)$ in (1.19), we obtain that

$$
\begin{aligned}
& \int_{B(x, \alpha) \cap \mathbb{R}_{+}^{2}} \frac{y_{2}}{x_{2}} G(x, y) \varphi(y) d y \\
& \leq\|a\|_{p}\left(\int_{B(x, \alpha) \cap \mathbb{R}_{+}^{2}} \frac{y_{2}^{(2-\lambda) q}}{|x-\bar{y}|^{2 q}(|y|+1)^{(\mu-\lambda) q}}\left(\log \left(1+\frac{|x-\bar{y}|^{2}}{|x-y|^{2}}\right)\right)^{q} d y\right)^{\frac{1}{q}} \\
& \leq\|a\|_{p}\left(\int_{B(x, \alpha) \cap \mathbb{R}_{+}^{2}} \frac{|x-\bar{y}|^{\left(2 \gamma-\lambda^{+}\right) q}}{(|y|+1)^{\left(\mu-\lambda^{+}\right) q}|x-y|^{2 \gamma q}} d y\right)^{\frac{1}{q}} \\
& \leq\|a\|_{p}\left(\int_{B(x, \alpha) \cap \mathbb{R}_{+}^{2}} \frac{1}{|x-y|^{2 \gamma q}} d y\right)^{\frac{1}{q}} \\
& \preceq \alpha^{2-2 \gamma q}
\end{aligned}
$$

which tends to zero as $\alpha \rightarrow 0$.
Now, we claim that the function φ satisfies 1.3). Let $M>1$ and put $\Omega:=\{y \in$ $\left.\mathbb{R}_{+}^{n}:(|y| \geq M) \cap(|x-y| \geq \alpha)\right\}$ and

$$
I(x, M):=\int_{\Omega} \frac{y_{n}}{x_{n}} G(x, y) \varphi(y) d y
$$

By the above argument, to show the claim we need only to prove that $I(x, M) \longrightarrow 0$, as $M \longrightarrow \infty$, uniformly on $x \in \mathbb{R}_{+}^{n}$. So we use the Hölder inequality and we distinguish the following two cases:
Case 1. $y \in D_{1}$. From 2.1), it is clear that $G(x, y) \preceq \frac{x_{n} y_{n}}{|x-y|^{n}}$. Then we have

$$
\int_{\Omega \cap D_{1}} \frac{y_{n}}{x_{n}} G(x, y) \varphi(y) d y \preceq\|a\|_{p}\left(\int_{\Omega \cap D_{1}} \frac{y_{n}^{(2-\lambda) q}}{|y|^{(\mu-\lambda) q}|x-y|^{n q}} d y\right)^{1 / q}
$$

Now we write that $2-\lambda=\left(2-\lambda-\frac{n}{p}\right)+\frac{n}{p}$ and we put $\gamma=\mu-2+\frac{n}{p}$. Hence, using the fact that $y_{n} \leq \max (|y|,|x-y|)$, we deduce that

$$
\int_{\Omega \cap D_{1}} \frac{y_{n}}{x_{n}} G(x, y) \varphi(y) d y \preceq\|a\|_{p}\left(\int_{\Omega \cap D_{1}} \frac{d y}{|x-y|^{n}|y|^{\gamma q}}\right)^{1 / q}
$$

