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POSITIVE SOLUTIONS TO A GENERALIZED SECOND-ORDER
THREE-POINT BOUNDARY-VALUE PROBLEM ON TIME

SCALES

HUA LUO, QIAOZHEN MA

Abstract. Let T be a time scale with 0, T ∈ T. We investigate the existence

and multiplicity of positive solutions to the nonlinear second-order three-point
boundary-value problem

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ [0, T ] ⊂ T,

u(0) = βu(η), u(T ) = αu(η)

on time scales T, where 0 < η < T , 0 < α < T
η

, 0 < β < T−αη
T−η

are given

constants.

1. Introduction

In recent years, many authors have begun to pay attention to the study of
boundary-value problems on time scales. Here two-point boundary-value problems
have been extensively studied; see [1, 2, 3, 4, 5] and the references therein. However,
the research for three-point boundary-value problems is still a fairly new subject,
even though it is growing rapidly; see [6, 7, 8, 9].

In 2002, inspired by the study of the existence of positive solutions in [10] for the
three-point boundary-value problem of differential equations, Anderson [9] consid-
ered the following three-point boundary-value problem on a time scale T,

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ [0, T ] ⊂ T, (1.1)

u(0) = 0, u(T ) = αu(η). (1.2)

He investigated the existence of at least one positive solution and of at least three
positive solutions for the problem (1.1)-(1.2) by using Guo-Krasnoselskii’s fixed-
point theorem and Leggett-Williams fixed-point theorem, respectively.

In this paper, we extend Anderson’s results to the more general boundary-value
problem on time scale T,

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ [0, T ] ⊂ T, (1.3)

u(0) = βu(η), u(T ) = αu(η), (1.4)
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where α > 0, β ≥ 0, η ∈ (0, T ) ⊂ T are given constants. Clearly if β = 0,
then (1.4) reduces to (1.2). We also point out that when T = R, β = 0, (1.3)-
(1.4) becomes a boundary-value problem of differential equations and just is the
problem considered in [10]; when T = Z, β = 0, (1.3)-(1.4) becomes a boundary-
value problem of difference equations and just is the problem considered in [11].
We will use Guo-Krasnoselskii’s fixed-point theorem and Leggett-Williams fixed-
point theorem to investigate the existence and multiplicity of positive solutions
for the problem (1.3)-(1.4). Our main results extend the main results of Ma[10],
Anderson[9], Ma and Raffoul[11].

The rest of the paper is arranged as follows: we state some basic time-scale
definitions and prove several preliminary results in Section 2. Section 3 is devoted
to the existence of a positive solution of (1.3)-(1.4), the main tool being the Guo-
Krasnoselskii’s fixed-point theorem. Next in Section 4, we give a multiplicity result
by using the Leggett-Williams fixed-point theorem. Finally we give two examples
to illustrate our results in Section 5.

2. Preliminaries

For convenience, we list here the following definitions which are needed later.
A time scale T is an arbitrary nonempty closed subset of real numbers R. The

operators σ and ρ from T to T, defined by [12],

σ(t) = inf{τ ∈ T : τ > t} ∈ T,
ρ(t) = sup{τ ∈ T : τ < t} ∈ T

are called the forward jump operator and the backward jump operator, respectively.
In this definition

inf ∅ := sup T, sup ∅ := inf T.
The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

Let f : T → R and t ∈ T (assume t is not left-scattered if t = sup T), then the
delta derivative of f at the point t is defined to be the number f∆(t)(provided it
exists) with the property that for each ε > 0 there is a neighborhood U of t such
that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ |σ(t)− s|, for all s ∈ U.
Similarly, for t ∈ T (assume t is not right-scattered if t = inf T), the nabla derivative
of f at the point t is defined in [1] to be the number f∇(t)(provided it exists) with
the property that for each ε > 0 there is a neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ |ρ(t)− s|, for all s ∈ U.

