Electronic Journal of Differential Equations, Vol. 2005(2005), No. 17, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS TO A GENERALIZED SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM ON TIME SCALES

HUA LUO, QIAOZHEN MA

Abstract

Let \mathbb{T} be a time scale with $0, T \in \mathbb{T}$. We investigate the existence and multiplicity of positive solutions to the nonlinear second-order three-point boundary-value problem $$
\begin{gathered} u^{\Delta \nabla}(t)+a(t) f(u(t))=0, \quad t \in[0, T] \subset \mathbb{T} \\ u(0)=\beta u(\eta), \quad u(T)=\alpha u(\eta) \end{gathered}
$$ on time scales \mathbb{T}, where $0<\eta<T, 0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$ are given constants.

1. Introduction

In recent years, many authors have begun to pay attention to the study of boundary-value problems on time scales. Here two-point boundary-value problems have been extensively studied; see [1, 2, 3, 4, 5] and the references therein. However, the research for three-point boundary-value problems is still a fairly new subject, even though it is growing rapidly; see [6, 7, 8, 9].

In 2002, inspired by the study of the existence of positive solutions in 10 for the three-point boundary-value problem of differential equations, Anderson [9] considered the following three-point boundary-value problem on a time scale \mathbb{T},

$$
\begin{gather*}
u^{\Delta \nabla}(t)+a(t) f(u(t))=0, \quad t \in[0, T] \subset \mathbb{T} \tag{1.1}\\
u(0)=0, \quad u(T)=\alpha u(\eta) \tag{1.2}
\end{gather*}
$$

He investigated the existence of at least one positive solution and of at least three positive solutions for the problem (1.1)-(1.2) by using Guo-Krasnoselskii's fixedpoint theorem and Leggett-Williams fixed-point theorem, respectively.

In this paper, we extend Anderson's results to the more general boundary-value problem on time scale \mathbb{T},

$$
\begin{gather*}
u^{\Delta \nabla}(t)+a(t) f(u(t))=0, \quad t \in[0, T] \subset \mathbb{T}, \tag{1.3}\\
u(0)=\beta u(\eta), \quad u(T)=\alpha u(\eta) \tag{1.4}
\end{gather*}
$$

[^0]where $\alpha>0, \beta \geq 0, \eta \in(0, T) \subset \mathbb{T}$ are given constants. Clearly if $\beta=0$, then (1.4) reduces to 1.2. We also point out that when $\mathbb{T}=\mathbb{R}, \beta=0$, 1.3)(1.4) becomes a boundary-value problem of differential equations and just is the problem considered in [10]; when $\mathbb{T}=\mathbb{Z}, \beta=0,11.3$ - 1.4 becomes a boundaryvalue problem of difference equations and just is the problem considered in [11]. We will use Guo-Krasnoselskii's fixed-point theorem and Leggett-Williams fixedpoint theorem to investigate the existence and multiplicity of positive solutions for the problem (1.3)-(1.4). Our main results extend the main results of Ma (10, Anderson [9, Ma and Raffoul[11.

The rest of the paper is arranged as follows: we state some basic time-scale definitions and prove several preliminary results in Section 2. Section 3 is devoted to the existence of a positive solution of $\sqrt{1.3})-(1.4)$, the main tool being the GuoKrasnoselskii's fixed-point theorem. Next in Section 4, we give a multiplicity result by using the Leggett-Williams fixed-point theorem. Finally we give two examples to illustrate our results in Section 5.

2. Preliminaries

For convenience, we list here the following definitions which are needed later.
A time scale \mathbb{T} is an arbitrary nonempty closed subset of real numbers \mathbb{R}. The operators σ and ρ from \mathbb{T} to \mathbb{T}, defined by [12],

$$
\begin{aligned}
\sigma(t) & =\inf \{\tau \in \mathbb{T}: \tau>t\} \in \mathbb{T} \\
\rho(t) & =\sup \{\tau \in \mathbb{T}: \tau<t\} \in \mathbb{T}
\end{aligned}
$$

are called the forward jump operator and the backward jump operator, respectively. In this definition

$$
\inf \emptyset:=\sup \mathbb{T}, \quad \sup \emptyset:=\inf \mathbb{T}
$$

The point $t \in \mathbb{T}$ is left-dense, left-scattered, right-dense, right-scattered if $\rho(t)=t$, $\rho(t)<t, \sigma(t)=t, \sigma(t)>t$, respectively.

Let $f: \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}$ (assume t is not left-scattered if $t=\sup \mathbb{T}$), then the delta derivative of f at the point t is defined to be the number $f^{\Delta}(t)$ (provided it exists) with the property that for each $\epsilon>0$ there is a neighborhood U of t such that

$$
\left|f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s)\right| \leq|\sigma(t)-s|, \quad \text { for all } s \in U
$$

Similarly, for $t \in \mathbb{T}$ (assume t is not right-scattered if $t=\inf \mathbb{T}$), the nabla derivative of f at the point t is defined in [1] to be the number $f^{\nabla}(t)$ (provided it exists) with the property that for each $\epsilon>0$ there is a neighborhood U of t such that

$$
\left|f(\rho(t))-f(s)-f^{\nabla}(t)(\rho(t)-s)\right| \leq|\rho(t)-s|, \quad \text { for all } s \in U
$$