On the other hand

$$
\begin{aligned}
& \quad \int_{\Omega \cap D_{1}}|x-y|^{-n}|y|^{-\gamma q} d y \\
& \preceq \sup _{|x| \leq \frac{M}{2}} \int_{\Omega \cap \mathbb{R}_{+}^{n}}|x-y|^{-n}|y|^{-\gamma q} d y \\
& \quad+\sup _{|x| \geq \frac{M}{2}} \int_{\left(\max \left(M, \frac{|x|}{2}\right) \leq|y| \leq 2|x|\right) \cap \mathbb{R}_{+}^{n} \cap(|x-y| \geq \alpha)}|x-y|^{-n}|y|^{-\gamma q} d y \\
& \quad+\sup _{|x| \geq \frac{M}{2}} \int_{(|y| \geq 2|x|) \cap \mathbb{R}_{+}^{n} \cap(|x-y| \geq \alpha)}|x-y|^{-n}|y|^{-\gamma q} d y \\
& \quad+\sup _{|x| \geq 2 M} \int_{\left(M \leq|y| \leq \frac{|x|}{2}\right) \cap \mathbb{R}_{+}^{n} \cap(|x-y| \geq \alpha)}|x-y|^{-n}|y|^{-\gamma q} d y \\
& \\
& \preceq \\
& \quad \int_{(|y| \geq M)} \frac{1}{|y|^{n+\gamma q}} d y+\sup _{|z| \geq \frac{M}{2}} \frac{\log \left(\frac{3|z|}{\alpha}\right)}{|z|^{\gamma q}} \\
& \\
& \preceq \frac{1}{M^{\gamma q}}+\sup _{|z| \geq \frac{M}{2}} \frac{\log \left(\frac{3|z|}{\alpha}\right)}{|z|^{\gamma q}} .
\end{aligned}
$$

Case 2. $y \in D_{2}$. From Lemma 2.10, we have that $|y| \sim|x|, y_{n} \sim x_{n} \sim|x-\bar{y}|$. This implies:
If $n \geq 3$, then by 2.1), we deduce that

$$
\begin{aligned}
\int_{\Omega \cap D_{2}} \frac{y_{n}}{x_{n}} G(x, y) \varphi(y) d y & \preceq\|a\|_{p} \frac{1}{x_{n}^{\lambda}|x|^{\mu-\lambda}}\left(\int_{\Omega \cap B\left(x, c x_{n}\right)} \frac{d y}{|x-y|^{(n-2) q}}\right)^{\frac{1}{q}} \\
& \preceq\|a\|_{p} \frac{x_{n}^{2-\lambda-\frac{n}{p}}}{|x|^{\mu-\lambda}} \\
& \preceq\|a\|_{p} \frac{1}{M^{\mu-2+\frac{n}{p}}} .
\end{aligned}
$$

If $n=2$, then from 2.1 and 1.18 it follows that

$$
\begin{aligned}
\int_{\Omega \cap D_{2}} \frac{y_{2}}{x_{2}} G(x, y) \varphi(y) d y & \preceq\|a\|_{p} \frac{1}{x_{2}^{\lambda}|x|^{\mu-\lambda}}\left(\int_{\Omega \cap B\left(x, c x_{n}\right)}\left(\log \left(1+\frac{x_{2}^{2}}{|x-y|^{2}}\right)\right)^{q} d y\right)^{\frac{1}{q}} \\
& \preceq\|a\|_{p} \frac{x_{n}^{\frac{2}{q}-\lambda}}{|x|^{\mu-\lambda}} \\
& \preceq\|a\|_{p} \frac{1}{M^{\mu-2+\frac{2}{p}}} .
\end{aligned}
$$

Hence we conclude that $I(x, M)$ converges to zero as $M \rightarrow \infty$ uniformly on $x \in \mathbb{R}_{+}^{n}$. This completes the proof.

3. Proof of Theorem 1.3

Recall that $\theta(x)=\frac{x_{n}}{(|x|+1)^{n}}$ on \mathbb{R}_{+}^{n}.
Proof of Theorem 1.3. Assuming (H1)-(H3), we shall use the Schauder fixed point theorem. Let K be a compact of \mathbb{R}_{+}^{n} such that, using (H3), we have

$$
0<\alpha:=\int_{K} \theta(y) p(y) d y<\infty
$$

We put $\beta:=\min \{\theta(x): x \in K\}$. We note that by 2.2 there exists a constant $\alpha_{1}>0$ such that for each $x, y \in \mathbb{R}_{+}^{n}$

$$
\begin{equation*}
\alpha_{1} \theta(x) \theta(y) \leq G(x, y) \tag{3.1}
\end{equation*}
$$