A function f is left-dense continuous (i.e. ld-continuous), if f is continuous at each
left-dense point in T and its right-sided limit exists at each right-dense point in T.
It is well-known[13] that if f is ld-continuous, then there is a function F (t) such
that F∇(t) = f(t). In this case, it is defined that∫ b

a

f(t)∇t = F (b)− F (a).

For the rest of this article, T denotes a time scale with 0, T ∈ T. Also we denote the
set of left-dense continuous functions from [0, T ] ⊂ T to E ⊂ R by Cld([0, T ], E),
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which is a Banach space with the maximum norm ‖u‖ = maxt∈[0,T ] |u(t)|. We now
state and prove several lemmas before stating our main results.

Lemma 2.1. Let β 6= T−αη
T−η . Then for y ∈ Cld([0, T ], R), the problem

u∆∇(t) + y(t) = 0, t ∈ [0, T ] ⊂ T, (2.1)

u(0) = βu(η), u(T ) = αu(η) (2.2)

has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)∇s+
(β − α)t− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)y(s)∇s

+
(1− β)t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)y(s)∇s.
(2.3)

Proof. From (2.1), we have

u(t) = u(0) + u∆(0)t−
∫ t

0

(t− s)y(s)∇s := A+Bt−
∫ t

0

(t− s)y(s)∇s.

Since

u(0) = A;

u(η) = A+Bη −
∫ η

0

(η − s)y(s)∇s;

u(T ) = A+BT −
∫ T

0

(T − s)y(s)∇s,

by (2.2) from u(0) = βu(η), we have

(1− β)A−Bβη = −β
∫ η

0

(η − s)y(s)∇s;

from u(T ) = αu(η), we have

(1− α)A+B(T − αη) =
∫ T

0

(T − s)y(s)∇s− α

∫ η

0

(η − s)y(s)∇s.

Therefore,

A =
βη

(T − αη)− β(T − η)

∫ T

0

(T − s)y(s)∇s

− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)y(s)∇s;

B =
1− β

(T − αη)− β(T − η)

∫ T

0

(T − s)y(s)∇s

− α− β

(T − αη)− β(T − η)

∫ η

0

(η − s)y(s)∇s ,

from which it follows that

u(t) =
βη

(T − αη)− β(T − η)

∫ T

0

(T − s)y(s)∇s

− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)y(s)∇s
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+
(1− β)t

(T − αη)− β(T − η)

∫ T

0

(T − s)y(s)∇s

− (α− β)t
(T − αη)− β(T − η)

∫ η

0

(η − s)y(s)∇s−
∫ t

0

(t− s)y(s)∇s

= −
∫ t

0

(t− s)y(s)∇s+
(β − α)t− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)y(s)∇s

+
(1− β)t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)y(s)∇s.

The function u presented above is a solution to the problem (2.1)-(2.2), and the
uniqueness of u is obvious. �

Lemma 2.2. Let 0 < α < T
η , 0 ≤ β < T−αη

T−η . If y ∈ Cld([0, T ], [0,∞)), then the
unique solution u of the problem (2.1)-(2.2) satisfies

u(t) ≥ 0, t ∈ [0, T ] ⊂ T.

Proof. It is known that the graph of u is concave down on [0, T ] from u∆∇(t) =
−y(t) ≤ 0, so

u(η)− u(0)
η

≥ u(T )− u(0)
T

.

Combining this with (2.2), we have
1− β

η
u(η) ≥ α− β

T
u(η).

If u(0) < 0, then u(η) < 0. It implies that β ≥ T−αη
T−η , a contradiction to β < T−αη

T−η .
If u(T ) < 0, then u(η) < 0, and the same contradiction emerges. Thus, it is true

that u(0) ≥ 0, u(T ) ≥ 0, together with the concavity of u, we have

u(t) ≥ 0, t ∈ [0, T ] ⊂ T.
as required. �

Lemma 2.3. Let αη 6= T , β > max{T−αη
T−η , 0}. If y ∈ Cld([0, T ], [0,∞)), then

problem (2.1)-(2.2) has no nonnegative solutions.