A function f is left-dense continuous (i.e. ld-continuous), if f is continuous at each left-dense point in \mathbb{T} and its right-sided limit exists at each right-dense point in \mathbb{T}. It is well-known [13] that if f is ld-continuous, then there is a function $F(t)$ such that $F^{\nabla}(t)=f(t)$. In this case, it is defined that

$$
\int_{a}^{b} f(t) \nabla t=F(b)-F(a)
$$

For the rest of this article, \mathbb{T} denotes a time scale with $0, T \in \mathbb{T}$. Also we denote the set of left-dense continuous functions from $[0, T] \subset \mathbb{T}$ to $E \subset \mathbb{R}$ by $C_{l d}([0, T], E)$,
which is a Banach space with the maximum norm $\|u\|=\max _{t \in[0, T]}|u(t)|$. We now state and prove several lemmas before stating our main results.
Lemma 2.1. Let $\beta \neq \frac{T-\alpha \eta}{T-\eta}$. Then for $y \in C_{l d}([0, T], \mathbb{R})$, the problem

$$
\begin{gather*}
u^{\Delta \nabla}(t)+y(t)=0, \quad t \in[0, T] \subset \mathbb{T} \tag{2.1}\\
u(0)=\beta u(\eta), \quad u(T)=\alpha u(\eta) \tag{2.2}
\end{gather*}
$$

has a unique solution

$$
\begin{align*}
u(t)= & -\int_{0}^{t}(t-s) y(s) \nabla s+\frac{(\beta-\alpha) t-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) y(s) \nabla s \\
& +\frac{(1-\beta) t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) y(s) \nabla s \tag{2.3}
\end{align*}
$$

Proof. From (2.1), we have

$$
u(t)=u(0)+u^{\Delta}(0) t-\int_{0}^{t}(t-s) y(s) \nabla s:=A+B t-\int_{0}^{t}(t-s) y(s) \nabla s
$$

Since

$$
\begin{array}{r}
u(0)=A \\
u(\eta)=A+B \eta-\int_{0}^{\eta}(\eta-s) y(s) \nabla s \\
u(T)=A+B T-\int_{0}^{T}(T-s) y(s) \nabla s
\end{array}
$$

by (2.2) from $u(0)=\beta u(\eta)$, we have

$$
(1-\beta) A-B \beta \eta=-\beta \int_{0}^{\eta}(\eta-s) y(s) \nabla s
$$

from $u(T)=\alpha u(\eta)$, we have

$$
(1-\alpha) A+B(T-\alpha \eta)=\int_{0}^{T}(T-s) y(s) \nabla s-\alpha \int_{0}^{\eta}(\eta-s) y(s) \nabla s
$$

Therefore,

$$
\begin{aligned}
A= & \frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) y(s) \nabla s \\
& -\frac{\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) y(s) \nabla s \\
B= & \frac{1-\beta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) y(s) \nabla s \\
& -\frac{\alpha-\beta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) y(s) \nabla s
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
u(t)= & \frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) y(s) \nabla s \\
& \quad-\frac{\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) y(s) \nabla s
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{(1-\beta) t}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) y(s) \nabla s \\
& -\frac{(\alpha-\beta) t}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) y(s) \nabla s-\int_{0}^{t}(t-s) y(s) \nabla s \\
= & -\int_{0}^{t}(t-s) y(s) \nabla s+\frac{(\beta-\alpha) t-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) y(s) \nabla s \\
& +\frac{(1-\beta) t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) y(s) \nabla s
\end{aligned}
$$

The function u presented above is a solution to the problem $2.1-2.2$, and the uniqueness of u is obvious.
Lemma 2.2. Let $0<\alpha<\frac{T}{\eta}, 0 \leq \beta<\frac{T-\alpha \eta}{T-\eta}$. If $y \in C_{l d}([0, T],[0, \infty))$, then the unique solution u of the problem (2.1)-2.2) satisfies

$$
u(t) \geq 0, \quad t \in[0, T] \subset \mathbb{T}
$$

Proof. It is known that the graph of u is concave down on $[0, T]$ from $u^{\Delta \nabla}(t)=$ $-y(t) \leq 0$, so

$$
\frac{u(\eta)-u(0)}{\eta} \geq \frac{u(T)-u(0)}{T}
$$

Combining this with 2.2 , we have

$$
\frac{1-\beta}{\eta} u(\eta) \geq \frac{\alpha-\beta}{T} u(\eta)
$$

If $u(0)<0$, then $u(\eta)<0$. It implies that $\beta \geq \frac{T-\alpha \eta}{T-\eta}$, a contradiction to $\beta<\frac{T-\alpha \eta}{T-\eta}$.
If $u(T)<0$, then $u(\eta)<0$, and the same contradiction emerges. Thus, it is true that $u(0) \geq 0, u(T) \geq 0$, together with the concavity of u, we have

$$
u(t) \geq 0, \quad t \in[0, T] \subset \mathbb{T}
$$

as required.
Lemma 2.3. Let $\alpha \eta \neq T, \beta>\max \left\{\frac{T-\alpha \eta}{T-\eta}, 0\right\}$. If $y \in C_{l d}([0, T],[0, \infty))$, then problem 2.1-2.2 has no nonnegative solutions.
Proof. Suppose that problem (2.1)-2.2 has a nonnegative solution u satisfying $u(t) \geq 0, t \in[0, T]$ and there is a $t_{0} \in(0, T)$ such that $u\left(t_{0}\right)>0$.