Then from 1.8, we deduce that there exists $a>0$ such that

$$
\begin{equation*}
\alpha_{1} \alpha h(a \beta) \geq a \tag{3.2}
\end{equation*}
$$

On the other hand, since $q \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, then by Proposition 2.5 we have that $\|V q\|_{\infty}<\infty$. So taking $0<\delta<\frac{1}{\|V q\|_{\infty}}$ we deduce by 1.9 that there exists $\rho>0$ such that for $t \geq \rho$ we have $f(t) \leq \delta t$. Put $\gamma=\sup _{0 \leq t \leq \rho} f(t)$. So we have that

$$
\begin{equation*}
0 \leq f(t) \leq \delta t+\gamma, \quad t \geq 0 \tag{3.3}
\end{equation*}
$$

Furthermore by 2.4, we note that there exists a constant $\alpha_{2}>0$ such that

$$
\begin{equation*}
\alpha_{2} \theta(x) \leq V q(x), \quad \forall x \in \mathbb{R}_{+}^{n} \tag{3.4}
\end{equation*}
$$

and from (H2) and Proposition 2.5, we have that $\|V \varphi(., a \theta)\|_{\infty}<\infty$. Let

$$
b=\max \left\{\frac{a}{\alpha_{2}}, \frac{\delta\|V \varphi(., a \theta)\|_{\infty}+\gamma}{1-\delta\|V q\|_{\infty}}\right\}
$$

and consider the closed convex set

$$
\Lambda=\left\{u \in C_{0}\left(\mathbb{R}_{+}^{n}\right): a \theta(x) \leq u(x) \leq V \varphi(., a \theta)(x)+b V q(x), \forall x \in \mathbb{R}_{+}^{n}\right\}
$$

Obviously, by (3.4) we have that the set Λ is nonempty. Define the integral operator T on Λ by

$$
T u(x)=\int_{\mathbb{R}_{+}^{n}} G(x, y)[\varphi(y, u(y))+\psi(y, u(y))] d y, \quad \forall x \in \mathbb{R}_{+}^{n}
$$

Let us prove that $T \Lambda \subset \Lambda$. Let $u \in \Lambda$ and $x \in \mathbb{R}_{+}^{n}$, then by (3.3) we have

$$
\begin{aligned}
T u(x) & \leq V \varphi(., a \theta)(x)+\int_{\mathbb{R}_{+}^{n}} G(x, y) q(y) f(u(y)) d y \\
& \leq V \varphi(., a \theta)(x)+\int_{\mathbb{R}_{+}^{n}} G(x, y) q(y)[\delta u(y)+\gamma] d y \\
& \leq V \varphi(., a \theta)(x)+\int_{\mathbb{R}_{+}^{n}} G(x, y) q(y)\left[\delta\left(\|V \varphi(., a \theta)\|_{\infty}+b\|V q\|_{\infty}\right)+\gamma\right] d y \\
& \leq V \varphi(., a \theta)(x)+b V q(x) .
\end{aligned}
$$

Moreover from the monotonicity of $h,(3.1)$ and (3.2), we have

$$
\begin{aligned}
T u(x) & \geq \int_{\mathbb{R}_{+}^{n}} G(x, y) \psi(y, u(y)) d y \\
& \geq \alpha_{1} \theta(x) \int_{\mathbb{R}_{+}^{n}} \theta(y) p(y) h(a \theta(y)) d y \\
& \geq \alpha_{1} \theta(x) h(a \beta) \int_{K} \theta(y) p(y) d y \\
& \geq \alpha_{1} \alpha h(a \beta) \theta(x) \\
& \geq a \theta(x)
\end{aligned}
$$

On the other hand, we have that for each $u \in \Lambda$,

$$
\begin{equation*}
\varphi(., u) \leq \varphi(., a \theta) \quad \text { and } \quad \psi(., u) \leq\left[\delta\left(\|V \varphi(., a \theta)\|+b\|V q\|_{\infty}\right)+\gamma\right] q \tag{3.5}
\end{equation*}
$$

This implies by Proposition 2.5 that $T \Lambda$ is relatively compact in $C_{0}\left(\mathbb{R}_{+}^{n}\right)$. In particular, we deduce that $T \Lambda \subset \Lambda$.