Proof. Suppose that problem (2.1)-(2.2) has a nonnegative solution u satisfying
u(t) ≥ 0, t ∈ [0, T ] and there is a t0 ∈ (0, T ) such that u(t0) > 0.

If u(T ) > 0, then u(η) > 0. It implies

u(0) = βu(η) >
T − αη

T − η
u(η) =

Tu(η)− ηu(T )
T − η

,

that is
u(T )− u(0)

T
>
u(η)− u(0)

η
,

which is a contradiction to the concavity of u.
If u(T ) = 0, then u(η) = 0. When t0 ∈ (0, η), we get u(t0) > u(η) = u(T ),

a violation of the concavity of u. When t0 ∈ (η, T ), we get u(0) = βu(η) = 0 =
u(η) < u(t0), another violation of the concavity of u. Therefore, no nonnegative
solutions exist. �

Remark 2.4. When β = 0, the result similar to Lemma 2.3 has been obtained in
Lemma 5 of [9] for αη > T .
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Lemma 2.5. Let 0 < α < T
η , 0 < β < T−αη

T−η . If y ∈ Cld([0, T ], [0,∞)), then the
unique solution to the problem (2.1)-(2.2) satisfies

min
t∈[0,T ]

u(t) ≥ γ‖u‖, (2.4)

where

γ := min
{α(T − η)
T − αη

,
αη

T
,
β(T − η)

T
,
βη

T

}
. (2.5)

Proof. It is known that the graph of u is concave down on [0, T ] from u∆∇(t) =
−y(t) ≤ 0. We divide the proof into two cases.
Case 1. 0 < α < 1, then T−αη

T−η > α. For u(0) = βu(η) = β
αu(T ), it may develop in

the following two possible directions.
(i) 0 < α ≤ β. It implies that u(0) ≥ u(T ), so

min
t∈[0,T ]

u(t) = u(T ).

Assume ‖u‖ = u(t1), t1 ∈ [0, T ), then either 0 ≤ t1 ≤ η < ρ(T ), or 0 < η < t1 < T .
If 0 ≤ t1 ≤ η < ρ(T ), then

u(t1) ≤ u(T ) +
u(T )− u(η)

T − η
(t1 − T )

≤ u(T ) +
u(T )− u(η)

T − η
(0− T )

=
Tu(η)− ηu(T )

T − η

=
T − αη

α(T − η)
u(T ),

from which it follows that mint∈[0,T ] u(t) ≥ α(T−η)
T−αη ‖u‖.

If 0 < η < t1 < T , from
u(η)
η

≥ u(t1)
t1

≥ u(t1)
T

,

together with u(T ) = αu(η), we have

u(T ) >
αη

T
u(t1),

so that, mint∈[0,T ] u(t) ≥ αη
T ‖u‖.

(ii) 0 < β < α. It implies that u(0) ≤ u(T ), so

min
t∈[0,T ]

u(t) = u(0).

Assume ‖u‖ = u(t2), t2 ∈ (0, T ], then either 0 < t2 < η < ρ(T ), or 0 < η ≤ t2 ≤ T .
If 0 < t2 < η < ρ(T ), from

u(η)
T − η

≥ u(t2)
T − t2

≥ u(t2)
T

,

together with u(0) = βu(η), we have

u(0) ≥ β(T − η)
T

u(t2),
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hence, mint∈[0,T ] u(t) ≥ β(T−η)
T ‖u‖.

If 0 < η ≤ t2 ≤ T , from
u(t2)
T

≤ u(t2)
t2

≤ u(η)
η

,

together with u(0) = βu(η), we have

u(0) ≥ βη

T
u(t2),

so that, mint∈[0,T ] u(t) ≥ βη
T ‖u‖.

Case 2. T
η > α ≥ 1, then T−αη

T−η ≤ α. In this case, β < α is true. It implies that
u(0) ≤ u(T ). So,

min
t∈[0,T ]

u(t) = u(0).