If $u(T)>0$, then $u(\eta)>0$. It implies

$$
u(0)=\beta u(\eta)>\frac{T-\alpha \eta}{T-\eta} u(\eta)=\frac{T u(\eta)-\eta u(T)}{T-\eta}
$$

that is

$$
\frac{u(T)-u(0)}{T}>\frac{u(\eta)-u(0)}{\eta}
$$

which is a contradiction to the concavity of u.
If $u(T)=0$, then $u(\eta)=0$. When $t_{0} \in(0, \eta)$, we get $u\left(t_{0}\right)>u(\eta)=u(T)$, a violation of the concavity of u. When $t_{0} \in(\eta, T)$, we get $u(0)=\beta u(\eta)=0=$ $u(\eta)<u\left(t_{0}\right)$, another violation of the concavity of u. Therefore, no nonnegative solutions exist.
Remark 2.4. When $\beta=0$, the result similar to Lemma 2.3 has been obtained in Lemma 5 of 9 for $\alpha \eta>T$.

Lemma 2.5. Let $0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$. If $y \in C_{l d}([0, T],[0, \infty))$, then the unique solution to the problem $2.1-2.2$ satisfies

$$
\begin{equation*}
\min _{t \in[0, T]} u(t) \geq \gamma\|u\| \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma:=\min \left\{\frac{\alpha(T-\eta)}{T-\alpha \eta}, \frac{\alpha \eta}{T}, \frac{\beta(T-\eta)}{T}, \frac{\beta \eta}{T}\right\} \tag{2.5}
\end{equation*}
$$

Proof. It is known that the graph of u is concave down on $[0, T]$ from $u^{\Delta \nabla}(t)=$ $-y(t) \leq 0$. We divide the proof into two cases.
Case 1. $0<\alpha<1$, then $\frac{T-\alpha \eta}{T-\eta}>\alpha$. For $u(0)=\beta u(\eta)=\frac{\beta}{\alpha} u(T)$, it may develop in the following two possible directions.
(i) $0<\alpha \leq \beta$. It implies that $u(0) \geq u(T)$, so

$$
\min _{t \in[0, T]} u(t)=u(T)
$$

Assume $\|u\|=u\left(t_{1}\right), t_{1} \in[0, T)$, then either $0 \leq t_{1} \leq \eta<\rho(T)$, or $0<\eta<t_{1}<T$. If $0 \leq t_{1} \leq \eta<\rho(T)$, then

$$
\begin{aligned}
u\left(t_{1}\right) & \leq u(T)+\frac{u(T)-u(\eta)}{T-\eta}\left(t_{1}-T\right) \\
& \leq u(T)+\frac{u(T)-u(\eta)}{T-\eta}(0-T) \\
& =\frac{T u(\eta)-\eta u(T)}{T-\eta} \\
& =\frac{T-\alpha \eta}{\alpha(T-\eta)} u(T)
\end{aligned}
$$

from which it follows that $\min _{t \in[0, T]} u(t) \geq \frac{\alpha(T-\eta)}{T-\alpha \eta}\|u\|$. If $0<\eta<t_{1}<T$, from

$$
\frac{u(\eta)}{\eta} \geq \frac{u\left(t_{1}\right)}{t_{1}} \geq \frac{u\left(t_{1}\right)}{T}
$$

together with $u(T)=\alpha u(\eta)$, we have

$$
u(T)>\frac{\alpha \eta}{T} u\left(t_{1}\right)
$$

so that, $\min _{t \in[0, T]} u(t) \geq \frac{\alpha \eta}{T}\|u\|$.
(ii) $0<\beta<\alpha$. It implies that $u(0) \leq u(T)$, so

$$
\min _{t \in[0, T]} u(t)=u(0)
$$

Assume $\|u\|=u\left(t_{2}\right), t_{2} \in(0, T]$, then either $0<t_{2}<\eta<\rho(T)$, or $0<\eta \leq t_{2} \leq T$. If $0<t_{2}<\eta<\rho(T)$, from

$$
\frac{u(\eta)}{T-\eta} \geq \frac{u\left(t_{2}\right)}{T-t_{2}} \geq \frac{u\left(t_{2}\right)}{T}
$$

together with $u(0)=\beta u(\eta)$, we have

$$
u(0) \geq \frac{\beta(T-\eta)}{T} u\left(t_{2}\right)
$$

hence, $\min _{t \in[0, T]} u(t) \geq \frac{\beta(T-\eta)}{T}\|u\|$.
If $0<\eta \leq t_{2} \leq T$, from

$$
\frac{u\left(t_{2}\right)}{T} \leq \frac{u\left(t_{2}\right)}{t_{2}} \leq \frac{u(\eta)}{\eta}
$$

together with $u(0)=\beta u(\eta)$, we have

$$
u(0) \geq \frac{\beta \eta}{T} u\left(t_{2}\right)
$$

so that, $\min _{t \in[0, T]} u(t) \geq \frac{\beta \eta}{T}\|u\|$.
Case 2. $\frac{T}{\eta}>\alpha \geq 1$, then $\frac{T-\alpha \eta}{T-\eta} \leq \alpha$. In this case, $\beta<\alpha$ is true. It implies that $u(0) \leq u(T)$. So,