Next, we prove the continuity of T in Λ. Let $\left(u_{k}\right)_{k}$ be a sequence in Λ which converges uniformly to a function u in Λ. Then since φ and ψ are continuous with respect to the second variable, we deduce by the dominated convergence theorem that

$$
\forall x \in \mathbb{R}_{+}^{n}, T u_{k}(x) \rightarrow T u(x) \quad \text { as } k \rightarrow \infty
$$

Now, since $T \Lambda$ is relatively compact in $C_{0}\left(\mathbb{R}_{+}^{n}\right)$, then we have the uniform convergence. Hence T is a compact operator mapping from Λ to itself. So the Schauder fixed point theorem leads to the existence of a function $u \in \Lambda$ such that

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}_{+}^{n}} G(x, y)[\varphi(y, u(y))+\psi(y, u(y))] d y, \quad \forall x \in \mathbb{R}_{+}^{n} \tag{3.6}
\end{equation*}
$$

Finally, since q and $\varphi(., a \theta)$ are in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, we deduce by 3.5 and Proposition (2.4), that $y \mapsto \varphi(y, u(y))+\psi(y, u(y)) \in L_{l o c}^{1}\left(\mathbb{R}_{+}^{n}\right)$. Moreover, since $u \in C_{0}\left(\mathbb{R}_{+}^{n}\right)$, we deduce from (3.6), that $V(\varphi(., u)+\psi(., u)) \in L_{l o c}^{1}\left(\mathbb{R}_{+}^{n}\right)$. Hence u satisfies in the sense of distributions the elliptic equation

$$
\Delta u+\varphi(., u)+\psi(., u)=0, \text { in } \mathbb{R}_{+}^{n}
$$

and so it is a solution of the problem (1.6).
Example 3.1. Let $\alpha, \beta \geq 0$ such that $0 \leq \alpha+\beta<1$ and $p \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. Then the problem

$$
\begin{gather*}
\Delta u+p(x)\left[(u(x))^{-\gamma}(\theta(x))^{\gamma}+(u(x))^{\alpha} \log \left(1+(u(x))^{\beta}\right)\right]=0, \quad \text { in } \mathbb{R}_{+}^{n} \tag{3.7}\\
u>0, \quad \text { in } \mathbb{R}_{+}^{n}
\end{gather*}
$$

has a solution $u \in C_{0}\left(\mathbb{R}_{+}^{n}\right)$ satisfying $a \theta(x) \leq u(x) \leq b V p(x)$, where $a, b>0$.
Remark 3.2. Taking in Example 3.1 the function $p(x)=\frac{1}{x_{n}^{\lambda}(1+|x|)^{\mu-\lambda}}$, for $\lambda<2<$ μ, we deduce from [2, 3] that the solution of (3.7) has the following behaviour
(i) $u(x) \preceq \frac{x_{n}^{2-\lambda}}{(1+|x|)^{n+2-2 \lambda}}$, if $1<\lambda<2$ and $\mu \geq n+2-\lambda$
(ii) $u(x) \preceq \theta(x) \log \left(\frac{2(1+|x|)^{2}}{x_{n}}\right)$, if $\lambda=1$ and $\mu \geq n+1$ or $\lambda<1$ and $\mu=n+1$.
(iii) $u(x) \preceq \theta(x)$, if $\lambda<1$ and $\mu>n+1$
(iv) $u(x) \preceq \frac{x_{n}^{\mu-n}}{(1+|x|)^{2 \mu-n-2}}$, if $n<\mu<\min (n+1, n+2-\lambda)$.