Assume ‖u‖ = u(t2), t2 ∈ (0, T ] again. Since α ≥ 1, it is known that u(η) ≤ u(T ),
together with the concavity of u, we have 0 < η ≤ t2 ≤ T . Similar to the above
discussion,

min
t∈[0,T ]

u(t) ≥ βη

T
‖u‖.

Summing up, we have
min

t∈[0,T ]
u(t) ≥ γ‖u‖,

where

0 < γ = min
{α(T − η)
T − αη

,
αη

T
,
β(T − η)

T
,
βη

T

}
< 1.

This completes the proof. �

Remark 2.6. If β = 0, Anderson obtained the inequality in [9, Lemma 7] that is

min
t∈[η,T ]

u(t) ≥ r‖u‖,

where

r := min
{α(T − η)
T − αη

,
αη

T
,
η

T

}
.

The following two theorems, Theorem 2.7 (Guo-Krasnoselskii’s fixed-point theo-
rem)and Theorem 2.8 (Leggett-Williams fixed-point theorem), will play an impor-
tant role in the proof of our main results.

Theorem 2.7 ([14]). Let E be a Banach space, and let K ⊂ E be a cone. Assume
Ω1,Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) −→ K

be a completely continuous operator such that either
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 2.8 ([15]). Let P be a cone in the real Banach space E. Set

Pc := {x ∈ P : ‖x‖ < c} , (2.6)

P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}. (2.7)
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Suppose A : P c → P c be a completely continuous operator and ψ be a nonnegative
continuous concave functional on P with ψ(x) ≤ ‖x‖ for all x ∈ P c. If there exists
0 < a < b < d ≤ c such that the following conditions hold,

(i) {x ∈ P (ψ, b, d) : ψ(x) > b} 6= ∅ and ψ(Ax) > b for all x ∈ P (ψ, b, d);
(ii) ‖Ax‖ < a for ‖x‖ ≤ a;
(iii) ψ(Ax) > b for x ∈ P (ψ, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2 and x3 in P c satisfying

‖x1‖ < a, ψ(x2) > b, a < ‖x3‖ with ψ(x3) < b.

3. Existence of Positive Solutions

We assume the following hypotheses:
(A1) f ∈ C([0,∞), [0,∞));
(A2) a ∈ Cld([0, T ], [0,∞)) and there exists t0 ∈ (0, T ), such that a(t0) > 0.

Define

f0 = lim
u→0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

.

For the boundary-value problem (1.3)-(1.4), we establish the following existence
theorem by using Theorem 2.7 (Guo-Krasnoselskii’s fixed-point theorem).

Theorem 3.1. Assume (A1), (A2) hold, and 0 < α < T
η , 0 < β < T−αη

T−η . If either

(C1) f0 = 0 and f∞ = ∞ (f is superlinear), or
(C2) f0 = ∞ and f∞ = 0 (f is sublinear),

then problem (1.3)-(1.4) has at least one positive solution.

Proof. It is known that 0 < α < T
η , 0 < β < T−αη

T−η . From Lemma 2.1, u is a
solution to the boundary-value problem (1.3)-(1.4) if and only if u is a fixed point
of operator A, where A is defined by
Au(t)

= −
∫ t

0

(t− s)a(s)f(u(s))∇s+
(β − α)t− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)a(s)f(u(s))∇s

+
(1− β)t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s.

(3.1)
Denote

K = {u ∈ Cld([0, T ],R) : u ≥ 0, min
t∈[0,T ]

u(t) ≥ γ‖u‖},

where γ is defined in (2.5).
It is obvious that K is a cone in Cld([0, T ],R). Moreover, from (A1), (A2),

Lemma 2.2 and Lemma 2.5, AK ⊂ K. It is also easy to check that A : K → K is
completely continuous.