$$
\min _{t \in[0, T]} u(t)=u(0) .
$$

Assume $\|u\|=u\left(t_{2}\right), t_{2} \in(0, T]$ again. Since $\alpha \geq 1$, it is known that $u(\eta) \leq u(T)$, together with the concavity of u, we have $0<\eta \leq t_{2} \leq T$. Similar to the above discussion,

$$
\min _{t \in[0, T]} u(t) \geq \frac{\beta \eta}{T}\|u\| .
$$

Summing up, we have

$$
\min _{t \in[0, T]} u(t) \geq \gamma\|u\|
$$

where

$$
0<\gamma=\min \left\{\frac{\alpha(T-\eta)}{T-\alpha \eta}, \frac{\alpha \eta}{T}, \frac{\beta(T-\eta)}{T}, \frac{\beta \eta}{T}\right\}<1
$$

This completes the proof.
Remark 2.6. If $\beta=0$, Anderson obtained the inequality in [9, Lemma 7] that is

$$
\min _{t \in[\eta, T]} u(t) \geq r\|u\|
$$

where

$$
r:=\min \left\{\frac{\alpha(T-\eta)}{T-\alpha \eta}, \frac{\alpha \eta}{T}, \frac{\eta}{T}\right\} .
$$

The following two theorems, Theorem 2.7 (Guo-Krasnoselskii's fixed-point theorem) and Theorem 2.8 (Leggett-Williams fixed-point theorem), will play an important role in the proof of our main results.

Theorem 2.7 ([14]). Let E be a Banach space, and let $K \subset E$ be a cone. Assume Ω_{1}, Ω_{2} are open bounded subsets of E with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
A: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \longrightarrow K
$$

be a completely continuous operator such that either
(i) $\|A u\| \leq\|u\|, \quad u \in K \cap \partial \Omega_{1}$, and $\|A u\| \geq\|u\|, \quad u \in K \cap \partial \Omega_{2}$; or
(ii) $\|A u\| \geq\|u\|, \quad u \in K \cap \partial \Omega_{1}$, and $\|A u\| \leq\|u\|, \quad u \in K \cap \partial \Omega_{2}$
hold. Then A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Theorem 2.8 ([15]). Let P be a cone in the real Banach space E. Set

$$
\begin{gather*}
P_{c}:=\{x \in P:\|x\|<c\} \tag{2.6}\\
P(\psi, a, b):=\{x \in P: a \leq \psi(x),\|x\| \leq b\} \tag{2.7}
\end{gather*}
$$

Suppose $A: \bar{P}_{c} \rightarrow \bar{P}_{c}$ be a completely continuous operator and ψ be a nonnegative continuous concave functional on P with $\psi(x) \leq\|x\|$ for all $x \in \bar{P}_{c}$. If there exists $0<a<b<d \leq c$ such that the following conditions hold,
(i) $\{x \in P(\psi, b, d): \psi(x)>b\} \neq \emptyset$ and $\psi(A x)>b$ for all $x \in P(\psi, b, d)$;
(ii) $\|A x\|<a$ for $\|x\| \leq a$;
(iii) $\psi(A x)>b$ for $x \in P(\psi, b, c)$ with $\|A x\|>d$.

Then A has at least three fixed points x_{1}, x_{2} and x_{3} in \bar{P}_{c} satisfying

$$
\left\|x_{1}\right\|<a, \quad \psi\left(x_{2}\right)>b, \quad a<\left\|x_{3}\right\| \quad \text { with } \psi\left(x_{3}\right)<b .
$$

3. Existence of Positive Solutions

We assume the following hypotheses:
(A1) $f \in C([0, \infty),[0, \infty)$;
(A2) $a \in C_{l d}([0, T],[0, \infty))$ and there exists $t_{0} \in(0, T)$, such that $a\left(t_{0}\right)>0$.
Define

$$
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}, \quad f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u}
$$

For the boundary-value problem (1.3)- (1.4), we establish the following existence theorem by using Theorem 2.7 (Guo-Krasnoselskii's fixed-point theorem).

Theorem 3.1. Assume (A1), (A2) hold, and $0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$. If either
(C1) $f_{0}=0$ and $f_{\infty}=\infty$ (f is superlinear), or
(C2) $f_{0}=\infty$ and $f_{\infty}=0$ (f is sublinear),
then problem (1.3)-1.4 has at least one positive solution.
Proof. It is known that $0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$. From Lemma 2.1, u is a solution to the boundary-value problem (1.3)-(1.4) if and only if u is a fixed point of operator A, where A is defined by

$$
\begin{align*}
& A u(t) \\
&=-\int_{0}^{t}(t-s) a(s) f(u(s)) \nabla s+\frac{(\beta-\alpha) t-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s \\
&+\frac{(1-\beta) t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s . \tag{3.1}
\end{align*}
$$

Denote

$$
K=\left\{u \in C_{l d}([0, T], \mathbb{R}): u \geq 0, \min _{t \in[0, T]} u(t) \geq \gamma\|u\|\right\}
$$

where γ is defined in 2.5.
It is obvious that K is a cone in $C_{l d}([0, T], \mathbb{R})$. Moreover, from (A1), (A2), Lemma 2.2 and Lemma 2.5, $A K \subset K$. It is also easy to check that $A: K \rightarrow K$ is completely continuous.

