
Electronic Journal of Differential Equations, Vol. 2005(2005), No. 24, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EVEN ORDER SELF ADJOINT TIME SCALE PROBLEMS

DOUGLAS R. ANDERSON, JOAN HOFFACKER

Abstract. Even order self adjoint differential time scale expressions are in-

troduced, together with associated self adjoint boundary conditions; the result

is established by induction. Several fourth-order nabla-delta delta-nabla ex-
amples are given for select self adjoint boundary conditions, together with

the specific corresponding Green’s functions over common time scales. One
derived Green’s function is shown directly to be symmetric.

1. Introduction

Some self adjoint boundary value problems (BVPs) for second order differential
equations on time scales were constructed and studied earlier in [1] by making use
of both delta and nabla derivatives. Next, certain BVPs for higher order equations
on time scales were investigated in [2, 3, 4] where, however, the considered BVPs
turned out, in general, nonself adjoint because their Green’s function were found
nonsymmetric. Therefore it remained unclear as to how to place the successive
delta and nabla derivatives for higher order to get self adjoint differential expres-
sions that can yield symmetric Green’s functions. Guseinov [5] offered a possible
resolution of this problem; in this paper we offer a direct proof by mathematical
induction of his conjecture, in the case where we stack nabla derivatives and one
delta derivative on the inside first, followed by stacked deltas and one nabla on the
outside (see below). In a subsequent, closely related sequel [6], a more abstract but
comprehensive approach is used to establish self adjoint delta-nabla equations and
boundary conditions, using quasi-derivative notation to consolidate (though unfor-
tunately also obscure) notationally all of the stacking and alternating of delta and
nabla derivatives. The proofs there are given in an indirect way using a Lagrange
bracket scheme. In both papers specific fourth-order examples are given, this using
nabla-delta equations, [6] using delta-nabla equations.

Let T be a time scale, p0(t), p1(t), . . . , pn(t) real-valued smooth functions defined
on T, and a ∈ Tκn

, b ∈ Tκn , with σn(a) < ρn(b). Consider the 2nth order
differential expression

L2ny(t) =
n−1∑
i=0

(
pi+1y

∇i∆
)∆i∇

(t) + pρ
0(t)y(t). (1.1)
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We show that this expression is self adjoint with respect to the inner product

〈y, z〉 =
∫ b

a

y(t)z(t)∇t,

that is, the identity
〈L2ny, z〉 = 〈y, L2nz〉

holds provided that y and z satisfy some appropriate boundary conditions at a and
b. In what follows such boundary conditions, self adjoint boundary conditions, will
be presented. For the convenience of the reader a section on time scale essentials
is included. This operator was considered in [5], however the proof of Theorem 2.2
was only given for the cases n = 1 and n = 2. We extend this proof to the general
case, and include examples of fourth order Green’s functions.

Basic Time Scale Notions

Any arbitrary nonempty closed subset of the reals R can serve as a time scale
T; see [7], [8].

Definition 1.1. For t ∈ T define the forward jump operator σ : T → T by

σ(t) = inf{s ∈ T : s > t},

and the backward jump operator ρ : T → T by

ρ(t) = sup{s ∈ T : s < t}.

Define the graininess operators µσ, µρ : T → [0,∞) via µσ(t) = σ(t) − t and
µρ(t) = ρ(t)− t.

Definition 1.2. A function f : T → R is right dense continuous (rd-continuous)
provided it is continuous at all right dense points of T and its left sided limit exists
(finite) at left dense points of T. The set of all right dense continuous functions on
T is denoted by

Crd = Crd(T) = Crd(T, R).

Similarly, a function f : T → R is left dense continuous (ld-continuous) provided it
is continuous at all left dense points of T, and its right sided limit exists (finite) at
right dense points of T. The set of all left dense continuous functions is denoted

Cld = Cld(T) = Cld(T, R).

Take Tκ to be T − {m1} if T has a right scattered minimum m1, or to be T
otherwise. In the same way, Tκ is T−{m2} if T has a left scattered maximum m2,
otherwise Tκ = T. In addition use the notation Tκ2

= (Tκ)κ, et cetera.

Definition 1.3 (Delta Derivative). Assume f : T → R is a function and let t ∈ Tκ.
Define f∆(t) to be the number (provided it exists) with the property that given
any ε > 0, there is a neighborhood U ⊂ T of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, for all s ∈ U.

The function f∆(t) is the delta derivative of f at t.
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Definition 1.4 (Nabla Derivative). For f : T → R and t ∈ Tκ, define f∇(t) to be
the number (provided it exists) with the property that given any ε > 0, there is a
neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s| for all s ∈ U.