Superlinear case. f0 = 0 and f∞ = ∞. Since f0 = 0, we may choose H1 > 0 so
that f(u) ≤ εu, for 0 < u ≤ H1, where ε > 0 satisfies

ε
T + β(T + η)

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)∇s ≤ 1.

Thus, if we let
Ω1 = {u ∈ Cld([0, T ], R) : ‖u‖ < H1},
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then for u ∈ K ∩ ∂Ω1, we get

Au(t) ≤ (β − α)t− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)a(s)f(u(s))∇s

+
(1− β)t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ βt

(T − αη)− β(T − η)

∫ η

0

(η − s)a(s)f(u(s))∇s

+
t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ βT

(T − αη)− β(T − η)

∫ η

0

(η − s)a(s)f(u(s))∇s

+
T + βη

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ T + β(T + η)
(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ ε‖u‖ T + β(T + η)
(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)∇s ≤ ‖u‖.

Thus ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1.
Further, since f∞ = ∞, there exists Ĥ2 > 0 such that f(u) ≥ ρu, for u ≥ Ĥ2,

where ρ > 0 is chosen so that

ργ
T − η

(T − αη)− β(T − η)

∫ T

0

sa(s)∇s ≥ 1.

Let H2 = max{2H1,
Ĥ2
γ } and

Ω2 = {u ∈ Cld([0, T ],R) : ‖u‖ < H2}.

Then u ∈ K ∩ ∂Ω2 implies

min
t∈[0,T ]

u(t) ≥ γ‖u‖ = γH2 ≥ Ĥ2,

and so

Au(η)

= −
∫ η

0

(η − s)a(s)f(u(s))∇s+
βη − αη − βT

(T − αη)− β(T − η)

∫ η

0

(η − s)a(s)f(u(s))∇s

+
η

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

=
−T

(T − αη)− β(T − η)

∫ η

0

(η − s)a(s)f(u(s))∇s

+
η

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

≥ 1
(T − αη)− β(T − η)

∫ T

0

[−T (η − s) + η(T − s)]a(s)f(u(s))∇s
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=
T − η

(T − αη)− β(T − η)

∫ T

0

sa(s)f(u(s))∇s

≥ γρ‖u‖ T − η

(T − αη)− β(T − η)

∫ T

0

sa(s)∇s ≥ ‖u‖.

Hence, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. By the first part of Theorem 2.7, A has a fixed
point in K ∩ (Ω2 \ Ω1), such that H1 ≤ ‖u‖ ≤ H2. This completes the superlinear
part of the theorem.

Sublinear case. f0 = ∞ and f∞ = 0. Since f0 = ∞, choose H3 > 0 such that
f(u) ≥Mu for 0 < u ≤ H3, where M > 0 satisfies

Mγ
T − η

(T − αη)− β(T − η)

∫ T

0

sa(s)∇s ≥ 1.

Let

Ω3 = {u ∈ Cld([0, T ],R) : ‖u‖ < H3},

then for u ∈ K ∩ ∂Ω3, we get

Ay(η) ≥ T − η

(T − αη)− β(T − η)

∫ T

0

sa(s)f(u(s))∇s

≥Mγ‖u‖ T − η

(T − αη)− β(T − η)

∫ T

0

sa(s)∇s ≥ ‖u‖.

Thus, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω3. Now, since f∞ = 0, there exists Ĥ4 > 0 so that
f(u) ≤ λu for u ≥ Ĥ4, where λ > 0 satisfies

λ
T + β(T + η)

(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)∇s ≤ 1.

Choose H4 = max{2H3,
Ĥ4
γ }. Let

Ω4 = {u ∈ Cld([0, T ], R) : ‖u‖ < H4},

then u ∈ K ∩ ∂Ω4 implies

min
t∈[0,T ]

u(t) ≥ γ‖u‖ = γH4 ≥ Ĥ4 .

Therefore,

Au(t) ≤ T + β(T + η)
(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ λ‖u‖ T + β(T + η)
(T − αη)− β(T − η)

∫ T

0

(T − s)a(s)∇s ≤ ‖u‖.