Superlinear case. $f_{0}=0$ and $f_{\infty}=\infty$. Since $f_{0}=0$, we may choose $H_{1}>0$ so that $f(u) \leq \epsilon u$, for $0<u \leq H_{1}$, where $\epsilon>0$ satisfies

$$
\epsilon \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) \nabla s \leq 1
$$

Thus, if we let

$$
\Omega_{1}=\left\{u \in C_{l d}([0, T], \mathbb{R}):\|u\|<H_{1}\right\}
$$

then for $u \in K \cap \partial \Omega_{1}$, we get

$$
\begin{aligned}
A u(t) \leq & \frac{(\beta-\alpha) t-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s \\
& +\frac{(1-\beta) t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
\leq & \frac{\beta t}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s \\
& +\frac{t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
\leq & \frac{\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s \\
& +\frac{T+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
\leq & \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
\leq & \epsilon\|u\| \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) \nabla s \leq\|u\| .
\end{aligned}
$$

Thus $\|A u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$.
Further, since $f_{\infty}=\infty$, there exists $\hat{H}_{2}>0$ such that $f(u) \geq \rho u$, for $u \geq \hat{H}_{2}$, where $\rho>0$ is chosen so that

$$
\rho \gamma \frac{T-\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s a(s) \nabla s \geq 1
$$

Let $H_{2}=\max \left\{2 H_{1}, \frac{\hat{H}_{2}}{\gamma}\right\}$ and

$$
\Omega_{2}=\left\{u \in C_{l d}([0, T], \mathbb{R}):\|u\|<H_{2}\right\}
$$

Then $u \in K \cap \partial \Omega_{2}$ implies

$$
\min _{t \in[0, T]} u(t) \geq \gamma\|u\|=\gamma H_{2} \geq \hat{H}_{2}
$$

and so

$$
\begin{aligned}
& A u(\eta) \\
&=-\int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s+\frac{\beta \eta-\alpha \eta-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s \\
&+\frac{\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
&= \frac{-T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) \nabla s \\
&+\frac{\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
& \geq \frac{1}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}[-T(\eta-s)+\eta(T-s)] a(s) f(u(s)) \nabla s
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{T-\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s a(s) f(u(s)) \nabla s \\
& \geq \gamma \rho\|u\| \frac{T-\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s a(s) \nabla s \geq\|u\| .
\end{aligned}
$$

Hence, $\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$. By the first part of Theorem 2.7. A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, such that $H_{1} \leq\|u\| \leq H_{2}$. This completes the superlinear part of the theorem.

Sublinear case. $f_{0}=\infty$ and $f_{\infty}=0$. Since $f_{0}=\infty$, choose $H_{3}>0$ such that $f(u) \geq M u$ for $0<u \leq H_{3}$, where $M>0$ satisfies

$$
M \gamma \frac{T-\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s a(s) \nabla s \geq 1
$$

Let

$$
\Omega_{3}=\left\{u \in C_{l d}([0, T], \mathbb{R}):\|u\|<H_{3}\right\}
$$

then for $u \in K \cap \partial \Omega_{3}$, we get

$$
\begin{aligned}
A y(\eta) & \geq \frac{T-\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s a(s) f(u(s)) \nabla s \\
& \geq M \gamma\|u\| \frac{T-\eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s a(s) \nabla s \geq\|u\|
\end{aligned}
$$

Thus, $\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{3}$. Now, since $f_{\infty}=0$, there exists $\hat{H}_{4}>0$ so that $f(u) \leq \lambda u$ for $u \geq \hat{H}_{4}$, where $\lambda>0$ satisfies

$$
\lambda \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) \nabla s \leq 1 .
$$

Choose $H_{4}=\max \left\{2 H_{3}, \frac{\hat{H}_{4}}{\gamma}\right\}$. Let

$$
\Omega_{4}=\left\{u \in C_{l d}([0, T], \mathbb{R}):\|u\|<H_{4}\right\}
$$

then $u \in K \cap \partial \Omega_{4}$ implies

$$
\min _{t \in[0, T]} u(t) \geq \gamma\|u\|=\gamma H_{4} \geq \hat{H}_{4}
$$

Therefore,

$$
\begin{aligned}
A u(t) & \leq \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) f(u(s)) \nabla s \\
& \leq \lambda\|u\| \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) a(s) \nabla s \leq\|u\|
\end{aligned}
$$

Thus $\|A u\| \leq\|u\|, u \in K \cap \partial \Omega_{4}$.
By the second part of Theorem 2.7. A has a fixed point u in $K \cap\left(\bar{\Omega}_{4} \backslash \Omega_{3}\right)$, such that $H_{3} \leq\|u\| \leq H_{4}$. This completes the sublinear part of the theorem. Therefore, the problem $(1.3)-(1.4)$ has at least one positive solution. It finishes the proof of Theorem 3.1.