The function f∇(t) is the nabla derivative of f at t.

In the case T = R, f∆(t) = f ′(t) = f∇(t). When T = Z, f∆(t) = f(t + 1) − f(t)
and f∇(t) = f(t)− f(t− 1). By f∆2

(t) we mean (f∆)∆(t), and similarly for higher
order delta and nabla derivatives.

Definition 1.5 (Delta Integral). Let f : T → R be a function, and a, b ∈ T. If
there exists a function F : T → R such that F∆(t) = f(t) for all t ∈ T, then F is a
delta antiderivative of f . In this case the integral is given by the formula∫ b

a

f(τ)∆τ = F (b)− F (a) for a, b ∈ T.

Definition 1.6 (Nabla Integral). Let f : T → R be a function, and a, b ∈ T. If
there exists a function F : T → R such that F∇(t) = f(t) for all t ∈ T, then F is a
nabla antiderivative of f . In this case the integral is given by the formula∫ b

a

f(τ)∇τ = F (b)− F (a) for a, b ∈ T.

Remark 1.7. All right dense continuous functions are delta integrable, and all left
dense continuous functions are nabla integrable.

Theorem 1.8. If f, g : T → R are left dense continuous then∫ b

a

f(t)g∇(t)∇t = (fg)(b)− (fg)(a)−
∫ b

a

f∇(t)g(ρ(t))∇t.

The following statement (Theorems 2.5 and 2.6 in [1]) will be used:

Theorem 1.9.
(i) If f : T → R is ∆− differentiable on Tκ and if f∆ is continuous on Tκ,

then f is ∇− differentiable on Tκ and

f∇(t) = f∆(ρ(t)) for all t ∈ Tκ.

(ii) If f : T → R is ∇− differentiable on Tκ and if f∇ is continuous on Tκ,
then f is ∆− differentiable on Tκ and

f∆(t) = f∇(σ(t)) for all t ∈ Tκ.

2. Self adjoint Differential Expressions and Boundary Conditions

Throughout we assume that the leading coefficient pn(t) is such that pn(t) 6= 0
for all t ∈ T. The following lemma is easily shown using induction and Theorem
1.9.

Lemma 2.1. Assume that f∆n∇ for n ∈ N0 and g satisfy the conditions of Theo-
rems 1.8 and 1.9. Then∫ b

a

f∆n∇(t)g(t)∇t =
n∑

i=0

(−1)if∆n−i

(t)g∇
i

(t)
∣∣b
a
− (−1)n

∫ b

a

f(ρ(t))g∇
n+1

(t)∇t.
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Theorem 2.2. 〈L2ny, z〉 = 〈L2nz, y〉 if and only if

n−1∑
i=0

i∑
j=0

(−1)j
(
pi+1y

∇i∆
)∆i−j

(t)z∇
j

(t)
∣∣b
a

=
n−1∑
i=0

i∑
j=0

(−1)j
(
pi+1z

∇i∆
)∆i−j

(t)y∇
j

(t)
∣∣b
a
.

Proof. By definition,

〈L2ny, z〉 =
∫ b

a

( n−1∑
i=0

(
pi+1y

∇i∆
)∆i∇(t) + pρ

0(t)y(t)
)
z(t)∇t

=
n−1∑
i=0

∫ b

a

(
pi+1y

∇i∆
)∆i∇(t)z(t)∇t +

∫ b

a

pρ
0(t)y(t)z(t)∇t.

Consider ∫ b

a

(
pi+1y

∇i∆
)∆i∇

(t)z(t)∇t.

Using Lemma 2.1 and Theorem 1.9, we have∫ b

a

(
pi+1y

∇i∆
)∆i∇(t)z(t)∇t

=
i∑

j=0

(−1)j
(
pi+1y

∇i∆
)∆i−j

(t)z∇
j

(t)
∣∣b
a
− (−1)i

∫ b

a

(
pi+1y

∇i∆
)∇(t)z∇

i+1
(t)∇t

=
i∑

j=0

(−1)j
(
pi+1y

∇i∆
)∆i−j

(t)z∇
j

(t)
∣∣b
a
− (−1)i

∫ b

a

(
pi+1y

∇i∆
)
(ρ(t))z∇

i+1
(t)∇t

=
i∑

j=0

(−1)j
(
pi+1y

∇i∆
)∆i−j

(t)z∇
j

(t)
∣∣b
a
− (−1)i

∫ b

a

pi+1(ρ(t))y∇
i+1

(t)z∇
i+1

(t)∇t.