Thus ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω4.
By the second part of Theorem 2.7, A has a fixed point u in K ∩ (Ω4 \Ω3), such

that H3 ≤ ‖u‖ ≤ H4. This completes the sublinear part of the theorem. Therefore,
the problem (1.3)-(1.4) has at least one positive solution. It finishes the proof of
Theorem 3.1. �
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4. Multiplicity of Positive Solutions

In this section, we discuss the multiplicity of positive solutions for the general
boundary-value problem

u∆∇(t) + f(t, u(t)) = 0, t ∈ [0, T ] ⊂ T, (4.1)

u(0) = βu(η), u(T ) = αu(η), (4.2)

where η ∈ (0, ρ(T )) ⊂ T, 0 < α < T
η , 0 < β < T−αη

T−η are given constants.
To state the next theorem we assume
(A3) f ∈ Cld([0, T ]× [0,∞), [0,∞)).

Define constants

m :=
( T + β(T + η)

(T − αη)− β(T − η)

∫ T

0

(T − s)∇s
)−1

, (4.3)

δ := min
{ βη

(T − αη)− β(T − η)

∫ T

η

(T − s)∇s,

αη

(T − αη)− β(T − η)

∫ T

η

(T − s)∇s
} (4.4)

Note that δ > 0 from 0 < η < ρ(T ), 0 < α < T
η , 0 < β < T−αη

T−η . Using The-
orem 2.8(the Leggett-Williams fixed-point theorem), we established the following
existence theorem for the boundary-value problem (4.1)-(4.2).

Theorem 4.1. Assume (A3) holds, and 0 < α < T
η , 0 < β < T−αη

T−η . Suppose there
exists constants 0 < a < b < b/γ ≤ c such that

(D1) f(t, u) < ma for t ∈ [0, T ], u ∈ [0, a];
(D2) f(t, u) ≥ b

δ for t ∈ [η, T ], u ∈ [b, b
γ ];

(D3) f(t, u) ≤ mc for t ∈ [0, T ], u ∈ [0, c],
where γ,m, δ are as defined in (2.5), (4.3) and (4.4), respectively. Then the boundary-
value problem (4.1)-(4.2) has at least three positive solutions u1, u2 and u3 satisfying

‖u1‖ < a, min
t∈[0,T ]

(u2)(t) > b, a < ‖u3‖ with min
t∈[0,T ]

(u3)(t) < b.

Proof. It is known that 0 < α < T
η , 0 < β < T−αη

T−η . Define the cone P ⊂
Cld([0, T ],R) by

P = {u ∈ Cld([0, T ],R) : u concave down and u(t) ≥ 0 on [0, T ]}. (4.5)

Let ψ : P → [0,∞) be defined by

ψ(u) = min
t∈[0,T ]

u(t), u ∈ P. (4.6)

then ψ is a nonnegative continuous concave functional and ψ(u) ≤ ‖u‖, u ∈ P .
Define the operator A : P → Cld([0, T ],R) by

Au(t) = −
∫ t

0

(t− s)f(s, u(s))∇s+
(β − α)t− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)f(s, u(s))∇s

+
(1− β)t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)f(s, u(s))∇s.

(4.7)
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Then the fixed points of A just are the solutions of the boundary-value problem
(4.1)-(4.2) from Lemma 2.1. Since (Au)∆∇(t) = −f(t, u(t)) for t ∈ (0, T ), together
with (A3) and Lemma 2.2, we see that Au(t) ≥ 0, t ∈ [0, T ] and (Au)∆∇(t) ≤
0, t ∈ (0, T ). Thus A : P → P . Moreover, A is completely continuous.