4. Proof of Theorem 1.4

In this section, we are interested in the existence of continuous solutions for the problem 1.11). We recall that $\omega(x)=\alpha x_{n}+(1-\alpha), x \in \mathbb{R}_{+}^{n}$, where $\alpha \in[0,1]$. We aim to prove Theorem 1.4. So we need the following lemma

Lemma 4.1. Let q be a nonnegative function in $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, then the family of functions

$$
\left\{\int_{\mathbb{R}_{+}^{n}} \frac{\omega(y)}{\omega(x)} G(x, y)|\varphi(y)| d y: \varphi \in \mathcal{M}_{q}\right\}
$$

is relatively compact in $C_{0}\left(\overline{\mathbb{R}_{+}^{n}}\right)$.

Proof. We remark that

$$
\frac{\omega(y)}{\omega(x)}=\frac{\alpha y_{n}+(1-\alpha)}{\alpha x_{n}+(1-\alpha)} \leq \max \left(1, \frac{y_{n}}{x_{n}}\right) \leq 1+\frac{y_{n}}{x_{n}}
$$

So the result holds from Propositions 2.5 and 2.6 .
Proof of Theorem 1.4. Let $\lambda>0$ and $c:=\sup \left\{\lambda,\|g\|_{\infty}\right\}$. Then by (H5), there exists a nonnegative function $q:=q_{c} \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, such that the map

$$
\begin{equation*}
t \mapsto t(q(x)-\varphi(x, t \omega(x))) \tag{4.1}
\end{equation*}
$$

is continuous and nondecreasing on $[0, c]$. We denote by $h(x)=\alpha \lambda x_{n}+(1-\alpha) H g(x)$. Let

$$
\Lambda:=\left\{u \in \mathcal{B}^{+}\left(\mathbb{R}_{+}^{n}\right): \exp \left(-\alpha_{q}\right) h \leq u \leq h\right\}
$$

Note that since for $u \in \Lambda$, we have $u \leq h \leq c \omega$, then 4.1) implies in particular that for $u \in \Lambda$

$$
\begin{equation*}
0 \leq \varphi(., u) \leq q \tag{4.2}
\end{equation*}
$$

We define the operator T on Λ by

$$
T u(x):=h(x)-V_{q}(q h)(x)+V_{q}[(q-\varphi(., u)) u](x) .
$$

First, we claim that Λ is invariant under T. Indeed, for each $u \in \Lambda$ we have

$$
T u(x) \leq h(x)-V_{q}(q h)(x)+V_{q}(q u)(x) \leq h(x)
$$

Moreover, by 4.2 and Corollary 2.9, we obtain

$$
T u(x) \geq h(x)-V_{q}(q h)(x) \geq \exp \left(-\alpha_{q}\right) h(x)
$$

Next, we prove that the operator T is nondecreasing on Λ. Let $u, v \in \Lambda$ such that $u \leq v$, then from (4.1) we have

$$
T v-T u=V_{q}[(q-\varphi(., v)) v-(q-\varphi(., u)) u] \geq 0
$$

Now, we consider the sequence $\left(u_{j}\right)$ defined by $u_{0}=h-V_{q}(q h)$ and $u_{j+1}=T u_{j}$ for $j \in \mathbb{N}$. Then since Λ is invariant under T, we obtain obviously that $u_{1}=T u_{0} \geq u_{0}$ and so from the monotonicity of T, we deduce that

$$
u_{0} \leq u_{1} \leq \cdots \leq u_{j} \leq h
$$

Hence by 4.1 and the dominated convergence theorem, we deduce that the sequence $\left(u_{j}\right)$ converges to a function $u \in \Lambda$, which satisfies

$$
u(x)=h(x)-V_{q}(q h)(x)+V_{q}[(q-\varphi(., u)) u](x)
$$

Or, equivalently

$$
u-V_{q}(q u)=\left(h-V_{q}(q h)\right)-V_{q}(u \varphi(., u))
$$

Applying the operator $(I+V(q)$.$) on both sides of the above equality and using$ (1.14), we deduce that u satisfies

$$
\begin{equation*}
u=h-V(u \varphi(., u)) \tag{4.3}
\end{equation*}
$$

Finally, we need to verify that u is a positive continuous solution for the problem (1.11). Indeed, from 4.2, we have

$$
\begin{equation*}
u \varphi(., u) \leq q h \leq c q \omega . \tag{4.4}
\end{equation*}
$$