4. Multiplicity of Positive Solutions

In this section, we discuss the multiplicity of positive solutions for the general boundary-value problem

$$
\begin{gather*}
u^{\Delta \nabla}(t)+f(t, u(t))=0, \quad t \in[0, T] \subset \mathbb{T}, \tag{4.1}\\
u(0)=\beta u(\eta), \quad u(T)=\alpha u(\eta) \tag{4.2}
\end{gather*}
$$

where $\eta \in(0, \rho(T)) \subset \mathbb{T}, 0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$ are given constants.
To state the next theorem we assume
(A3) $f \in C_{l d}([0, T] \times[0, \infty),[0, \infty))$.
Define constants

$$
\begin{align*}
& m:=\left(\frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) \nabla s\right)^{-1} \tag{4.3}\\
& \delta:=\min \left\{\frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T}(T-s) \nabla s\right. \\
&\left.\frac{\alpha \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T}(T-s) \nabla s\right\} \tag{4.4}
\end{align*}
$$

Note that $\delta>0$ from $0<\eta<\rho(T), 0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$. Using Theorem 2.8 (the Leggett-Williams fixed-point theorem), we established the following existence theorem for the boundary-value problem (4.1)-4.2).

Theorem 4.1. Assume (A3) holds, and $0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$. Suppose there exists constants $0<a<b<b / \gamma \leq c$ such that
(D1) $f(t, u)<m a$ for $t \in[0, T], u \in[0, a]$;
(D2) $f(t, u) \geq \frac{b}{\delta}$ for $t \in[\eta, T], u \in\left[b, \frac{b}{\gamma}\right]$;
(D3) $f(t, u) \leq m c$ for $t \in[0, T], u \in[0, c]$,
where γ, m, δ are as defined in (2.5, (4.3) and 4.4, respectively. Then the boundaryvalue problem (4.1)-4.2) has at least three positive solutions u_{1}, u_{2} and u_{3} satisfying

$$
\left\|u_{1}\right\|<a, \quad \min _{t \in[0, T]}\left(u_{2}\right)(t)>b, \quad a<\left\|u_{3}\right\| \quad \text { with } \min _{t \in[0, T]}\left(u_{3}\right)(t)<b .
$$

Proof. It is known that $0<\alpha<\frac{T}{\eta}, 0<\beta<\frac{T-\alpha \eta}{T-\eta}$. Define the cone $P \subset$ $C_{l d}([0, T], \mathbb{R})$ by

$$
\begin{equation*}
P=\left\{u \in C_{l d}([0, T], \mathbb{R}): u \text { concave down and } u(t) \geq 0 \text { on }[0, T]\right\} \tag{4.5}
\end{equation*}
$$

Let $\psi: P \rightarrow[0, \infty)$ be defined by

$$
\begin{equation*}
\psi(u)=\min _{t \in[0, T]} u(t), \quad u \in P \tag{4.6}
\end{equation*}
$$

then ψ is a nonnegative continuous concave functional and $\psi(u) \leq\|u\|, u \in P$.
Define the operator $A: P \rightarrow C_{l d}([0, T], \mathbb{R})$ by

$$
\begin{align*}
A u(t)= & -\int_{0}^{t}(t-s) f(s, u(s)) \nabla s+\frac{(\beta-\alpha) t-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) f(s, u(s)) \nabla s \\
& +\frac{(1-\beta) t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) f(s, u(s)) \nabla s \tag{4.7}
\end{align*}
$$

Then the fixed points of A just are the solutions of the boundary-value problem (4.1)- 4.2) from Lemma 2.1. Since $(A u)^{\Delta \nabla}(t)=-f(t, u(t))$ for $t \in(0, T)$, together with $(\overline{\mathrm{A} 3})$ and Lemma 2.2 we see that $A u(t) \geq 0, t \in[0, T]$ and $(A u)^{\Delta \nabla}(t) \leq$ $0, t \in(0, T)$. Thus $A: P \rightarrow P$. Moreover, A is completely continuous.

We now verify that all of the conditions of Theorem 2.8 are satisfied. Since

$$
\psi(u)=\min _{t \in[0, T]} u(t), \quad u \in P
$$

we have $\psi(u) \leq\|u\|$. Now we show $A: \overline{P_{c}} \rightarrow \overline{P_{c}}$, where P_{c} is given in 2.6). If $u \in \overline{P_{c}}$, then $0 \leq u \leq c$, together with (D3), we find $\forall t \in[0, T]$,

$$
\begin{aligned}
A u(t) \leq & \frac{(\beta-\alpha) t-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) f(s, u(s)) \nabla s \\
& +\frac{(1-\beta) t+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) f(s, u(s)) \nabla s \\
\leq & \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) f(s, u(s)) \nabla s \\
\leq & m c \frac{T+\beta(T+\eta)}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) \nabla s=c
\end{aligned}
$$

Thus, $A: \overline{P_{c}} \rightarrow \overline{P_{c}}$.
By (D1) and the argument above, we can get that $A: \overline{P_{a}} \rightarrow P_{a}$. So, $\|A u\|<a$ for $\|u\| \leq a$, the condition (ii) of Theorem 2.8 holds.