We now verify that all of the conditions of Theorem 2.8 are satisfied. Since

ψ(u) = min
t∈[0,T ]

u(t), u ∈ P.

we have ψ(u) ≤ ‖u‖. Now we show A : Pc → Pc, where Pc is given in (2.6). If
u ∈ Pc, then 0 ≤ u ≤ c, together with (D3), we find ∀ t ∈ [0, T ],

Au(t) ≤ (β − α)t− βT

(T − αη)− β(T − η)

∫ η

0

(η − s)f(s, u(s))∇s

+
(1− β)t+ βη

(T − αη)− β(T − η)

∫ T

0

(T − s)f(s, u(s))∇s

≤ T + β(T + η)
(T − αη)− β(T − η)

∫ T

0

(T − s)f(s, u(s))∇s

≤ mc
T + β(T + η)

(T − αη)− β(T − η)

∫ T

0

(T − s)∇s = c.

Thus, A : Pc → Pc.
By (D1) and the argument above, we can get that A : Pa → Pa. So, ‖Au‖ < a

for ‖u‖ ≤ a, the condition (ii) of Theorem 2.8 holds.
Consider the condition (i) of Theorem 2.8 now. Since ψ(b/γ) = b/γ > b, let

d = b/γ, then {u ∈ P (ψ, b, d) : ψ(u) > b} 6= ∅. For u ∈ P (ψ, b, d), we have
b ≤ u(t) ≤ b/γ, t ∈ [0, T ]. Combining with (D2), we get

f(t, u) ≥ b

δ
, t ∈ [η, T ].

Since u ∈ P (ψ, b, d), then there are two cases that either ψ(Au)(t) = Au(0), or
ψ(Au)(t) = Au(T ). As the former holds, we have

ψ(Au)(t) =
−βT

(T − αη)− β(T − η)

∫ η

0

(η − s)f(s, u(s))∇s

+
βη

(T − αη)− β(T − η)

∫ T

0

(T − s)f(s, u(s))∇s

=
βη

(T − αη)− β(T − η)

∫ T

η

Tf(s, u(s))∇s

+
βT

(T − αη)− β(T − η)

∫ η

0

sf(s, u(s))∇s

− βη

(T − αη)− β(T − η)

∫ T

0

sf(s, u(s))∇s

>
βη

(T − αη)− β(T − η)

∫ T

η

Tf(s, u(s))∇s

− βη

(T − αη)− β(T − η)

∫ T

η

sf(s, u(s))∇s
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≥ bβη

δ[(T − αη)− β(T − η)]

∫ T

η

(T − s)∇s ≥ b.

As the later holds, we have

ψ(Au)(t)

= −
∫ T

0

(T − s)f(s, u(s))∇s+
(β − α)T − βT

(T − αη)− β(T − η)

∫ η

0

(η − s)f(s, u(s))∇s

+
(1− β)T + βη

(T − αη)− β(T − η)

∫ T

0

(T − s)f(s, u(s))∇s

=
αη

(T − αη)− β(T − η)

∫ T

0

(T − s)f(s, u(s))∇s

− αT

(T − αη)− β(T − η)

∫ η

0

(η − s)f(s, u(s))∇s

=
αη

(T − αη)− β(T − η)

∫ T

η

Tf(s, u(s))∇s

− αη

(T − αη)− β(T − η)

∫ T

0

sf(s, u(s))∇s

+
αT

(T − αη)− β(T − η)

∫ η

0

sf(s, u(s))∇s

>
αη

(T − αη)− β(T − η)

∫ T

η

Tf(s, u(s))∇s

− αη

(T − αη)− β(T − η)

∫ T

η

sf(s, u(s))∇s

≥ bαη

δ[(T − αη)− β(T − η)]

∫ T

η

(T − s)∇s ≥ b.

So, ψ(Au) > b, u ∈ P (ψ, b, b/γ), as required.
For the condition (iii) of the Theorem 2.8, we can verify it easily under our

assumptions using Lemma 2.5. Here

ψ(Au) = min
t∈[0,T ]

Au(t) ≥ γ‖Au‖ > γ
b

γ
= b

as long as u ∈ P (ψ, b, c) with ‖Au‖ > b/γ.
Since all conditions of Theorem 2.8 are satisfied. We say the problem (4.1)-(4.2)

has at least three positive solutions u1, u2, u3 with

‖u1‖ < a, ψ(u2) > b, a < ‖u3‖ with ψ(u3) < b.