Thus

〈L2ny, z〉 =
n−1∑
i=0

i∑
j=0

[
(−1)j

(
pi+1y

∇i∆
)∆i−j

(t)z∇
j

(t)
∣∣b
a

− (−1)i

∫ b

a

pi+1(ρ(t))y∇
i+1

(t)z∇
i+1

(t)∇t
]

+
∫ b

a

pρ
0(t)y(t)z(t)∇t.

Similarly

〈L2nz, y〉 =
n−1∑
i=0

i∑
j=0

[
(−1)j

(
pi+1z

∇i∆
)∆i−j

(t)y∇
j

(t)
∣∣b
a

− (−1)i

∫ b

a

pi+1(ρ(t))z∇
i+1

(t)y∇
i+1

(t)∇t
]

+
∫ b

a

pρ
0(t)z(t)y(t)∇t.

Therefore 〈L2ny, z〉 = 〈L2nz, y〉 if and only if

n−1∑
i=0

i∑
j=0

(−1)j
(
pi+1y

∇i∆
)∆i−j

(t)z∇
j

(t)
∣∣b
a

=
n−1∑
i=0

i∑
j=0

(−1)j
(
pi+1z

∇i∆
)∆i−j

(t)y∇
j

(t)
∣∣b
a
.

�
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If n = 1, then 〈L2y, z〉 = 〈y, L2z〉 if and only if

p1(t)[y
∆
(t)z(t)− y(t)z

∆
(t)]|ba = 0. (2.1)

The requirement (2.1) will give a way for finding all self adjoint boundary condi-
tions associated with L2. If, for example, y and z both satisfy the Sturm-Liouville
boundary conditions of the form

αu(a) + βu∆(a) = 0, γu(b) + δu∆(b) = 0 (|α|+ |β| 6= 0, |γ|+ |δ| 6= 0),

then (2.1) is satisfied. Another set of boundary conditions that guarantee (2.1) are
the “periodic” boundary conditions

u(a) = u(b), p1(a)u∆(a) = p1(b)u∆(b).

Note that the self adjoint expression (1.1) solely is not enough for the symmetry
of the Green’s function of L2n subject to some boundary conditions at a and b. In
addition, the boundary conditions must also be chosen self adjoint, that is, so that
to have 〈L2ny, z〉 = 〈y, L2nz〉 for y, z satisfying those boundary conditions.

3. Fourth Order Self Adjoint Boundary Value Problems

If n = 2, then 〈L4y, z〉 = 〈y, L4z〉 if and only if{
[p2(t)y

∇∆
(t)]

∆
+ p1(t)y

∆
(t)}z(t)|ba − y(t){[p2(t)z

∇∆
(t)]

∆
+ p1(t)z

∆
(t)]

}∣∣b
a

− p2(t)[y
∇∆

(t)z
∇

(t)− y
∇

(t)z
∇∆

(t)]|ba = 0.
(3.1)

The requirement (3.1) will give a way for finding all self adjoint boundary conditions
associated with L4. If, for example, y and z both satisfy the boundary conditions
of the form

u(a) = 0, u∇(a) = 0, u∇∆(b) = 0, p2(σ(b))u
∇∆2

(b) + p1(b)u
∆
(b) = 0,

then (3.1) is satisfied. (Note that [p2(t)u
∇∆

(t)]
∆

= p∆
2 (t)u

∇∆
(t)+p2(σ(t))u

∇∆2

(t)).
Consider the differential expression L4y(t) with pρ

0(t) = p1(t) ≡ 0, rewritten here
as

Ly(t) = (py
∇∆

)
∆∇

(t) (3.2)

subject to the boundary conditions

y(a) = 0, y∇(a) = 0, p(b)y∇∆(b) = 0, (py∇∆)∆(b) = 0 (3.3)

on an arbitrary time scale. Without calculating the Green’s function G(t, s) of
(3.2), (3.3) we can state that it must be symmetric: G(t, s) = G(s, t). Indeed,
as it was noted above the operator L generated by (3.2), (3.3) is self adjoint:
〈Ly, z〉 = 〈y, Lz〉. It is easily seen that the inverse of a self adjoint operator also is
self adjoint. Thus we have

〈L−1f, g〉 = 〈f, L−1g〉, for all f, g. (3.4)

On the other hand, L−1 is given by

L−1f(t) =
∫ b

a

G(t, s)f(s)∇s. (3.5)

From (3.4) and (3.5) it follows that G(t, s) = G(s, t). In practice it can be more
difficult to construct the Green’s function and show directly that it is symmetric.
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In this case it is relatively straightforward, and we demonstrate the technique. Here
the Green’s function G(t, s) is given by

G(t, s) =

{∫ t

a

( ∫ τ

a
s−x
p(x)∆x

)
∇τ t ≤ s∫ t

a

( ∫ τ

a
s−x
p(x)∆x

)
∇τ +

∫ t

s

( ∫ τ

s
x−s
p(x)∆x

)
∇τ t ≥ s.