Consider the condition (i) of Theorem 2.8 now. Since $\psi(b / \gamma)=b / \gamma>b$, let $d=b / \gamma$, then $\{u \in P(\psi, b, d): \psi(u)>b\} \neq \emptyset$. For $u \in P(\psi, b, d)$, we have $b \leq u(t) \leq b / \gamma, t \in[0, T]$. Combining with (D2), we get

$$
f(t, u) \geq \frac{b}{\delta}, \quad t \in[\eta, T]
$$

Since $u \in P(\psi, b, d)$, then there are two cases that either $\psi(A u)(t)=A u(0)$, or $\psi(A u)(t)=A u(T)$. As the former holds, we have

$$
\begin{aligned}
\psi(A u)(t)= & \frac{-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) f(s, u(s)) \nabla s \\
& +\frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) f(s, u(s)) \nabla s \\
= & \frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T} T f(s, u(s)) \nabla s \\
& +\frac{\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta} s f(s, u(s)) \nabla s \\
& -\frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s f(s, u(s)) \nabla s \\
> & \frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T} T f(s, u(s)) \nabla s \\
& -\frac{\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T} s f(s, u(s)) \nabla s
\end{aligned}
$$

$$
\geq \frac{b \beta \eta}{\delta[(T-\alpha \eta)-\beta(T-\eta)]} \int_{\eta}^{T}(T-s) \nabla s \geq b
$$

As the later holds, we have

$$
\begin{aligned}
\psi & (A u)(t) \\
= & -\int_{0}^{T}(T-s) f(s, u(s)) \nabla s+\frac{(\beta-\alpha) T-\beta T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) f(s, u(s)) \nabla s \\
& +\frac{(1-\beta) T+\beta \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) f(s, u(s)) \nabla s \\
= & \frac{\alpha \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T}(T-s) f(s, u(s)) \nabla s \\
& -\frac{\alpha T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta}(\eta-s) f(s, u(s)) \nabla s \\
= & \frac{\alpha \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T} T f(s, u(s)) \nabla s \\
& -\frac{\alpha \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{T} s f(s, u(s)) \nabla s \\
& +\frac{\alpha T}{(T-\alpha \eta)-\beta(T-\eta)} \int_{0}^{\eta} s f(s, u(s)) \nabla s \\
> & \frac{\alpha \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T} T f(s, u(s)) \nabla s \\
& -\frac{\alpha \eta}{(T-\alpha \eta)-\beta(T-\eta)} \int_{\eta}^{T} s f(s, u(s)) \nabla s \\
\geq & \frac{b \alpha \eta}{\delta[(T-\alpha \eta)-\beta(T-\eta)]} \int_{\eta}^{T}(T-s) \nabla s \geq b .
\end{aligned}
$$

So, $\psi(A u)>b, u \in P(\psi, b, b / \gamma)$, as required.
For the condition (iii) of the Theorem 2.8 , we can verify it easily under our assumptions using Lemma 2.5. Here

$$
\psi(A u)=\min _{t \in[0, T]} A u(t) \geq \gamma\|A u\|>\gamma \frac{b}{\gamma}=b
$$

as long as $u \in P(\psi, b, c)$ with $\|A u\|>b / \gamma$.
Since all conditions of Theorem 2.8 are satisfied. We say the problem (4.1)- 4.2) has at least three positive solutions u_{1}, u_{2}, u_{3} with

$$
\left\|u_{1}\right\|<a, \quad \psi\left(u_{2}\right)>b, \quad a<\left\|u_{3}\right\| \quad \text { with } \psi\left(u_{3}\right)<b .
$$

5. Examples

Example 5.1. Let $\mathbb{T}=[0,1] \cup[2,3]$. Considering the boundary-value problem on \mathbb{T}

$$
\begin{gather*}
u^{\Delta \nabla}(t)+t u^{p}=0, \quad t \in[0,3] \subset \mathbb{T} \tag{5.1}\\
u(0)=\frac{1}{2} u(2), \quad u(3)=u(2) \tag{5.2}
\end{gather*}
$$

where $p \neq 1$. When taking $T=3, \eta=2, \alpha=1, \beta=\frac{1}{2}$, and

$$
a(t)=t, \quad t \in[0,3] \subset \mathbb{T} ; \quad f(u)=u^{p}, \quad u \in[0, \infty)
$$

we prove the solvability of problem 5.1)-(5.2) by means of Theorem 3.1. It is clear that $a(\cdot)$ and $f(\cdot)$ satisfy $(A 1)$ and $(A 2)$. We can also show that

$$
0<\alpha \eta=2<3=T, \quad 0<\beta(T-\eta)=\frac{1}{2}<T-\alpha \eta=1
$$

Now we consider the existence of positive solutions of the problem (5.1)-(5.2) in two cases.
Case 1: $p>1$. In this case,

$$
\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=\lim _{u \rightarrow 0^{+}} u^{p-1}=0, \quad \lim _{u \rightarrow \infty} \frac{f(u)}{u}=\lim _{u \rightarrow \infty} u^{p-1}=\infty
$$

and (C1) of Theorem 3.1 holds. So the problem (5.1)-(5.2) has at least one positive solution by Theorem 3.1.
Case 2. $p<1$. In this case,

$$
\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=\lim _{u \rightarrow 0^{+}} \frac{1}{u^{1-p}}=\infty, \quad \lim _{u \rightarrow \infty} \frac{f(u)}{u}=\lim _{u \rightarrow \infty} \frac{1}{u^{1-p}}=0
$$

and (C2) of Theorem 3.1 holds. So the problem (5.1)-(5.2) has at least one positive solution by Theorem 3.1. Therefore, the boundary-value problem (5.1)-(5.2) has at least one positive solution when $p \neq 1$.