This implies by Proposition 2.4 that either u and $u \varphi(., u)$ are in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}^{n}\right)$. Furthermore, from (4.4), we have that $\frac{1}{\omega} u \varphi(., u) \in \mathcal{M}_{q}$. Which implies by Lemma 4.1 that $\frac{1}{\omega} V(u \varphi(., u)) \in C_{0}\left(\overline{\mathbb{R}_{+}^{n}}\right)$. In particular, we have $V(u \varphi(., u)) \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}^{n}\right)$.

Hence, by (4.3), we obtain that u is continuous on \mathbb{R}_{+}^{n} and satisfies (in the sense of distributions) the elliptic differential equation

$$
\Delta u-u \varphi(., u)=0 \text { in } \mathbb{R}_{+}^{n}
$$

On the other hand, since $\frac{1}{\omega} V(u \varphi(., u)) \in C_{0}\left(\overline{\mathbb{R}_{+}^{n}}\right)$ and $H g(x)$ is bounded on \mathbb{R}_{+}^{n} and satisfies $\lim _{x_{n} \rightarrow 0} H g(x)=g\left(x^{\prime}\right)$, we deduce easily that $\lim _{x_{n} \rightarrow 0} u(x)=(1-\alpha) g\left(x^{\prime}\right)$ and $\lim _{x_{n} \rightarrow+\infty} \frac{u(x)}{x_{n}}=\alpha \lambda$. This completes the proof.
Example 4.2. Let $\gamma>1, \alpha \in[0,1], \beta>0$ and $\lambda<2<\mu$. Let g be a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1} and $p \in B^{+}\left(\mathbb{R}_{+}^{n}\right)$ satisfying

$$
p(x) \preceq \frac{1}{(|x|+1)^{\mu-\lambda} x_{n}^{\lambda}\left(x_{n}+1\right)^{\gamma-1}} .
$$

Then the problem

$$
\begin{gathered}
\Delta u-p(x) u^{\gamma}(x)=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
\lim _{x_{n} \rightarrow 0} u(x)=(1-\alpha) g\left(x^{\prime}\right) \\
\lim _{x_{n} \rightarrow+\infty} \frac{u(x)}{x_{n}}=\alpha \beta
\end{gathered}
$$

(in the sense of distributions) has a continuous positive solution u satisfying

$$
u(x) \sim \alpha \beta x_{n}+(1-\alpha) H g(x)
$$

5. Proof of Theorem 1.5

In this section, we need the following standard Lemma. For $u \in B\left(\mathbb{R}_{+}^{n}\right)$, put $u^{+}=\max (u, 0)$.

Lemma 5.1. Let φ and ψ satisfy (H6)-(H8). Assume that $\varphi \leq \psi$ on $\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}$ and there exist continuous functions u, v on \mathbb{R}_{+}^{n} satisfying
(a) $\Delta u-\varphi\left(., u^{+}\right)=0=\Delta v-\psi\left(., v^{+}\right)$in \mathbb{R}_{+}^{n}
(b) $u, v \in C_{b}\left(\mathbb{R}_{+}^{n}\right)$
(c) $u \geq v$ on $\partial \mathbb{R}_{+}^{n}$.

Then $u \geq v$ in \mathbb{R}_{+}^{n}.
Proof of Theorem 1.5. An immediate consequence of the comparison principle in Lemma 5.1 is that problem $\left(1.12\right.$ has at most one solution in \mathbb{R}_{+}^{n}. The existence of a such solution is assured by the Schauder fixed point Theorem. Indeed, to construct the solution, we consider the convex set

$$
\Lambda=\left\{u \in C_{b}\left(\mathbb{R}_{+}^{n}\right): u \leq\|g\|_{\infty}\right\}
$$