(3.6)

We show that

G(t, s) =

{∫ t

a

( ∫ τ

a
s−x
p(x)∆x

)
∇τ t ≤ s∫ s

a

( ∫ τ

a
t−x
p(x)∆x

)
∇τ t ≥ s.

Let

v1(t, s) :=
∫ t

a

( ∫ τ

a

s− x

p(x)
∆x

)
∇τ +

∫ t

s

( ∫ τ

s

x− s

p(x)
∆x

)
∇τ

and

v2(t, s) :=
∫ s

a

( ∫ τ

a

t− x

p(x)
∆x

)
∇τ.

Then

w1(s) := v∇t
1 (t, s) =

∫ s

a

s− x

p(x)
∆x

and

w2(s) := v∇t
2 (t, s) =

∫ s

a

( ∫ τ

a

1
p(x)

∆x
)
∇τ.

Taking the nabla derivative with respect to s,

w∇
1 (s) =

∫ s

a

1
p(x)

∆x +
ρ(s)− ρ(s)

p(ρ(s))
=

∫ s

a

1
p(x)

∆x = w∇
2 (s);

since w1(a) = w2(a), w1(s) = w2(s), or v∇t
1 (t, s) = v∇t

2 (t, s). Again, since v1(s, s) =
v2(s, s), v1(t, s) = v2(t, s). Therefore G(t, s) = G(s, t).

Example 3.1. Let E = {1− qN0} ∪ {1}. Taking a = 0 and b = 1 with p(t) ≡ 1 we
have the following:

T = R : G(t, s) =

{
t2[3s−t]

6 t ≤ s
s2[3t−s]

6 t ≥ s

T = hZ : G(t, s) =

{
tσ(t)[3s−ρ(t)]

6 t ≤ s
sσ(s)[3t−ρ(s)]

6 t ≥ s

T = E : G(t, s) =

{
tσ(t)[(q2+q+1)s−q2ρ(t)]

(q+1)(q2+q+1) t ≤ s
sσ(s)[(q2+q+1)t−q2ρ(s)]

(q+1)(q2+q+1) t ≥ s

Note that as h → 0, the Green’s function for hZ becomes the Green’s function for
R, as one would expect. Allowing q to take on the value of 1, one can see that
the Green’s function for E also becomes the Green’s function for R In addition, as
predicted the Green’s functions are symmetric.
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Remark 3.2. Some of the other self adjoint boundary conditions associated with
(3.2) include

y(a) = y∇(a) = 0, y(b) = y∇(b) = 0;

y(a) = y∇(a) = 0, y(b) = p(b)y∇∆(b) = 0;

y(a) = y∇(a) = 0, y∇(b) = (py∇∆)∆(b) = 0;

y(a) = y∇(a) = 0, p(b)y∇∆(b) = (py∇∆)∆(b) = 0;

y(a) = p(a)y∇∆(a) = 0, y(b) = y∇(b) = 0;

y(a) = p(a)y∇∆(a) = 0, y(b) = p(b)y∇∆(b) = 0;

y(a) = p(a)y∇∆(a) = 0, y∇(b) = (py∇∆)∆(b) = 0;

y(a) = p(a)y∇∆(a) = 0, p(b)y∇∆(b) = (py∇∆)∆(b) = 0;

y∇(a) = (py∇∆)∆(a) = 0, y(b) = y∇(b) = 0;

y∇(a) = (py∇∆)∆(a) = 0, y(b) = p(b)y∇∆(b) = 0;

y∇(a) = (py∇∆)∆(a) = 0, y∇(b) = (py∇∆)∆(b) = 0;

y∇(a) = (py∇∆)∆(a) = 0, p(b)y∇∆(b) = (py∇∆)∆(b) = 0;

p(a)y∇∆(a) = (py∇∆)∆(a) = 0, y(b) = y∇(b) = 0;

p(a)y∇∆(a) = (py∇∆)∆(a) = 0, y(b) = p(b)y∇∆(b) = 0;

p(a)y∇∆(a) = (py∇∆)∆(a) = 0, y∇(b) = (py∇∆)∆(b) = 0;

p(a)y∇∆(a) = (py∇∆)∆(a) = 0, p(b)y∇∆(b) = (py∇∆)∆(b) = 0;

and the periodic conditions

y(a) = y(b), (py∇∆)∆(a) = (py∇∆)∆(b),

y∇(a) = y∇(b), p(a)y∇∆(a) = p(b)y∇∆(b).