Example 5.2. Let $\mathbb{T}=\{0\} \cup\left\{1 / 2^{n}: n \in \mathbb{N}_{0}\right\}$. Considering the boundary-value problem on \mathbb{T}

$$
\begin{gather*}
u^{\Delta \nabla}(t)+\frac{2005 u^{3}}{u^{3}+5000}=0, \quad t \in[0,1] \subset \mathbb{T} \tag{5.3}\\
u(0)=\frac{1}{3} u\left(\frac{1}{16}\right), \quad u(1)=8 u\left(\frac{1}{16}\right) \tag{5.4}
\end{gather*}
$$

When taking $T=1, \eta=1 / 16, \alpha=8, \beta=1 / 3$, and

$$
f(t, u)=f(u)=\frac{2005 u^{3}}{u^{3}+5000}, \quad u \geq 0
$$

we prove the solvability of the problem (5.1)-5.2 by means of Theorem 4.1. It is clear that $f(\cdot)$ is continuous and increasing on $[0, \infty)$. We can also seen that

$$
0<\alpha \eta=\frac{1}{2}<1=T, \quad 0<\beta(T-\eta)=\frac{5}{16}<T-\alpha \eta=\frac{1}{2}
$$

Now we check that (D1), (D2) and (D3) of Theorem 4.1 are satisfied. By (2.5), (4.3) and 4.4, we get $\gamma=1 / 48, m=27 / 65, \delta=35 / 1152$. Let $c=5000$, we have

$$
f(u) \leq 2005<m c \approx 2076.92, \quad u \in[0, c]
$$

from $\lim _{u \rightarrow \infty} f(u)=2005$, so that (D3) is met. Note that $f(10) \approx 334.17$, when we set $b=10$,

$$
f(u) \geq \frac{b}{\delta} \approx 329.14, \quad u \in[b, 48 b]
$$

holds. It means that (D2) are satisfied. To verify $(D 1)$, as $f\left(\frac{1}{5}\right) \approx 0.0032$, we take $a=1 / 5$, then

$$
f(u)<m a \approx 0.083, \quad u \in[0, a]
$$

and (D1) holds. Summing up, there exists constants $a=1 / 5, b=10, c=5000$ satisfying

$$
0<a<b<\frac{b}{\gamma} \leq c
$$

such that (D1), (D2) and (D3) of Theorem 4.1 hold. So the boundary-value problem (5.3)-(5.4) has at least three positive solutions u_{1}, u_{2} and u_{3} satisfying

$$
\left\|u_{1}\right\|<\frac{1}{5}, \quad \min _{t \in[0, T]}\left(u_{2}\right)(t)>10, \quad \frac{1}{5}<\left\|u_{3}\right\| \quad \text { with } \quad \min _{t \in[0, T]}\left(u_{3}\right)(t)<10
$$

References

[1] F. M. Atici and G. Sh. Guseinov; On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141(2002), 75-99.
[2] R. I. Avery and D. R. Anderson; Existence of three positive solutions to a second-order boundary value problem on a measure chain, J. Comput. Appl. Math., 141(2002), 65-73.
[3] R. P. Agarwal and D. O'Regan; Nonlinear boundary value problems on time scales, Nonlinear Anal., 44(2001), 527-535.
[4] L. H. Erbe and A. C. Peterson; Positive solutions for a nonlinear differential equation on a measure chain, Mathematical and Computer Modelling, 32(2000), 571-585.
[5] Ruyun Ma and Hua Luo; Existence of solutions for a two-point boundary value problem on time scales, Appl. Math. Comput., 150(2004), 139-147.
[6] D. R. Anderson; Nonlinear triple-point problems on time scales, Electron. J. Differential Equations, 47(2004), 1-12.
[7] D. R. Anderson and R. I. Avery; An even-order three-point boundary value problem on time scales, J. Math. Anal. Appl., 291(2004), 514-525.
[8] E. R. Kaufmann; Positive solutions of a three-point boundary value problem on a time scale, Electron. J. Differential Equations, 82(2003), 1-11.
[9] D. R. Anderson; Solutions to second order three-point problems on time scales, J. Difference Equations and Applications, 8(2002), 673-688.
[10] Ruyun Ma; Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differential Equations, 34(1999), 1-8.
[11] Ruyun Ma and Y. N. Raffoul; Positive solutions of three-point nonlinear discrete second-order boundary value problem, J. Difference Equations and Applications 10(2004), 129-138.
[12] S. Hilger; Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math., 18(1990), 18-56.
[13] M. Bohner and A. C. Peterson, editors; Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[14] Dajun Guo and V. Lakshmikantham; Nonlinear problems in abstract cones, Academic Press, San Diego, 1988.
[15] R. W. Leggett and L. R. Williams; Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana. University Math. J. 28(1979), 673-688.

Hua Luo
College of Mathematics and Information Science, Northwest Normal University,
Lanzhou 730070, Gansu, China
E-mail address: luohua@nwnu.edu.cn
Qiaozhen Ma
College of Mathematics and Information Science, Northwest Normal University,
Lanzhou 730070, Gansu, China
E-mail address: maqzh@nwnu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34B18, 39A10.
 Key words and phrases. Time scales; three-point boundary value problems; cone; fixed points; positive solutions.
 (C) 2005 Texas State University - San Marcos.

 Submitted September 1, 2004. Published February 1, 2005.