We define the integral operator T on Λ by

$$
T u(x)=H g(x)-V\left(\varphi\left(., u^{+}\right)\right)(x) .
$$

Since $H g(x) \leq\|g\|_{\infty}$, for $x \in \mathbb{R}_{+}^{n}$, we deduce that for each $u \in \Lambda$,

$$
T u \leq\|g\|_{\infty}, \text { in } \mathbb{R}_{+}^{n}
$$

Furthermore, putting $q=\varphi\left(.,\|g\|_{\infty}\right)$, we have by (H8) that $q \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. So by $(\mathrm{H} 6)$, we deduce that $V\left(\varphi\left(., u^{+}\right)\right) \in V\left(\mathcal{M}_{q}\right)$. This together with the fact that $H g \in C_{b}\left(\mathbb{R}_{+}^{n}\right)$ imply by Proposition 2.5 that $T \Lambda$ is relatively compact in $C_{b}\left(\mathbb{R}_{+}^{n}\right)$ and in particular $T \Lambda \subset \Lambda$.

From the continuity of φ with respect to the second variable, we deduce that T is continuous in Λ and so it is a compact operator from Λ to itself. Then by the Schauder fixed point Theorem, we deduce that there exists a function $u \in \Lambda$ satisfying

$$
u(x)=H g(x)-V\left(\varphi\left(., u^{+}\right)\right)(x)
$$

This implies, using Proposition 2.4 and the fact that $V\left(\varphi\left(., u^{+}\right)\right) \in C_{0}\left(\mathbb{R}_{+}^{n}\right)$, that u satisfies in the sense of distributions

$$
\begin{gathered}
\Delta u-\varphi\left(., u^{+}\right)=0 \\
\lim _{x_{n} \rightarrow 0} u(x)=g\left(x^{\prime}\right)
\end{gathered}
$$

Hence by (H7) and Lemma 5.1. we conclude that $u \geq 0$ in \mathbb{R}_{+}^{n}. This completes the proof.

Corollary 5.2. Let φ satisfying (H6)-(H8) and g be a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1}. Suppose that there exists a function $q \in$ $K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ such that

$$
\begin{equation*}
0 \leq \varphi(x, t) \leq q(x) t \quad \text { on } \mathbb{R}_{+}^{n} \times\left[0,\|g\|_{\infty}\right] \tag{5.1}
\end{equation*}
$$

Then the solution u of 1.12 given by Theorem 1.5 satisfies

$$
e^{-\alpha_{q}} H g(x) \leq u(x) \leq H g(x)
$$

Proof. Since u satisfies the integral equation

$$
u(x)=H g(x)-V(\varphi(., u))(x)
$$

using (1.15), we obtain

$$
\begin{aligned}
u-V_{q}(q u)=\left(H g-V_{q}(q H g)\right) & -\left(V(\varphi(., u))-V_{q}(q V(\varphi(., u)))\right. \\
= & \left(H g-V_{q}(q H g)\right)-V_{q}(\varphi(., u))
\end{aligned}
$$

That is,

$$
u=\left(H g-V_{q}(q H g)\right)+V_{q}(q u-\varphi(., u))
$$

Now since $0<u \leq\|g\|_{\infty}$ then by (5.1), the result follows from Corollary 2.9 .
Example 5.3. Let g be a nontrivial nonnegative bounded continuous function in \mathbb{R}^{n-1}. Let $\sigma>0$ and $q \in K^{\infty}\left(\mathbb{R}_{+}^{n}\right)$. Put $\varphi(x, t)=q(x) t^{\sigma}$. Then the problem

$$
\begin{gathered}
\Delta u-q(x) u^{\sigma}=0, \quad \text { in } \mathbb{R}_{+}^{n} \\
\lim _{x_{n} \rightarrow 0} u(x)=g\left(x^{\prime}\right)
\end{gathered}
$$

(in the sense of distributions) has a positive bounded continuous solution u in \mathbb{R}_{+}^{n} satisfying

$$
0 \leq H g(x)-u(x) \leq\|g\|_{\infty}^{\sigma} V q(x)
$$

Furthermore, if $\sigma \geq 1$, we have by Corollary 5.2 that for each $x \in \mathbb{R}_{+}^{n}$

$$
e^{-\alpha_{q}} H g(x) \leq u(x) \leq H g(x)
$$

Acknowledgement. The authors want to thank the referee for his/her useful suggestions.