�

5. Examples

Example 5.1. Let T = [0, 1] ∪ [2, 3]. Considering the boundary-value problem on
T

u∆∇(t) + tup = 0, t ∈ [0, 3] ⊂ T, (5.1)

u(0) =
1
2
u(2), u(3) = u(2), (5.2)
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where p 6= 1. When taking T = 3, η = 2, α = 1, β = 1
2 , and

a(t) = t, t ∈ [0, 3] ⊂ T; f(u) = up, u ∈ [0,∞),

we prove the solvability of problem (5.1)-(5.2) by means of Theorem 3.1. It is clear
that a(·) and f(·) satisfy (A1) and (A2). We can also show that

0 < αη = 2 < 3 = T, 0 < β(T − η) =
1
2
< T − αη = 1.

Now we consider the existence of positive solutions of the problem (5.1)-(5.2) in two
cases.
Case 1: p > 1. In this case,

lim
u→0+

f(u)
u

= lim
u→0+

up−1 = 0, lim
u→∞

f(u)
u

= lim
u→∞

up−1 = ∞,

and (C1) of Theorem 3.1 holds. So the problem (5.1)-(5.2) has at least one positive
solution by Theorem 3.1.
Case 2. p < 1. In this case,

lim
u→0+

f(u)
u

= lim
u→0+

1
u1−p

= ∞, lim
u→∞

f(u)
u

= lim
u→∞

1
u1−p

= 0,

and (C2) of Theorem 3.1 holds. So the problem (5.1)-(5.2) has at least one positive
solution by Theorem 3.1. Therefore, the boundary-value problem (5.1)-(5.2) has at
least one positive solution when p 6= 1.

Example 5.2. Let T = {0} ∪ {1/2n : n ∈ N0}. Considering the boundary-value
problem on T

u∆∇(t) +
2005u3

u3 + 5000
= 0, t ∈ [0, 1] ⊂ T, (5.3)

u(0) =
1
3
u(

1
16

), u(1) = 8u(
1
16

), (5.4)

When taking T = 1, η = 1/16, α = 8, β = 1/3, and

f(t, u) = f(u) =
2005u3

u3 + 5000
, u ≥ 0,

we prove the solvability of the problem (5.1)-(5.2) by means of Theorem 4.1. It is
clear that f(·) is continuous and increasing on [0,∞). We can also seen that

0 < αη =
1
2
< 1 = T, 0 < β(T − η) =

5
16

< T − αη =
1
2
.

Now we check that (D1), (D2) and (D3) of Theorem 4.1 are satisfied. By (2.5),
(4.3) and (4.4), we get γ = 1/48, m = 27/65, δ = 35/1152. Let c = 5000, we have

f(u) ≤ 2005 < mc ≈ 2076.92, u ∈ [0, c]

from limu→∞ f(u) = 2005, so that (D3) is met. Note that f(10) ≈ 334.17, when
we set b = 10,

f(u) ≥ b

δ
≈ 329.14, u ∈ [b, 48b]

holds. It means that (D2) are satisfied. To verify (D1), as f( 1
5 ) ≈ 0.0032, we take

a = 1/5, then
f(u) < ma ≈ 0.083, u ∈ [0, a],
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and (D1) holds. Summing up, there exists constants a = 1/5, b = 10, c = 5000
satisfying

0 < a < b <
b

γ
≤ c

such that (D1), (D2) and (D3) of Theorem 4.1 hold. So the boundary-value problem
(5.3)-(5.4) has at least three positive solutions u1, u2 and u3 satisfying

‖u1‖ <
1
5
, min

t∈[0,T ]
(u2)(t) > 10,

1
5
< ‖u3‖ with min

t∈[0,T ]
(u3)(t) < 10.
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