Example 3.3. Consider (3.2) with the boundary conditions

p(a)y∇∆(a) =
(
py∇∆

)∆
(a) = 0, y(b) = y∇(b) = 0.

The Green’s function here is given by

G(t, s) =


∫ b

s

( ∫ b

τ
x−t
p(x)∆x

)
∇τ t ≤ s∫ b

t

( ∫ b

τ
x−s
p(x)∆x

)
∇τ t ≥ s.

If p(t) ≡ 1 we have

T = R : G(t, s) =


(b−s)2(2b+s−3t)

6 t ≤ s

(b−t)2(2b+t−3s)
6 t ≥ s.

Example 3.4. Again consider (3.2) with the boundary conditions

y(a) = p(a)y∇∆(a) = 0 y∇(b) =
(
py∇∆

)∆
(b) = 0.

Then the Green’s function is

G(t, s) =

(t− a)
∫ s

a

∫ b

τ
∆x
p(x)∇τ −

∫ t

a

∫ τ

a
x−a
p(x)∆x∇τ t ≤ s

(s− a)
∫ t

a

∫ b

τ
∆x
p(x)∇τ −

∫ s

a

∫ τ

a
x−a
p(x)∆x∇τ t ≥ s.
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If p(t) ≡ 1 we have

T = R : G(t, s) =

{
(t−a)(s−a)(2b−s−a)

2 + (a−t)3

6 t ≤ s
(s−a)(t−a)(2b−t−a)

2 + (a−s)3

6 t ≥ s.

For boundary conditions

y∇(a) =
(
py∇∆

)∆
(a) = 0 y(b) = p(b)y∇∆(b) = 0,

the Green’s function is

G(t, s) =

(b− t)
∫ b

s

∫ τ

a
∆x
p(x)∇τ −

∫ b

s

∫ τ

t
x−t
p(x)∆x∇τ t ≤ s

(b− s)
∫ b

t

∫ τ

a
∆x
p(x)∇τ −

∫ b

t

∫ τ

s
x−s
p(x)∆x∇τ t ≥ s.

Remark 3.5. It can be similarly seen by using Theorem 1.9 (ii) that the differential
expression

Q2ny(t) =
n−1∑
i=0

(
pi+1y

∆i∇)∇i∆(t) + pσ
0 (t)y(t) (3.7)

is a self adjoint expression with respect to the inner product

〈y, z〉 =
∫ b

a

y(t)z(t)∆t.

Remark 3.6. In [3] it is shown (Example 18) that in the case T = Z the Green’s
function of

Ly(t) =
(
y∆2)∇2

(3.8)
with the boundary conditions

y(a) = 0, y∆(a) = 0, y∆2
(b) = 0, y∆2∇(b) = 0 (3.9)

is not symmetric. Note that the expression (3.8) is of the form (3.2) and (3.7),
since in the case T = Z the operations ∆ and ∇ commute, and so the expression
(3.8) is self adjoint in the case T = Z. However, the boundary conditions (3.9),
in contrast to the boundary conditions (3.3), are not self adjoint. This is why the
Green’s function turned out nonsymmetric. (Note that if we replace in the self
adjoint boundary conditions for usual differential equations the usual derivative by
delta or nabla derivative, the obtained boundary conditions need not be self adjoint
on time scales.)

References

[1] F. M. Atici and G. Sh. Guseinov,; On Green’s functions and positive solutions for boundary
value problems on time scales, J. Comput. Appl. Math., 141 (2002) 75–99.

[2] D. R. Anderson and J. Hoffacker; Green’s function for an even order mixed derivative problem

on time scales, Dynam. Systems Appl., 12 (2003) 9–22.
[3] D. R. Anderson and J. Hoffacker; A stacked delta-nabla self adjoint problem of even order,

Math. Comput. Modelling, 38 (2003) 481–494.
[4] D. R. Anderson and J. Hoffacker; Existence of solutions for a cantilever beam problem, sub-

mitted.

[5] G. Sh. Guseinov; Self-adjoint boundary value problems on time scales and symmetric Green’s
functions, (2004), submitted.

[6] D. R. Anderson, G. Sh. Guseinov, J. Hoffacker; Higher Order Self Adjoint Boundary Value

Problems on Time Scales, preprint.
[7] M. Bohner and A. Peterson; Dynamic Equations on Time Scales, An Introduction with Ap-
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