References

[1] Armitage, D. H., Gardiner, S. J.; Classical potentiel theory, Springer Verlag, 2001.
[2] Bachar, I., Mâagli, H.; Estimates on the Green's function and existence of positive solutions of nonlinear singular elliptic equations in the half space, to appear in Positivity (Articles in advance).
[3] Bachar, I., Mâagli, H., Mâatoug, L.; Positive solutions of nonlinear elliptic equations in a half space in \mathbb{R}^{2}, Electronic. J. Differential Equations. 2002(2002) No. 41, 1-24 (2002).
[4] Bachar, I., Mâagli, H., Zribi, M.; Estimates on the Green function and existence of positive solutions for some polyharmonic nonlinear equations in the half space, Manuscripta math. 113, 269-291 (2004).
[5] Brezis, H., Kamin, S.; Sublinear elliptic equations in \mathbb{R}^{n}, Manus. Math. 74, 87-106 (1992).
[6] Chung, K.L., Zhao, Z.; From Brownian motion to Schrödinger's equation, Springer Verlag (1995).
[7] Crandall, M. G., Rabinowitz, P. H., Tartar, L.,; On a Dirichlet problem with a singular nonlinearity. Comm. Partial Differential Equations 2 193-222 (1977).
[8] Diaz, J. I., Morel, J. M., Oswald, L.; An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12, 1333-1344 (1987).
[9] Dautray, R., Lions,J.L. et al.; Analyse mathématique et calcul numérique pour les sciences et les techniques, Coll.C.E.A Vol 2, L'opérateur de Laplace, Masson (1987).
[10] Edelson, A.; Entire solutions of singular elliptic equations, J. Math. Anal. appl. 139, 523-532 (1989).
[11] Helms, L. L.; Introduction to Potential Theory. Wiley-Interscience, New york (1969).
[12] Kusano, T., Swanson, C.A.; Entire positive solutions of singular semilinear elliptic equations, Japan J. Math. 11 145-155 (1985).
[13] Lair, A.V., Shaker, A.W.; Classical and weak solutions of a singular semilinear ellptic problem, J. Math. Anal. Appl. 211 371-385 (1997).
[14] Lazer, A. C., Mckenna, P. J.; On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 721-730 (1991).
[15] Mâagli, H.; Perturbation semi-linéaire des résolvantes et des semi-groupes, Potential Ana. 3, 61-87 (1994).
[16] Mâagli, H., Masmoudi, S.; Positive solutions of some nonlinear elliptic problems in unbounded domain, Ann. Aca. Sci. Fen. Math. 29, 151-166 (2004).
[17] Mâagli, H., Zribi, M., Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. 263 522-542 (2001).
[18] Masmoudi, S.; On the existence of positive solutions for some nonlinear elliptic problems in unbounded domain in \mathbb{R}^{2} to appear in Nonlinear.Anal.
[19] Neveu, J.; Potentiel markovian reccurent des chaînes de Harris, Ann. Int. Fourier 22 (2), 85-130 (1972).
[20] Port, S. C., Stone, C. J.; Brownian motion and classical Potential theory, Academic Press (1978).
[21] Z. Zhao; On the existence of positive solutions of nonlinear elliptic equations. A probabilistic potential theory approach, Duke Math. J. 69 (1993) 247-258.

Imed Bachar
Département de mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: Imed.Bachar@ipeit.rnu.tn
Habib Mâagli
Département de mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: habib.maagli@fst.rnu.tn
Malek Zribi
Département de mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: Malek.Zribi@insat.rnu.tn

[^0]: 2000 Mathematics Subject Classification. 34B27, 34J65.
 Key words and phrases. Green function; elliptic equation; positive solution.
 (C) 2005 Texas State University - San Marcos.

 Submitted December 20, 2004. Published April 14, 2005.

